
Neurons in the temporal1, parietal2,3 and frontal4 cortices show
persistent spiking activity after the brief presentation of a stimu-
lus. This firing is thought to play an important role in working
memory5. In certain working memory circuits, neurons can
maintain a range of firing rates that represent a graded stimulus
parameter such as intensity or frequency6. This is a form of para-
metric working memory. Theoretical explanations for such
processes have focused on understanding the mechanisms under-
lying graded persistent activity7.

Insights into this problem have come from the study of inte-
grator circuits, which are an example of parametric working
memory. These circuits transform brief inputs into sustained fir-
ing that represents the integral of previous inputs. The best stud-
ied integrators are brainstem nuclei that are part of the
oculomotor system. Their function is to integrate velocity sig-
nals from the inner ear and produce maintained, graded, com-
pensatory eye movements8–13 (Fig. 1).

One proposed mechanism for integrator function is based
on tuned recurrent networks11,13–15. According to these mod-
els, firing rates are kept constant by reverberating neuronal
activity through a system of recurrent excitatory synapses. As
the neurons in such networks are mutually excitatory, there is
a potential for instability due to runaway positive feedback.
Theoretical work, however, has shown that under the right con-
ditions, such networks can sustain a graded level of activity
with reasonable stability. A major success of this class of mod-
els is that they can account for the observed ‘recruitment’ prop-
erties of the oculumotor integrator: different cells start firing at
different angles of gaze and then increase their firing rate as
gaze angle increases13.

Despite the success of these models, it remains unclear
whether the proposed mechanism is sufficiently robust to be
physiologically feasible. The main difficulty is the requirement
for fine tuning the strengths of recurrent synapses to keep feed-
back in exactly the right range. Using linear systems theory, it is
possible to calculate the time constant of drift (τ) as a function
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ing memory, decision making and motor control. Previous work has shown that stable integrator
function can be achieved by an excitatory recurrent neural circuit, provided synaptic strengths are
tuned with extreme precision (better than 1% accuracy). Here we show that integrator circuits can
function without fine tuning if the neuronal units have bistable properties. Two specific mechanisms
of bistability are analyzed, one based on local recurrent excitation, and the other on the voltage-
dependence of the NMDA (N-methyl-D-aspartate) channel. Neither circuit requires fine tuning to
perform robust integration, and the latter actually exploits the variability of neuronal conductances.

of the mistuning (ε) of the synapses and the time constant of
feedback (τf ) via the recurrent synapses11:

τ ≈ τ f /ε (1)

It has been proposed13 that the feedback time constant, τf , could
be lengthened if the time constant of the synaptic conductance
were long. However, even with the longest known synaptic con-
ductances (∼ 100 ms for NMDA conductance), the observed level
of gaze drift implies that synaptic strengths have to be tuned to an
accuracy better than 1%. It is unclear whether physiological
mechanisms exist that could produce such precise tuning.

The question addressed in this study is whether fine tuning is
necessary for integrator function. We describe a new class of inte-
grator networks that do not require fine tuning. In previous mod-
els, each neuron of the network is assumed to be a simple unit
whose firing frequency is uniquely determined by the input cur-
rent. However, voltage-gated intrinsic conductances, synaptic con-
ductances, or particular network configurations can cause neurons
to show more complex firing behaviors. In particular, neurons
can exhibit ‘bistable’ properties such that they are either silent or
firing at the same input current, depending on the previous history
of inputs into the neuron. Here we show that a recurrent network
composed of bistable neuronal units can function as an integrator
that does not require fine tuning. Thus, we describe a new design
principle that may produce robustness in parametric working
memory circuits as well as in biochemical and genetic networks
that have similar multi-stable properties.

RESULTS
Determinants of stability in finely tuned models
A framework for understanding the stability of recurrent inte-
grator networks has previously been developed11,14, which can
be illustrated by an ensemble of identical neuronal units with
recurrent connections (Fig. 2a). In an isolated unit—without
recurrent connections—the neuronal firing rate (f) as a func-
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tion of the input current (I) is assumed to be approximately
threshold linear (Fig. 2b, red curve); and the recurrent current
depends on the total firing rate of the cells (Fig. 2b, blue line).
The network is stable if the current provided by the feedback
synapses exactly equals the current required to maintain the
unit at its current firing level. This will happen if the red and
blue curves overlap exactly, resulting in a continuum of stable
points. The mistuning of the network is represented graphical-
ly as the non-overlap of the two curves, which is determined by
the strength of the feedback synapses. Mistuning leads to drift,
which continues until the network relaxes to the null position,
losing the memory trace (Fig. 2b). If the feedback line is tuned
to exactly match the neuronal response, the system is capable
of storing information indefinitely. In practice, the tuning can-
not be exact; the greater the mistuning, the greater the rate of
drift (equation 1). In networks of this kind, synapses must be
very finely tuned (to better than 1% accuracy) to account for
the observed stability of the oculomotor integrator.

Integrator networks composed of bistable units
When bistable (hysteretic) units are used, the integrator can func-
tion even with loosely tuned feedback. To make this point clear,
we first present a highly simplified model that can be solved exact-
ly. The building block of this model is a neuronal unit whose fir-
ing rate is shown as a function of total input current (Fig. 3a).
Firing begins abruptly at a given value of input current, I↑ . If the
current is then decreased, firing persists until the current falls
below I↓ . When the input current is within the interval (I↓ , I↑),
the unit can be either on (active) or off (silent), depending on the
history of previous inputs. This implies that the unit’s response
is double-valued and exhibits hysteresis. The range within which
the unit’s response is bi-valued is determined by the properties
that underlie bistability and is termed the hysteresis current, ∆I.

Robustness of the model can first be understood qualitative-
ly by considering an ensemble of many units with the same ∆I,

whose bistable regions overlap (Fig. 3b). Assume that the value of
the input current is within the bistable range of one of the units
(unit 2 in Fig. 3b). Further assume that unit 2 is active as are all
the units below, such as unit 1. The units above, such as unit 3, are
silent. If the input current changes within the range shown by
the gray segment, none of the units changes state (units 1 and 2
remain on, while unit 3 stays off). Thus, if the state of the sys-
tem is determined by the number of active units, this state is
robust with respect to parameter variations, such as the input
current. This type of robustness stems from bistability: the wider
the bistable region, the larger the parameter variations that are
tolerated. Because synaptic strength affects the input current, it
follows that the system can also be stable despite substantial vari-
ations in synaptic strength.

Although this qualitative explanation is not rigorous, the
model can be more exactly solved by considering an ensemble of
many units that have the same ∆I but differ systematically in the
threshold currents, I↑ (Fig. 4a and b). We first consider the
response of this ensemble to the input current assuming no feed-
back connections. (Recall that this approach of separating the
response of neuronal units and feedback was used for the 
finely-tuned model (Fig. 2b, red and blue lines respectively) and
has been used in earlier studies16.) In this model, the same value
of the input current I is applied to all units in the ensemble. The
response of this ensemble is described by the number of units,
which are presently on. The number of such active units is denot-
ed by n. If the input current increases, the number of active units
can be found from the distribution of I↑ (Fig. 4a) and is equal to
the number of units whose I↑ is smaller than the given value of
input current I. Thus, as the input current is gradually increased,
the number of active units increases gradually (line 1-2 in 
Fig. 4c). Importantly, when the current starts to decrease, as at
point 2, there is a range (∆I) in which no change in the number
of active units occurs (line 2-3 in Fig. 4c). This is because such a
decrease is necessary to switch the last excited unit off (Fig. 3a).
The existence of this range makes this integrator design robust. If
one further decreases the input current, beyond the value of ∆I,
the dependence of the number of active units on the current fol-
lows the line 3-4, which is determined by the distribution of
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Fig. 1. The oculomotor system as an example of an integrator. (a) Head
movements produce idealized signals reflecting head velocity. The sign
depends on the direction of head movement. These signals represent
the input to the integrator. (b) Discharge rate of a neuron in the inte-
grator (medial vestibular nucleus (MVN) or nucleus prepositus
hypoglossi (NPH) in the brainstem). The integrator shows a sustained
increase in firing after each of two brief excitatory inputs and a decrease
after a brief inhibitory input.

Fig. 2. The fine-tuning hypothesis. (a) The recurrent neuronal circuit:
identical neuronal units (red triangles) with recurrent connections (blue
lines). (b) Neuronal response (red) and recurrent feedback (blue) as a
function of input. The red line gives the firing rate of a neuron as a func-
tion of input current, whereas the blue line shows the relationship
between neuronal firing rate and the current, which is returned to the
system by the feedback. The sequence of points 1-2-3 shows a trajec-
tory of the system. (c) Precisely tuned feedback occurs when the blue
and red lines approach each other, which is equivalent to ε approaching
0. If the red and blue line exactly coincide (neuronal response and feed-
back are perfectly tuned, ε = 0), as in the dashed region, the system
never escapes from point 1, and is therefore capable of storing memory
for a long time. As each point between the dashed lines has this prop-
erty, the system is multistable.
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thresholds I↓ (Fig. 4b). We conclude that the hysteretic response
of individual units results in hysteresis in the response of the
whole ensemble, given by the loop 1-2-3-4.

An important feature of this ensemble is that the region
inside the hysteretic loop 1-2-3-4 can be reached with appro-
priate manipulation of the input current. This can be achieved
if the input current is decreased at point 2’ instead of at point 2
(Fig. 4c). The number of active units between point 2’ and 3’
is constant, similar to line 2-3. Thus we conclude that the num-
ber of active units cannot be changed as long as the system stays
between lines 1-2 and 3-4, namely within the hysteretic loop
(Fig. 4c). Thus, within the hysteretic loop, only horizontal
movements are possible (pink lines in Fig. 4c). To change the
number of active units, the borders of the hysteretic loop (lines
1-2 or 3-4) have to be reached.

Let us now take feedback connections into consideration. In
our model, recurrent synapses provide the same amount of cur-
rent into each unit. The value of feedback current is directly pro-
portional the number of active units (n). This assumption
simplifies the solution and at the same time mimics the satura-
tion of recurrent synapses that use slow synaptic conductances13.
Thus the contribution of a unit to the feedback current does not
depend on its firing rate, and feedback current is simply pro-
portional to the number of active units (Fig. 4c, blue line). If the
feedback line is situated within the borders of the hysteretic loop,
each point on the blue line is a stable point of the system. Indeed,
assume that a fluctuation in the input current displaces the sys-
tem to a nearby point (black dot in Fig. 4c). Because the number
of active units does not change between lines 1-2 and 3-4, the
system must move horizontally to the original point, determined
by value of feedback: the original point on the blue line (black
arrow in Fig. 4c). Thus, the system is multistable if the feedback
line is positioned between lines 1-2 and 3-4. This can be achieved
for a range of values of feedback strength (slope of the blue line).
Therefore, the system does not have to be fine-tuned to have
graded persistent activity.

For the system to function as an integrator, the external cur-
rent must be able to change the number of active units. This can
be achieved if an external current pulse moves the feedback line
beyond the hysteretic loop. Thus, vestibular input is determined
in our model by the offset of the feedback line or feedback-
independent current, similar to previous models13. The trajec-
tories of the system show that the longer the external current
pulse, the further the system shifts up (Fig. 4d) or down 
(Fig. 4e). The increase in the number of active units is propor-
tional to the duration of excitatory or inhibitory input current,
and thus the system performs temporal integration.

Implementations with different forms of bistability
Bistability can result from a number of different mechanisms,
two of which we have explored through simulated networks of
conductance-based spiking neurons. In one of these, ‘circuit-
based bistability,’ each unit is composed of a group of neurons
that strongly excite one another4,5,16,17. This group can be either
active or inactive as a result of recurrent excitation within the
group. In the second mechanism, ‘NMDAR-based bistability,’
each unit is composed of only one neuron. Here the bistability
arises from the voltage-dependent properties of the NMDA con-
ductance at recurrent synapses.
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Fig. 3. Qualitative explanation of the new model containing bistable
units. (a) The basic unit of the circuit exhibits hysteresis, the property
that response depends on the history of inputs. At a given level of input,
the unit can be either in a silent or firing state, depending on the history
of inputs. Above I↑ , units must turn on; below I↓ , they must turn off. 
(b) Ensemble of three identical units, whose bistable regions overlap.
The active units are shown by red lines; the response of an inactive unit
is blue. The hysteretic loops of three units are shaded for visibility. If the
input current (black dot) varies within the range shown by the gray seg-
ment, none of the units changes its state (switches on or off). This is the
source of robustness of our model with respect to parameter variation.

Fig. 4. Multistability in circuits with hysteretic units. (a, b) In the ensem-
ble of many identical units, the thresholds for activation (I↑) and deactiva-
tion (I↓) are distributed uniformly within a certain range of input
currents. (c) Number of active units as a function of external current.
Assuming that the units are not connected, and therefore act indepen-
dently, the number of active units for increasing current is determined by
the distribution in (a) and is shown by the line 1-2. When the current
decreases, the number of active units does not change unless the
decrease exceeds the value of hysteresis, ∆I. After that, n is determined
by the distribution in (b) and is shown by the line 3-4. Provided that the
recurrent feedback (blue line) is between the the red lines (1-2 and 3-4),
each point on the blue line is stable, and the system is multistable. Within
the hysteretic loop, only horizontal movements are possible (pink lines).
If a fluctuation in the input current displaces the system to a nearby point
(black dot), the system must move horizontally to the original point
(determined by value of feedback, black arrow) because the number of
active units does not change between lines 1-2 and 3-4. (d) When exter-
nal excitatory input arrives, it transiently offsets the feedback line beyond
the hysteretic loop. Thus, new neurons get recruited. (e) For external
inhibitory input, the feedback line is moved transiently to the left of the
hysteretic loop, bringing some neurons below threshold.
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Circuit-based bistability
In this model, we assume that each unit consists of a small group
of neurons (three are used in the simulations) which form strong
local recurrent connections with each other (Fig. 5a, red). These
short-range recurrent connections make the response of this
group of neurons hysteretic (bistable), similar to conventional
short-term memory circuits4,5,16. Two stable states in the bistable
region correspond to two self-sustained states of the network
with positive feedback (Fig. 5b). In the silent state, the neurons do
not provide feedback; in the active state, neuronal firing is sus-
tained by strong recurrent feedback current.

In addition to the short-range connections, the bistable units
are connected by long-range recurrent connections (Fig. 5a, blue).
The value of I↑ varies systematically for each unit. This differ-
ence could arise in many different ways; we have implemented it
generically as a difference in the feedforward current (Methods).
Following previous work13,18,19, all recurrent synapses are
assumed to be slow (Methods).

A brief external excitatory input current to all the units pro-
duced a sustained increase in the number of active cells 
(Fig. 5c–e). The number of persistently firing cells increased with
the number of excitatory input pulses and decreased with number
of inhibitory pulses. When the synaptic strengths were changed
by ±8%, the system displayed no drift in the number of active
units between inputs (Fig. 5d and e). The system is therefore sta-
ble despite large parameter variation (16%). This implies that fine
tuning is not necessary for stable operation of this integrator 
(Fig. 5c–e). These figures also demonstrate recruitment: the num-
ber of active units is determined by the value of the integral.

The network responded to prolonged pulses of input current
as does the oculomotor integrator during smooth eye moments
(Fig. 6a). We plotted the discharge rate of individual units as a
function of the number of active units, which may be related to
eye position for the case of the oculomotor integrator (Fig. 6b).
When a neuron starts to fire, there is a sudden upward jump in
firing rate (f +); as the neuron stops firing, there is a sudden drop in
firing frequency (f –). However, because of hysteresis, the drop in
frequency is smaller than the upward jump. This conclusion is
independent of the solution of the read-out problem: how exactly
the output of the circuit is related to the eye position. Thus, simi-
lar observation can be made by plotting the firing frequency of an
individual neuron as a function of the average firing frequency of
the entire network (Fig. 6c). Note that the onset (f +) and offset 
(f –) of firing are the same as in Fig. 5b. This property may help to
identify this class of models in experiments (see Discussion).

NMDA receptor–based bistability
Because the NMDA conductance has a negative resistance
region, the current–voltage curve of a neuron can be bistable if
the NMDA conductance has an appropriate value relative to
the leak conductance20,21. The origin of this bistability lies in
the voltage-dependence of the NMDA current, produced by
the Mg2+ block of the receptors22,23. In the down state, the leak
conductance dominates and the neuron is at the resting poten-
tial with the NMDA conductance almost completely blocked.
In the active state, the Mg2+ block of the NMDA conductance
is relieved and this conductance is dominant. This state is sta-
ble because a hyperpolarizing deflection leads to an increase
in inward current that restores the voltage to its original level.
Conversely, a depolarizing deflection results in a decrease in
driving force and thus less current flows until the original state
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Fig. 5. Robust integrator network using circuit-based bistability. (a) The
neural circuit combines two types of recurrent connections: local (red),
which form units containing three neurons each, and global (blue), which
allow integration. The local connections are formed by strong NMDA
synaptic conductances g1 = 22 µs/cm2. (b) The local connections make
each unit bistable. This bistability is illustrated by the hysteretic depen-
dence of the firing rate on the input current into each unit. The depen-
dence is similar to the simple model for the unit in Fig. 3a. The hysteretic
loop is described by different onset and offset firing rates (f + and f –). 
(c) When NMDA conductances of the global feedback are set to 
g2 = 1.3 µs/cm2, the circuit operates as a neural integrator. That is, the
number of the units in the active state (c, bottom trace) reflects the inte-
gral of the input current injected into the dendritic compartments (c, top
trace). (d, e) The system can sustain considerable changes in the value of
g2 between 1.2 µs/cm2 (d) and 1.4 µs/cm2 (e) without the loss of multi-sta-
bility. Note that the heights of the input pulses are adjusted in the simula-
tion to produce a uniform integration. This is equivalent to an adjustment
of the gain of the integrator, when the feedback parameters are changed.
Thus, in this model, the gain and robustness are disentangled: the network
is robust, whereas the gain has to be adjusted by an external system.
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is restored. Fig. 7a shows current–voltage (I–V) relationships
for neurons with a particular amount of dendritic leak and dif-
ferent magnitudes of the NMDA conductance. When the
NMDA conductance is in a particular range, the I–V curves
show two stable states (zero crossings with positive slope). If
the NMDA conductance is too low, only the hyperpolarized
state is stable; if it is too high, only the depolarized state is sta-
ble. Thus, the NMDA-dependent bistability of neurons requires
recurrent synaptic input to bring the NMDA conductance into
the appropriate range and is thus conditional upon the firing of
other cells in the network (Fig. 7b). External inputs will switch
the neuron into a firing state only if appropriate NMDA recur-
rent input from the network is present.

A network of these neurons (all-to-all connected without self-
connections) can maintain multiple memory states if each cell is
activated at a different level of synaptic feedback. This requires
that each neuron have a different threshold for activation. This
can be achieved by uniformly spacing the dendritic leak con-
ductance of each neuron, leading to variations in the thresholds
for bistability. Such a network can function as an integrator 
(Fig. 7c). A burst of inputs (see Methods) will turn on only those
neurons that already receive sufficient recurrent excitation to be
in the bistable range (middle curve in Fig. 7a). Once active, these
neurons will continue to fire in the absence of the trigger input.
Successive inputs recruit additional neurons, while raising the
firing rate of previously active neurons (Fig. 7d). Neurons that
were activated early now receive large NMDA input, which leaves
only the depolarized membrane state stable (bottom curve in 
Fig. 7a). Thus, these neurons cannot be reset until they are
brought back into the bistable range by a reduction in NMDA
input. This model is robust to changes in feedback gain, tolerat-
ing ±20% changes in the NMDA conductance values without
compromising integrator function.

Systematic variations in leak conductance, however, are not
the only way to achieve variation in the threshold. Notably, we
found that even choosing all the variables that control bistabili-
ty (the leak conductance, the slow voltage-gated conductances
and the strengths of the NMDA conductances) from random dis-
tributions (see Supplementary Methods online) resulted in a
functional integrator network (Fig. 8a). Although the quantitative
details of individual randomized network instantiations differ
somewhat, our model functioned as an integrator for each set of
parameters (Fig. 8b). Note that the overlap of bistable ranges
required for integrator function (Fig. 2b) can occur even when
conductances are chosen at random (Fig. 8c). Thus, rather than
requiring precise tuning, this form of integrator network exploits
the variability of synaptic and intrinsic properties to perform
robust integration.

DISCUSSION
Here we present a new class of integrator circuits that uses bistable
units instead of simple threshold-linear neurons. We demon-
strated the function of this class of integrators both through the
analysis of simplified bistable units and through simulations of
networks of compartmental neurons with more realistic prop-
erties. Although the particular mechanisms that underlie bista-
bility are not as important as the existence of a bistable regime
and differing regions of bistability among the units, we have
shown that robust integrator function can result from two quite
different mechanisms for generating bistability. In one, bistabil-
ity is achieved by strong recurrent excitation between a small
group of neurons. In the other, bistability arises from the 
voltage-dependence of NMDA receptors (NMDARs).

An attractive feature of integrator networks with bistable units
is that the strength of recurrent synapses need not be precisely
tuned. Indeed, in the case of the NMDA-dependent bistability,
we found that the synaptic strengths can be randomly selected
from within a certain range. By eliminating the requirement for
fine tuning, our work strengthens the case that recurrent excita-
tory networks can perform integrator function. Our models also
retain the ability of previous models to explain the recruitment
phenomenon seen in the oculomotor integrator of the goldfish12.
These new integrator models are therefore both robust and phys-
iologically plausible.

Bistability and the role of NMDA channels
Single-neuron current injection experiments have tested for intrin-
sic bistability and found that it is not present in the goldfish medul-
la24. This finding is consistent with both implementations of our
model. In the circuit-based mechanism, each unit consists of a
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Fig. 6. Response to weak inputs. (a) Same model as in Fig. 5c subject to
two long pulses of the input current of opposite sign (top). The number
of active units (bottom) reflects the integral of the input current, similarly
to Fig. 5c. The number of active units therefore may be treated as the
eye position. (b) Firing rates for three neurons in the integrator, as a
function of the number of active units. Plus and minus markers indicate
the trace for monotonously increasing and decreasing number of active
units, which correspond to eye movements in the on and off directions.
These three neurons belong to unit numbers 25, 50 and 75 out of the
total 100. The traces exhibit different onset and offset firing rates f + and
f –. These values are the same as in Fig. 5b. The dependence of the firing
rate on the number of active units is close to linear above threshold. 
(c) The onset and offset firing rates are independent of the solution of
the readout problem. Thus, if the firing rates for the same three neurons
as in (b) are plotted versus the average firing rate of the whole popula-
tion, the values of f + and f – are the same as in (b).
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small group of neurons and it is the unit that is bistable, not a sin-
gle neuron. This implies that current injection into a single neu-
ron would not reveal bistability. In the case of the NMDAR-based
mechanism, current injection could potentially reveal bistability,
but two conditions must be met for each recorded neuron. First,
the injections have to be at the site where bistability is generated.
This may be dendritic, since the NMDAR-based bistability is gen-
erated in dendrites. Second, at only the gaze angle at which firing
begins is there enough NMDA conductance to produce bistability.
This gaze angle could be identified operationally as the angle at
which firing terminates during smooth pursuit. It is not clear
whether these conditions were met in previous experiments24.

The role of NMDA receptors in integrator function has pre-
viously been tested by global application of NMDA antago-
nists25–27 that disrupt integrator function, as indicated by a greater
drift rate of gaze. Although it is likely that the NMDA channel has
an important role in integrator function, these studies do not
address whether it is the long time constant of the NMDA chan-
nel, or its voltage-dependent activation, that is important. Cir-
cuit-based models require only the first property; NMDAR-based
models depend primarily on the second property.

Experimental predictions
First, as the integrator models described here do not require pre-
cisely tuned synaptic weights, it should be possible to apply recep-
tor antagonists in low doses and show that the integrator still
functions despite a decrease in synaptic strength. A second pre-
diction relates to the presence of hysteresis in cellular response

during slow integration (Fig. 6). During slow eye movements in
the ‘on’ direction, there is sudden onset of firing (f +); during
slow movement in the ‘off ’ direction, there is sudden offset of
firing (f –) that is smaller than f +. Thus, our model may be iden-
tified by the difference between f + and f –. The absolute size of
these jumps will depend on the conductances that control
bistablity; these properties have not yet been determined in any
known integrator. More generally, some other form of hystere-
sis may be sufficent to make the integrator robust. Our sugges-
tion relies on the presence of microscopic hysteresis in cellular
response, rather than on its physiological basis. This is evident
from the simplified model, which does not specify the exact
nature of hysteresis but nevertheless displays robustness.

Third, as a minimal-threshold current is required to turn a
bistable unit on or off, it should be possible to apply such
inputs over and over again without any stable change in the
network output. This is an essential difference between mul-
tistable systems of the kind proposed here and finely tuned net-
works that integrate all inputs including noise, a sensitivity
that makes them vulnerable to drift.
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Fig. 8. Robust integrator function when conductances are randomly cho-
sen. Leak and intrinsic conductances are chosen randomly as described
(Supplementary Methods). (a) The number of active neurons is shown
as function of time. Positive and negative inputs are shown below with red
and green squares, respectively. The neurons are ordered by their dendritic
leak conductance. Note that the order in which neurons turn on/off is
determined by the combination of the leak conductance as well as the val-
ues of intrinsic and synaptic conductances. (b) The mean number of neu-
rons active in the integrator network at a given pulse count (mathematical
integral of on and off pulses). Different curves are the result of different sim-
ulations where the values of several conductances were randomly chosen
(Supplementary Methods). In all simulations, we found a monotonic
relationship between the number of active neurons and pulse count. 
(c) Heterogeneous response characteristics of neurons taken from one of
the simulations shown in (b). Note the large range of bistability that under-
lies the robustness of this model.

Fig. 7. Integrator network based on the voltage-dependence of the
NMDA conductance. (a) Current-voltage curve demonstrating how
bistability arises when the NMDA conductance has the appropriate
value relative to leak. The currents plotted are total steady-state cur-
rents (intrinsic and synaptic currents, but excluding spiking currents)
and with perfect voltage-clamp. (b) Persistent firing is conditional. An
input pulse fails to initiate persistent firing in this cell. However, if recur-
rent input (NMDA) is active, the cell is now bistable and the same input
pulse (i) can initiate persistent firing. A pulse of the opposite sign can
return the cell to silent state. (c) The number of active neurons is shown
as a function of time. Positive and negative inputs are shown below with
diamonds and squares, respectively. This plot also shows how neurons
participate in a recruitment process. (d) Shows the time evolution of fir-
ing rates for three example neurons. 
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A fourth aspect of our model that may be testable concerns
the relationship of the conductances of single cells to their recruit-
ment pattern. The model predicts that the magnitude of some
intrinsic or synaptic conductance correlates with whether the cell
fires early or late during the integration process. For example,
cells firing late may either have weaker inputs from other units
or enhanced leakage conductances that make them require strong
input to switch to the up state.

Finally, given the difference between the two forms of bista-
bility that we have simulated (Methods), procedures that remove
voltage-dependence (for example, lowering Mg2+) but do not
affect kinetics should be useful in distinguishing between the
NMDA-based and the circuit-based mechanisms for bistability.

Exploiting heterogeneity to produce a robust integrator
Our integrator network models require that different units have
different activation thresholds, and there are several ways in which
this may arise. In the model based on the voltage-dependence of
the NMDA receptor, we achieved the required spread by choos-
ing relevant biophysical parameters of the model from random
distributions. This result suggests that natural neuron-to-
neuron variability could be sufficient to produce the differential
thresholds called for in this class of integrator models. Thus, this
design exploits the heterogeneity among neurons. It should be
emphasized that the parameters of the distributions are set, and
randomness refers to different draws from these distributions.
This limitation is reasonable because physiological parameters
cannot vary over an indefinitely wide range; they are constrained
by the background genotype.

Implications for other systems
Integration has been most extensively studied in the oculomotor
system11 and in circuits that represent head direction28,29, but there
is increasing evidence that integrators may have even broader use.
Neural firing during a decision task gradually increases before the
time of decision, and that increase may reflect the operation of an
integrator that accumulates both negative and positive evidence
until a net evidence criterion is met for making a decision30.

The neurons in our integrator models show persistent activ-
ity at graded levels. Such graded persistence has been observed
in neurons in the prefrontal cortex and is termed parametric
working memory. When monkeys are required to hold in mem-
ory a graded representation of a variable frequency stimulus, neu-
rons fire persistently during the working memory period at a rate
proportional to the stimulus variable remembered6. With an
appropriate stimulus-to-input conversion in our network, the
firing of a neuron can be brought to any arbitrary level and main-
tained there during a delay period. Thus this class of models is a
good candidate for mediating parametric working memory.

Conceptually similar multistability may also occur in the case of
the graded, persistent modification of synaptic strengths, which
also implements temporal integration. Consider a connection with
modifiable elements that are bistable and have different thresholds
for synaptic strengthening (LTP)31,32. Initially, the plasticity induc-
tion protocol might be sufficient to trigger LTP only in the element
with the lowest threshold for plasticity. However, the resulting LTP
would make the same induction protocol generate more overall
depolarization and hence trigger plasticity at elements with a high-
er plasticity threshold, owing to positive feedback.

The need for multistabilty may be widespread in biological
systems, as it has been found in a range of biochemical systems33

and may underlie the maintenance of phenotypic differences dur-
ing development34,35. The need for hybrid models, involving both

Boolean and continuous elements, has been suggested in genet-
ic regulatory circuits35. Multistable networks have also been found
in immune systems36. The question remains whether there are
common rules by which bistable elements can interact to pro-
duce multistability in disparate systems.

METHODS
For details of simulations, see Supplementary Methods online. Briefly,
the circuit-based bistability model contains 300 two-compartmental exci-
tatory neurons20,37 connected all-to-all by NMDA synapses. This group
of neurons is divided into 100 units, containing three neurons each. The
synaptic conductances between each neuron and other neurons inside
and outside the same unit are g1 = 22 µs/cm2 and g2 = 1.3, 1.2, 1.4 and
1.3 for Fig. 5c, d, e and Fig. 6, respectively. An input current was applied
to dendritic compartments of all neurons. The input current is the same
for the neurons belonging to the same unit. Across units, it is uniformly
spaced (distributed) in the interval 0–1.5 µA/cm2 to reproduce distrib-
utions in Fig. 4a and b. The total input current into the neuron receiving
the maximum current in the whole population is shown in Figs. 5 and
6. The network (40 neurons) using NMDAR-based bistability has all-to-
all connections (without autapses). Each neuron was modeled using a
somatic compartment with spike currents and a dendritic compartment
containing persistent sodium current, slow and transient potassium cur-
rents and a leak38. Recurrent synapses had a large NMDA/AMPA ratio.
The leak conductance in the dendrite is spaced uniformly in Fig. 7 and
chosen randomly from a uniform distribution in Fig 8. The network
receives external inputs via fast excitatory and inhibitory synapses from
burst neurons. A small (6-neuron) version of the simulation program
can be found at http://www.bio.brandeis.edu/lismanlab/integrator.

Note: Supplementary information is available on the Nature Neuroscience website.
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