x2'=-x2+f(i2-c*x1)
f(u)=1/(1+exp(-u))
x2'=-x2+f(i2-c*x1-g*y2)
y1'=(-y1+x1)/tau
y2'=(-y2+x2)/tau
u_j' = -u_j + F(h(j/50-omega*t)+sum(k=0,49)(M(k-j)*u_j)/50)
M(k)=-7.3+11*cos(2*pi*k/50)
h(u)=A c (1-eps + eps*cos(2*pi*u))
# sompolinsky model # I take advantage of the fact that these are # product kernels # # int[cos(x-y)*u(y)] = cos(x) int[cos(y)*u(y)] + sin(x)*int[sin(y)*u(y)] # table cs % 51 0 50 cos(.02*2*pi*t) table sn % 51 0 50 sin(.02*2*pi*t) # input h(u)=a*c*(1-eps-eps*cos(2*pi*u)) # integral of cos with v cv=sum(0,49)of(cs(i')*shift(v0,i'))*.02 # integral of sin with v sv=sum(0,49)of(sn(i')*shift(v0,i'))*.02 # integral over all v vt=sum(0,49)of(shift(v0,i'))*.02 # now the ODE! v[0..49]'=-v[j]+max(h(w*t-[j]*.02)-lam0*vt+lam1*(cs([j])*cv+sn([j])*sv),0) par w=.005 par c=.8,a=40,lam0=7.3,lam1=11,eps=.2 # done