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MATH 3375 - Assignment 5

Population Coding

Consider a population of N neurons, responsible for estimating a continuous stimulus pa-

rameter θ ∈ [0, 2π). Let the mean firing rate of neuron i be:

fi(θ) = rmaxe
2N

π
(cos(θ−φi)−1).

Further, let the population be evenly tiled in stimulus space with φi = (i − 1)∆φ + ∆φ

2
,

where ∆φ = 2π
N
. Let the population response r = [r1, . . . , rN ] to a single trial presentation

of stimulus θ obey the following density function. (The MATLAB function random with a

‘poiss’ specifier will be useful. In XPP, it is poisson.)

P (r|θ) =
N
∏

i=1

(fi(θ)T )
riT

(riT )!
e−fi(θ)T ,

where T is the duration of the trial. Unless otherwise mentioned set rmax = 50 Hz and

T = 0.25s.

1. Discretize stimulus θ into {0,∆θ, 2∆θ, . . . ,M∆θ} with M = 100 and ∆θ = 2Π/100.

For a fixed θ and a single stimulus trial let the stimulus estimate be

C =
N
∑

i=1

ri cosφi

S =
N
∑

i=1

ri sinφi

θest = atan2(S,C)

where atan2(y, x) is the value of θ such x = cos θ and y = sin θ (it is available in XPP

and MatLab)

For each fixed θ perform 104 trials and numerically compute 〈θest〉 and σ2
est = 〈(θ −

θest)
2〉, where 〈·〉 is an expectation over trials. Plot 〈θest〉 and σ2

est as a function of θ for

populations with N = 4 and N = 100 (Beware that your θest for each trial might be

different form θ by ±2π, so that when you compute θest ar each trial, you might have

to add ±2π to bring it as close as possible to θ.)
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2. For the remainder of the exercises, just do the cricket, N = 4 neurons. For the results

of question (1) compute the bias of the estimate, best(θ) = 〈θest〉 − θ, and fit a simple

periodic function (i.e cos or sin) to give a smooth approximation to best(θ). Plot best(θ)

and your approximation. (You can eyeball this - it will be proportaional to K cos 8πθ

I think.)

3. Compute the Cramer-Rao lower bound for σ2
est(θ):

CR(θ) =
(1 + b′est(θ))

2

IF (θ)
,

where IF is the Fisher information and ′ denotes differentiation with respect to θ. Use

the formulas 3.41 and 3.45 from your book using the approximate equation for best(θ).

4. Repeat question (3) with T = {0.1, 0.5, 1.0, 2.0}. Comment on the relation (if any) of

the minima and maxima of σ2
est and CR.In particular, does best(θ) depend on T? If

not, then it should be clear as how CR depends on T .

5. Noise driven neural models. Compute the FI curve for a noisy quadrattic integrate-

and-fire mode and for a noisy integrate-and-fire model as follows. Let f(V, I) be the

right-hand sides of the equations, f(V, I) = −g(V − VL) + I for the LIF and f(V, I) =

g(V − VL)(V − VT )/(VT − VL) + I for the LIF. In both cases, g = .05 and VL = −65.

You can use C = 1 for the capacitance. For the QIF, let VT = −50. For both neurons,

let Vreset = −70 and for the LIF, Vspike = −50; for the QIF, Vspike = 20. Solve the

equation:

V (t+ h) = V (t) + hf(V (t), I) +
√
hσN(0, 1)

which is just Eulers method for white noise. Here N is a normally distributed random

variable. Now, pick h = .05 for example and solve this equation as you vary I for

T = 20000 (or more, note this would be 400000 iterates) and count the number of

spikes. The frequency is then the count divided by T and then multiplied by 1000 to

get it to Hz. Do this for the LIF ranging −1 ≤ I < 2 in 150 steps for σ = 2, 1, 0.5, 0.

For the σ = 2 case, see if you can fit the FI curve to the function:

gLIF (I) = A(I − I0)/(1− exp(−B(I − I0)))

Thus, you want to choose A, I0, B so that your simulated FI curve is reasonably well fit

by the above function. Note you do not have to use a sophisticated fitting algorithm.

I did it in about 2 minutes using gnuplot.



Math 3375, Fall 2011

Repeat this with the QIF but try σ = 4, 2, 1, 0 and range I between −1 and 3 in 200

steps. The QIF is better fit with a square-root nonlinearity,

gQIF (I) =
√

gLIF (I)

for large I, but the exponential linear, gLIF is a good fit when I is small.


