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1 Ionic basis of the membrane potential

The key feature in maintaining a voltage difference between a neuron and
the external world is the cell membrane which has the property of selectively
allowing different ions in and out of the cell. There are many different ions
in the intra- and extracellular media. For our purposes, the most important
are calcium [Ca], potassium [K], sodium [Na], chloride [Cl], and magnesium
[Mg]. Potassium and sodium have a single positive charge per ion, chloride
has a single negative charge, and calcium and magnesium have two positive
charges per ion. Positive ions are called cations and negative are called
anions.

1.1 Nernst Equation

Each ion has an equilibrium potential associated with it whereby the dif-
fusive forces and the electrical forces balance. This is given by the Nernst
Equation

Ei ≡ Vin − Vout =
RT

zF
ln

[C]out

[C]in
(1)

where T is the absolute temperature 273.16+ ◦C, R = 8.31451 j/(mol−K)
is the ideal gas constant, F = 96485.3 C/mol is Faraday’s constant, and z is
the valence of the ion. Generally people use the logarithm base 10 in which
case the Nernst equation is multiplied by the factor 2.303. At T = 20◦C just
multiply the logarithm base 10 of the ratio of outside to inside by 58 mV to
get the equilibrium potential. At T = 37◦C the multiplication factor is just
62 mV. The table at the end of this section shows the typical equilibrium
potentials for various membranes at various temperatures.
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1.2 Goldman-Hodgkin-Katz

In the presence of several different ions, the equilibrium of the cell depends
on the relative permeability of the ions. For this, we use the Goldman-
Hodgkin-Katz equation:

Vrest =
RT

F
ln

PK [K+]out + PNa[Na+]out + PCl[Cl−]in
PK [K+]in + PNa[Na+]in + PCl[Cl−]out

(2)

Permeability of an ion is dependent on a number of factors such as the
size of the ion, its mobility, etc. During rest in the squid giant axon, the
permeabilities have the ratio PK : PNa : PCl = 1 : 0.03 : 0.1 so that

Vrest = 58 log
1(10) + 0.03(460) + 0.1(40)

1(400) + 0.03(50) + 0.1(540)
= −70mV

Since PK dominates, this is close to EK . During an action potential the ratio
is PK : PNa : PCl = 1 : 15 : .1 so that

Vm = 58 log
1(10) + 15(460) + 0.1(40)

1(400) + 15(50) + 0.1(540)
= +44mV

Later on we will approximate the GHK equations by a linearized version:

Veq =
gNaENa + gKEK + gClECl

gNa + gK + gCl

where the conductances g are proportional to the permeabilities.

HOMEWORK

1. Suppose the external potassium in a mammalian cell is increased by a
factor of 10. What is the new value of EK?

2. At 10◦C a cell contains 80 mM sodium inside and has only 100 mM
sodium outside. What is the equilibrium potential for sodium?

3. Using the same permeabilities for the mammalian cell as were used for
the squid axon, compute Vrest, Vm using the table at the back of these
notes.
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2 Ion concentrations and equilibrium potentials

Ion Inside Outside Equilibrium Potential

(mM) (mM) Ei = RT
zF ln [C]out

[C]in

Frog Muscle T = 20◦C

K+ 124 2.25 58 log 2.25
1.24 = −101mV

Na+ 10.4 109 58 log 109
10.4 = +59mV

Cl− 1.5 77.5 −58 log 77.5
1.5 = −99mV

Ca2+ 10−4 2.1 29 log 2.1
10−4 = +125mV

Squid Axon T = 20◦C

K+ 400 20 58 log 20
400 = −75mV

Na+ 50 440 58 log 440
50 = +55mV

Cl− 40-150 560 −58 log 560
40−150 = −66 to − 33mV

Ca2+ 10−4 10 29 log 10
10−4 = +145mV

Mammalian
cell

T = 37◦C

K+ 140 5 62 log 5
140 = −89.4mV

Na+ 5-15 145 62 log 145
5−15 = +90 − (+61)mV

Cl− 4 110 −62 log 110
4 = −89mV

Ca2+ 10−4 2.5-5 31 log 2.5−5
10−4 = +136 − (+145)mV
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Figure 1: Passive Membrane Model

3 Electrical properties of a membrane

The simplest representation of a piece of nerve membrane is a simple RC−
circuit as shown in Figure 1. The capacitance of a typical membrane, Cm

arises due to the fact that there are layers of conductive and nonconductive
(lipids) media. The capacitance of a typical patch of membrane is CM =
1µF/cm2. That is the membrane capacitance is measured in terms of the
area of the membrane. The larger the area, the larger the capacitance. Since
we will be doing most measurements in microns but most constants are in
centimeters, the conversion factor is 104 microns per centimeter. The actual
capacitance is then CM/A where A is the area of the membrane patch. Thus,
a spherical cell which is 20 microns in diameter has a total capacitance of

Cm = CM4πr2 = 1 × 10−64π(20 × 10−4)2 = 5 × 10−11 farad = 50pF.

The membrane also has an associated resistance. As you might guess, the
smaller the patch of membrane, the larger is the resistance. The resistance
of a typical patch of membrane, RM is 10000Ωcm2 so that for our sphere,
the actual resistance is Rm = RM × A or

Rm = RM/(4πr2) = 1 × 104/(4π(20 × 10−4)2) = 198MΩ.

There are two main points to emphasize: (i) Associated with any mem-
brane are certain material constants that are independent of the shape of
the membrane, (ii) the actual electrical properties of a membrane depend
on its geometry.

We can now write the equation for a patch of membrane:

Cm
dV

dt
= −(V − Vm)/Rm (3)
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which, if we multiply both sides by Rm obtain

τ
dV

dt
= −(V − Vm) (4)

where τ = RmCm = RMACM/A = RMCM is called the membrane time

constant. It is independent of geometry. For our present choice of pa-
rameters, τ = 10−6×104 = 10mV. The true membrane resistance is difficult
to measure since electrodes will puncture the membrane and thus decrease
the apparent resistivity. This simple equation is called a one-compartment
model for a passive membrane. In general, as we will see, all neural models
are made up of pieces just like this and ultimately so are connectionist mod-
els that can be derived from these biophysical models. This is the EVE of
GENESIS!

The solution to (4) is easy:

V (t) = Vm + (V (0) − Vm)e−t/τ

where V (0) is the initial voltage.
We could apply a steady current to this membrane as well. Typically,

currents are measured in terms of the area of membrane stimulated or cur-
rent density. The units are typically microamperes per centimeter. This is
convenient since one micro-farad times one milli-volt per one milli-second
gives one micro-ampere. Positive currents are inward relative to the cell and
are called depolarizing while negative currents which are outward relative to
the cell are called hyperpolarizing. Suppose we take Vm = −70mV and ap-
ply a step of current to our spherical cell. Let’s apply 2µA/cm2. What is
the voltage as a function of time? The equation is

Cm
dV

dt
= −(V − Vm)/Rm + Ī (5)

whose solution is again easy to obtain if I is constant:

V (t) = (Vm + RmĪ)(1 − e−t/τ ) + V (0)e−t/tau (6)

Thus the voltage rises or falls to a new value dependent on the current
density. The current, Ī = IA where I is the current density. Note that
the final value of the potential is dependent on the current density and not
the actual geometry of the cell since the final potential is Vm + RmĪ =
Vm + (RM/A)IA = Vm + IRM . For our present example, the steady state
voltage is

Vss = −70mV + 1000 × (1 × 104Ω − cm2)(2 × 10−6Amp/cm2) = −50mV.
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Note the factor of 1000 is necessary to convert to millivolts.

HOMEWORK

1. Calculate Rm and Cm for a cylindrical cell with diameter of 10 microns
and length of 50 microns. Ignore the area at the ends of the cylinder.

2. How much current is needed to raise the potential to -55 mV in the
spherical cell example above?

3. Suppose that RM is 20000Ω − cm2. What is the time constant of the
membrane.

4. Suppose that the spherical cell above is started at rest. Write the
equation for the voltage as a function of time if the current is stepped
up to 10 µA/cm2 for 20 msec and then set to 0 again. (HINT: Use (6)
twice, once for the time when the stimulus is on. Then again, using
the voltage at the end of the stimulus as initial voltage.)

4 Numerical solution of passive models

Once we get beyond a single compartment model, it is much easier to simu-
late the behavior rather than attempting to explicitly solve the differential
equations that you derive. In particular, once that are more than 2 compart-
ments and once channels and synapses are added, simulation is just about
the only generally applicable tool for studying behavior. There are many
simulation programs available and we will talk about some of them later in
the term; notably GENESIS and NEURON, both of which are specifically
designed for neural simulations. Both of these simulators solve differential
equations, but their interface essentially removes the actual equations from
you. We will use a general purpose differential equation solver in which
we must explicitly provide the relevant equations. The simulator is called
XPPAUT and runs on any UNIX system with X windows.

The first model we will simulate is the single compartment injected by
a current (3)

CMA
dV

dt
= A

Vm − V

RM
+ AĪ(t)

where A is the area of the membrane compartment. We can divide this
whole thing by A to get rid of it. We are interested in a scale of millivolts,
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milliseconds and picoamps. Dividing by ACM we obtain:

dV

dt
= (

Vm − V

RM
+ Ī(t))/CM .

We use the following values for the parameters: RM = 10000Ω − cm2,
CM = 1µF/cm2. The with units of milliseconds and millivolts, we can set
CM = 1 and obtain:

dV

dt
= (1000

Vm − V

RM
+ Ī(t))/CM

where Ī(t) is measured in µA/cm2. We can view the reciprocal of the re-
sistance as a conductance measured in Siemens/cm2. The factor of 1000
comes from the conversion to millivolts and from the factor of 10−6 from
the capacitance. We typically measure the conductance, gM = 1/RM in
µS/cm2 so that we finally obtain:

dV

dt
= (gM

Vm − V

+
Ī(t))/CM

where gM = 103/RM is the membrane conductance in µS/cm2. All units
are now in terms of millivolts, milliseconds, and microamps, microsiemens,
microfarads per square centimeter.

4.1 Writing an ODE file

To simulate this in XPPAUT we must create an ODE file which has infor-
mation such as the number of equations, the parameters, initial conditions,
names of variables and function definitions. The following file does the trick:

# passive membrane with step function current: passive.ode

dV/dt = (1000 (Vm-V)/R_M + I_0*p(t))/C_M

V(0)=-70

parameter R_M=10000, C_m=1, I_0=2, E=-70

parameter t_on=5, t_off=10

# define a pulse function

f(t)=heav(t_off-t)*heav(t-t_on)

# track the current

aux ibar=f(t)*I_0

done
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There is little explanation needed except for the following points:

• heav(t) is the Heaviside step function which is 0 for t < 0 and 1 for
t > 0. Thus f(t) is a pulse function which turns on at t = ton and
turns off at t = toff .

• V(0)=-70 is the initial condition.

• aux means that what follows is something that we want to plot but
does not satisfy a differential equation.

• XPPAUT is case insensitive so upper and lower cases are synonymous.

• # means that what follows is a comment.

• param ... defines parameters

• dV/dt = ... tells XPPAUT that this is a differential equation

• done tells the parser the file is done.

Notes: (1) All the declarations at the beginning of each line can be
abbreviated to their first letter; all others are ignored until a space is en-
countered. (2) Variables, functions, and parameters can have up to 9 letters.
(3) There are at most 100 differential equations allowed, 200 parameters, and
50 functions.

4.2 Running the simulation

Create this file with your editor and fire up XPPAUT with the following
command:

xpp passive.ode

where passive.ode is the file name. If the program typed in is OK, then a
series of 7 windows will be created. If you are using TWM (the manager on
an xterm or the NeXT) you must click where you want the windows. The
seven windows are:

1. The main window with all of the commands

2. The parameter window with the names of the parameters and their
current values
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3. The initial data window with the variables and their current values

4. The delay window (ignore this for now)

5. The boundary condition window (ignore this too)

6. The equation window (lists the equations)

7. The data browser. This lets you look at the numbers and manipulate
them like a spreadsheet.

There are two windows that accept commands and several other windows
that are not for input but rather inform you about parameters, boundary
conditions, and initial conditions. The main window is for most of the
commands and the browser window is the “spreadsheet” for viewing, saving,
and manipulating the numbers. The main things one wants to do are:

1. Integrating the equations and changing initial data. All of the commands
in xpp have keyboard shortcuts so that you can avoid using the mouse.
Except for certain dialog boxes, all inputs such as values of parameters,
etc are put entered in the command line at the top of the main window.
To change initial conditions, click in the Initial Conditions window on the
variable you wish to change. Then change it in the command line. Type
¡Enter¿ when done. If you do not pick the last variable, you will be prompted
for all the remaining ones. You can just type ¡Enter¿ to accept the present
value.

To run the simulation, click on the Initial Conds bar and then on Go, or
type I G. The trajectory is invisible since the window only goes from -1 to 1.
To get a bigger window, click on the “Window” bar and then on “Window”
or type W W. A new window will appear in which you can specify the max
and min of your axes. Click on OK when you are done and the data will
be redrawn in the new window. There are two quicker ways to do it. Click
on “X vs T” and choose V as the variable to plot versus time. The window
will automatically be redrawn and fitted. Alternatively, use the “Window”
command but then click on “Fit”.

2. Changing parameters. The parameters can be changed like the initial
conditions by clicking on them in the parameter window. After changing
one parameter, you will not be prompted for others. You will instead be
asked for another parameter. Type <Enter> to get out of this or type in
another parameter or click on another in the parameter window. Another
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way to change parameters is to click on ”Parameter” in the main window or
type ”P” the keyboard shortcut. Hit <Enter> repeatedly to exit this mode.
Change some of the parameters and reintegrate.

3. Changing numerical parameters. Click on ”nUmerics” or type ”U” to get
a new menu. The main items of interest are

• ”Total” Clicking on this lets you set the total amount of time for the
integration. The default is 20.

• ”Dt” This is the time step for integrating the equations. Smaller steps
take longer but are more accurate. The default is 0.05

• ”Bounds” This sets the total magnitude that any trajectory can take.
The integration is stopped if the bounds are exceeded. Increase it if
you want; the default is 100.

• ”Ncline control” This controls the grid for nullcline computation. In-
crease it for finer nullclines. The default is 40.

• ”Method” This is the method of integration. The only ones of interest
to you are:

– Euler

– Modified Euler

– Runga Kutta

– Adams-Bashforth

– Gear

– Backward Euler

The first two are fast and inaccurate. The next two are more accurate
and the last is the most accurate but requires additional input and the
backward Euler is stable but fairly fast.

• ”Esc-exit” This takes you back to the main menu.

There are other that may be of use; read the full doc for them. At this point
you may want to run the full tutorial.

HOMEWORK
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Figure 2: Cable broken up into discrete segments

In the compartmental model above, change the current stimulus to be a
sinusoid with frequency of 40 Hz and plot the solution for 200 msec. Use
Dt=.2. To do this, you will have to modify the ODE file. Please print out
the ODE file and also make a copy of your solution. (Use the postscript
option under graphics.)

5 The passive cable equation

Information flows in the nervous system from the soma to the axon and then
to the dendrites. In most models, the dendrites are regarded as being passive
electrical cables. In this section, the cable equation is derived, steady state
cable properties are studied and total input resistance of a cell is defined.

We will model the cable as a continuous piece of membrane that consists
of a simple RC circuit coupled with an axial resistance that is determined
by the properties of the axoplasm. Figure 2 shows a piece of a cable broken
into small parts. From this figure, we obtain the following equations

Cm
dVj

dt
=

E − Vj

Rm
+

Vj+1 − 2Vj + Vj+1

Ra
(7)

We have introduced a new quantity, Ra which is the axial resistance. This
as you would guess depends on the geometry of the cable, in this case, the
diameter, d and the length, `. As with the membrane resistance, there is also
a material constant, RA associated with any given cable. This is measured
in Ω − cm. A typical value is 100Ω − cm. As anyone who has ever put a
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stereo will attest, the resistance along a cable is proportional to its length
and inversely proportional to the cross-sectional area (the fatter the cable,
the less resistance) thus we have the following (using our definitions above)

Cm = πd`CM (8)

Rm =
RM

πd`
(9)

Ra =
`RA

π(d/2)2
=

4`RA

πd2
(10)

We plug these into (7), let x = j` define distance along the cable, and then
take the limit as ` → 0 to obtain the continuum equation for the cable:

πdCM
∂V (x, t)

∂t
= πd

E − V (x − t)

RM
+ π

d2

4

∂2V (x, t)

∂x2
. (11)

We multiply both sides by RM/πd and obtain the following equation:

τm
∂V

∂t
= E − V + λ2 ∂2V

∂x2
(12)

where τm is the time constant RMCM and

λ =
√

(d/4)RM/RA (13)

is called the space constant of the cable. The space constant depends on the
diameter while the time constant depends only on the material constants.
Using RM = 10000Ωcm2 and RA = 100Ωcm we obtain

λ =
√

25d

so if the dendrite has a diameter of, say, 10 microns, or 0.001 centimeters, the
space constant is 0.07 centimeters or 0.7 mm. The space constant determines
how quickly the potential decays down the cable.

An alternate derivation is given by Segev in the Book of GENESIS. The
longitudinal current, Ii is given be the following:

1

ri

∂V

∂x
= −Ii (14)

where ri is the cytoplasmic resistivity as resistance per unit length along the
cable. This is just 4RA/(πd2).
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5.1 Steady state and boundary conditions

To make life easier, we set E = 0. The solution to (12) depends on the initial
spatial distribution of voltage and the conditions at the ends of the cable,
the boundary conditions. We will consider either a finite cable of length l or
a semi-infinite cable where one end goes to infinity. We will first look only at
the steady state behavior of the cable. In this case, we drop the derivative
with respect to t and obtain:

0 = λ2 d2V

dx2
− V (15)

whose general solution is one of the following forms:

V (x) = A1e
−x/λ + A2e

x/λ (16)

V (x) = B1 cosh((l − x)/lambda) + B2 sinh((l − x)/λ) (17)

V (x) = C1 cosh(x/λ) + C2 sinh(x/λ) (18)

We define the input resistance of a cable as the ratio of the steady state
potential divided by the current injected.

5.1.1 Semi-infinite cable

In this case, we assume that at x = 0 the voltage is clamped to V = V0. The
boundedness of the voltage as x → ∞ means that we must take

V (x) = V0e
−x/λ (19)

It is now clear why λ is called a space-constant, it determines the voltage
attenuation with distance.

Alternatively, we could demand that the current at x = 0 be specified
as I0. From (14) we see that

−I0 =
1

ri

dV

dx

and since V (x) = V0e
−x/λ we get

V (x) = riI0λe−x/λ

The input resistance is the ratio of V (0)/I0 is thus

R∞ = riλ = (4RA/(πd2))
√

(d/4)RM/RA =
2
√

RMRA

πd3/2
(20)
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The input conductance for the semi-infinite cable is thus

G∞

πd3/2

2
√

RMRA

Note: It is often convenient to introduce the dimensionless space vari-
able, X = x/λ and the electrotonic length of the cable, L = l/λ. This gets
rid of all the divisions by λ in the exponentials and hyperbolic functions.

5.1.2 Finite cable

There are a variety of possible end conditions we can apply to the ca-
ble. Among them are the (a) sealed end where no current can pass and
so dV/dx = 0, (b) short circuit or open end where the voltage is clamped to
0, (c) leaky ends which is a mixture of the two, some current escapes but not
an infinite amount. Let’s revert to the dimensionless equations X = x/λ
and L = l/λ. Assume that the voltage at X = 0 is V0. Then the general
solution to the steady-state equation is:

V (X) = V0
cosh(L − X) + BL sinh(L − X)

coshL + BL sinhL

where BL is an arbitrary constant. This general solution is equivalent to
asserting that the boundary condition at X = 0 is V0 and that at X = L

BLV (L) +
dV

dX
(L) = 0

The free parameter, BL is the ratio of the input conductance for the cable,
GL to that of the semi-infinite cable, G∞. That is, BL = GL/G∞.

For example, if we want the sealed end condition at X = L we take
BL = 0 so that

V (X) = V0
cosh(L − X)

cosh L
If we want the open end conditions, we take BL = ∞ so that

V (X) = V0
sinh(L − X)

sinhL

If we choose BL = 1 then
V (X) = V0e

−X

which is precisely the solution to the semi-infinite cable. In figure 3 we plot
the steady state voltages for a variety of different cables and at different
electronic lengths. These could be solved analytically, but the plots were in
fact generated by using XPPAUT.
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Figure 3: Steady state voltages for a variety of electrotonic lengths and for
different end conditions

5.1.3 Solving boundary value problems with XPPAUT

We want to solve:

d2V

dX2
− V = 0

V (0) = V0

BLV (L) +
dV

dX
(L) = 0

Since XPPAUT can only solve systems of first order equations, we rewrite
this as a system of two first order equations:

dV

dX
= VX

dVX

dX
= V

V (0) = V0

BLV (L) + VX(L) = 0

which translates into the following ODE file

# steady state cable sscab.ode

dv/dt = vx
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dvx/dt = v

# boundary condition at left end:

bndry v-1

# boundary condition at right end:

bndry bl*v’+vx’

#

parameter bl=1

done

Since XPPAUT use t as its independent variable, we have changed the name
of “x” to “t”. Boundary conditions are set by using the declaration, bndry.
XPPAUT will try to set these to zero. Primes mean to evaluate the variable
at the end of the integration while unprimed variables evaluate at the begin-
ning. To generate these picture, I just set the total amount for the integra-
tion to either of 0.5, 1, 2, 3, corresponding to different electrotonic distances.
Then I used the Bndry (N)o show combination to solve the equations. I
used the Graphics Freeze Freeze combination to make a permanent copy
of the given curve. I repeated this for each curve and used the Text Text

option to draw the text on the curves and the View 2d combination to set
the axes and labels.

HOMEWORK

1. What is the electrotonic distance for a cable with RM = 20000Ωcm2, RA =
75Ωcm, d = 8µ,CM = 1µF/cm2

2. Find the input resistance for the semi-infinite cable with the above
parameters

3. Solve the steady state voltages for BL = 0, .25, 1, 10, 100 on a cable
with electrotonic length 3 using XPPAUT.

6 Equivalent Cylinders

Recall that the input conductance for the semi-infinite cable is given by:

G∞

πd3/2

2
√

RMRA

Recall also that the space constant is

λ =
√

(d/4)RM/RA
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Figure 4: Dendritic tree

The electrotonic length of a cable of physical length, ` is L ≡ `/λ. The input
conductance at X = 0 for a finite cable of electrotonic length, L with a
sealed end at X = L is just

Gin = G∞ tanh(L).

There are many other possibilities, but the sealed end is the most common.
The idea that Rall discovered is that if the dendrites were related in a

particular fashion, then the whole thing could be collapsed to a single cylin-
drical cable. This is called the equivalent cylinder. Consider the tree shown
in the figure 4. Suppose that the branches, 0,1 and 2 have the same mem-
brane resistivities, RM and RA. Assume that the daughter branches, 1 and
2, have the same electrotonic length, that is, their physical length divided
by their space constants (which of course depend on their diameters) are
all the same. (For example, if both have equal diameters and are the same
physical length.) Also, assume that the two have the same end conditions,
eg sealed. We want to know if it is possible to combine the branches of the
dendrite into a single equivalent cylinder. The key is that we must avoid
impedence mismatches. Thus, to combine the dendrites, 1 and 2 with 0, we
require:

1. All the ends are the same conditions, sealed.

2. The electrotonic lengths of 1 and 2 are the same

3. The diameters match as follows:

d
3

2

0 = d
3

2

1 + d
3

2

2
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HOMEWORK
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Figure 5: Example and exercise

It is clear that this last condition is a consequence of the impedance of the
parent branch equalling that of the sum of the daughters. If these conditions
hold then 0,1,and 2 can be collapsed into a single cylinder with diameter
equal to that of dendrite 0 and total electrotonic length as the sum of 1 and
0 (or equivalently 2 and 0.)

Example

In the above figure, we depict a dendritic tree consisting of several
branches with their lengths and diameters in microns. (a) Can they be
reduced to an equivalent cylinder (b) What is the electrotonic length (c)
What is the input conductance. Assume sealed ends for all terminal den-
drites and assume that RM = 2000Ωcm2 and that RA = 60Ωcm.

Answer.

d3/2
a + d

3/2
b + d3/2

c = 1 + 1 + 1 = 3 = 2.083/2 = d
3/2
d

d
3/2
d + d3/2

e = 3 + 3 = 6 = 3.33/2 = d
3/2
f
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so the 3/2 rule is obeyed. Clearly a,b,c are all the same electrotonic length.
The space constants are:

λa = λb = λc =
√

daRM/4RA = 289µ

λd = λe =
√

deRM/4RA = 416µ

λf =
√

dfRM/4RA = 524µ

Thus, the total electrotonic length of abc with d is

Labcd =
`a

λa
+

`d

λd
=

10

289
+

10

416
= .0586

Le =
`e

λe
=

24

416
= .0576

which are close enough to be considered equal (2% difference). Thus, we can
combine the whole thing into an equivalent cylinder. The total electrotonic
length is then:

L = Lf + Le = Lf + Labcd =
`f

λf
+ Le = 0.096 ≈ 0.1

Finally, the input conductance is

Gin = G∞ tanh(L) =
πd3/2

2
√

RMRA
tanh(L)

which is

Gin =
tanh(0.1)(3.14159)(3.3 × 10−4)3/2

2
√

2000 × 60
= 2.7 × 10−9S

Exercise

Apply the same analysis to the bottom dendrite in the figure.
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7 Numerical Methods

This section is largely stolen from Artie Sherman’s notes from Woods Hole.
The general initial value problem we want to solve is

dy

dt
= f(y, t) (21)

with initial condition y(0) = y0. This is a first-order differential equation.
y and f(y, t) can be vectors when we have a first-order system. For exam-
ple, the Hodgkin-Huxley equations have y = (V,m, h, n). The t dependence
may reflect experimental manipulations, such as turning an applied current
on and off, or other external influences, such as an imposed synaptic con-
ductance change from another cell. We will suppress the t dependence for
simplicity in many cases below.

First order systems are natural in neurobiology. If confronted with a
higher order system, convert it to first order, since most solution packages
assume this form. For example, the second order equation

z′′ + 101z′ + 100z = 0 (22)

can be converted by the transformation x = z, y = z ′ to

d

dt

(

x
y

)

=

(

0 1
−100 −101

)(

x
y

)

(23)

We will make use of this equation in the discussion of stiffness below.

7.1 Euler’s Method

The simplest method of solving ODE’s is Euler’s method:

yn+1 = yn + hf(yn). (24)

In order to integrate from the initial data at t = 0 up to t = T , divide the
interval into N equal steps of size h = T/N and approximate y(tn = nh) =
yn. This method works and is sometimes used in practice, but much better
alternatives are described below. Nonetheless, it is the conceptual basis of
all other methods, and a little analysis gives insight into how they all work.
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7.2 Convergence and Accuracy of Euler’s Method

It is easy to see that Euler’s method converges for the special case of the
equation y′ = λy with solution y(T ) = y0e

λT . For this example,

yN = y0(1 + hλ)N = y0(1 + Tλ/N)N (25)

Recalling that limN→∞(1 + 1/N)N = e, we see that limN→∞ yN = y0e
λT .

Error estimates show

• The global error at T is O(h) (first order accuracy).

• The error grows exponentially in time.

• The error increases with M . This suggests that one should take smaller
steps where the solution is changing more rapidly. We will return to
this below.

The error analysis above ignores round-off error. If one assumes that a
fixed error is added at each time step, then the error estimate of is modified
to O(h) + O(εmachh−1). That is, taking more steps reduces the discretiza-
tion error, but increases the round-off error. Therefore, there is a point of
diminishing returns where the total error increases as h decreases. Better
results require not more effort, but more efficiency. The key is to take more
terms of the Taylor series and reduce the discretization error to O(hp), with
p > 1.

7.3 Higher Order Methods: Runge-Kutta

Runge-Kutta methods are commonly used in many numerical applications.
The second order Runge-Kutta method uses two function evaluations and
gives accuracy proportional to h2. This method is called “modified Euler”
or “Heun’s method.” The algorithm for evaluating

dy

dt
= f(y, t)

is just:

k1 = f(y, t)

k2 = f(y + hk1, t + h)

ynew = y +
h

2
(k1 + k2)
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The most popular of the fixed step size methods is the fourth-order
Runge-Kutta method. This is the default method in many integrators. The
algorithm involves four evaluations of the right-hand sides and gives accracy
that is O(h4). The algorithm is :

k1 = f(y, t)

k2 = f(y + hk1/2, t + h/2)

k3 = f(y + hk2/2, t + h/2)

k4 = f(y + hk3, t + h)ynew = y +
h

6
(k1 + 2k2 + 2k3 + k4)

Note that this is very similar to Simpsons rule for integration as the Heun
method is analogous to the trapezoidal rule and Euler to the Riemann sum.

While it seems that higher order rules require more work and more eval-
uations of the right-hand sides, for the same accuracy requirements, they
are much more efficient. For example to get an error of 0.0001 requires
h = 0.0001 for Eulers method and h = 0.1 for RK4. Thus to advance one
time step requires 10000 evaluations of the right-hand side using Euler and
10 setps of 4 evaluations or 40 evaluations for Runge-Kutta. To see this,
consider the example:

# harmonic oscillator

x’=y

y’=-x

x(0)=1

y(0)=0

aux true=cos(t)

done

of the harmonic oscillator. Use Euler’s method and set the Total to 1.000001.
Set Dt=.0005 and integrate the equations. Using the Data Browser compare
columns 2 and 4. The fourth column is the true solution ans the second is
the approximate. 2000 function evaluations were required and you still get
agreement only to 3 decimals. Now set Dt=.1 and set the method to Runge-
Kutta. Integrate again and you will see that you have 4 place accuracy!
This was only 40 function evaluations. It is much more efficient and more
accurate. Moral: Sometimes the increased expenditure in coding pays you
back with dramatic results.
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7.4 Stability and Stiff Equations

So far, our choice of h has been dictated only by accuracy. We will now see
that stability must also be considered. This is especially critical in problems
with multiple time scales.

As we saw in Eq. 25 Euler applied to y′ = λy gives yN = y0(1 + hλ)N ,
which converges to y0e

λt as h → 0. The error decreases like h. However, if
λ < 0, then not only will the error be large if h is taken too big, but the
numerical solution will grow exponentially instead of decaying exponentially
like the true solution. For example, if λ = −300 which should lead to a
rapidly decaying solution, then if we take h = 0.1 we see that yN = y0(−2)N

which is a rapidly growing solution oscillating between positive and negative
values. In order to guarantee a decaying solution h must satisfy

|1 + hλ| < 1 (26)

or

0 < h <
−2

λ
(27)

An alternative that avoids this difficulty is to use an implicit method,
backward Euler:

yn+1 = yn + hf(tn+1, yn+1). (28)

In general, a non-linear equation must be solved for yn+1, but for our linear
example we get the following recursion:

yn+1 =
1

1 − hλ
yn (29)

This agrees with forward Euler to first order, so it too will converge to the
solution with global error O(h). Furthermore, the solution will always decay
for any λ which is negative. So, the solution may be inaccurate, but it will
never blow up. In fact, if h is very large, the solution will be damped even
more rapidly. That is, the method pushes the decaying solution prematurely
towards its steady-state value of 0.

Thus, backward Euler is unconditionally stable for any equation with
decaying exponential solutions, whereas forward Euler is stable conditioned
on restricting h. (On the other hand, the backward Euler solution grows
when λ > 0, but so does the real solution, so we can’t complain.)

An alternative method, exponential Euler, sometimes used to avoid this
type of instability in linear equations of the form
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dy

dt
= −A(t)y + B(t) (30)

makes the next iterate a convex combination of the current value and the
steady-state:

yn+1 = yne−Ah +
B

A
(1 − e−Ah) (31)

This is the method most commonly used in neuron models due to the fact
that they are generally of the right form. As h → 0, this reduces to regular
Euler. For large h the solution remains bounded, but the accuracy is that
of Euler’s method O(h) so while taking large steps may be possible, it is not
always accurate.

Gear’s method provides an adaptive higher order implicit method so that
it has the high order advantages of Runge-Kutta and avoids the problems
of instability due to stiffness (the quality of widely disparate time scales).

7.5 Example

In this section, I offer two ODE files, the Hodgkin-Huxley as usually solved
and an exponential Euler version of the same. Here is the HH equations :

# hhh.ode

init v=0 m=0 h=0 n=0

par vna=50 vk=-77 vl=-54.4 gna=120 gk=36 gl=0.3 c=1 i=10

am(v)=.1*(v+40)/(1-exp(-(v+40)/10))

bm(v)=4*exp(-(v+65)/18)

ah(v)=.07*exp(-(v+65)/20)

bh(v)=1/(1+exp(-(v+35)/10))

an(v)=.01*(v+55)/(1-exp(-(v+55)/10))

bn(v)=.125*exp(-(v+65)/80)

v’=(I - gna*h*(v-vna)*m^3-gk*(v-vk)*n^4-gl*(v-vl))/c

m’=am(v)*(1-m)-bm(v)*m

h’=ah(v)*(1-h)-bh(v)*h

n’=an(v)*(1-n)-bn(v)*n

done

and the iterative version using the exponential method:

# this is the exponential form for HH equations hhexp.dif

init v=0 m=0 h=0 n=0
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par vna=50 vk=-77 vl=-54.4 gna=120 gk=36 gl=0.3 c=1 i=10

par delt=.5

am(v)=.1*(v+40)/(1-exp(-(v+40)/10))

bm(v)=4*exp(-(v+65)/18)

ah(v)=.07*exp(-(v+65)/20)

bh(v)=1/(1+exp(-(v+35)/10))

an(v)=.01*(v+55)/(1-exp(-(v+55)/10))

bn(v)=.125*exp(-(v+65)/80)

# x’=-a*x+b ==> x(t+delt)=exp(-a*delt)*(x(t)-b/a)+b/a

bv=(I+vna*gna*h*m^3+vk*gk*n^4+gl*vl)/c

av=(gna*h*m^3+gk*n^4+gl)/c

v’=exp(-av*delt)*(v-bv/av)+bv/av

amv=am(v)+bm(v)

bmv=am(v)/amv

m’=exp(-amv*delt)*(m-bmv)+bmv

ahv=ah(v)+bh(v)

bhv=ah(v)/ahv

h’=exp(-ahv*delt)*(h-bhv)+bhv

anv=an(v)+bn(v)

bnv=an(v)/anv

n’=exp(-anv*delt)*(n-bnv)+bnv

done

In the exponential Euler version, iterate for 500 time steps, which at
the step size of 0.5 milliseconds represents (500)(.5)=250. The oscillation
occurs at the 85th iterate or about 42 milliseconds. Now repeat this with the
true differential equation using a variety of integration methods (Backward
Euler, Euler, modified euler, Runge-Kutta, Gear) with different time steps.
Compare the results. Try exponential euler by setting the parameter delt=1.

This is a severely abridged version of Sherman’s notes. The full version

will be available on neurocog along with some exercises and sample prob-

lems.
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