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Neurons in several brain areas show sustained spiking activity follow-
ing a transient stimulus, with firing levels that vary with the stimulus
parameters in a graded manner1–4. In some areas, the sustained firing
rates are proportional to the time integral of the previous stimuli,
making them candidate neuronal integrators5,6. A much-studied
example is the oculomotor neural integrator. In the absence of exter-
nal signals, the maintained firing rates of the integrator neurons pro-
duce signals that are used to maintain stable eye positions. Transient
velocity signals change the level of the firing rate, enabling the system
to generate the required eye movement to the newly encoded posi-
tion5,6. It is not clear how this graded persistent activity is generated,
primarily because the firing rate of these neurons is sustained for
many seconds even in the absence of input from outside the integra-
tor, whereas the time constant of their membrane potential response
to current injection is in the milliseconds range6. Therefore, it has
been suggested that the multiple states of persistent activity in neu-
ronal integrators are the outcome of reverberating feedback loops
within special recurrent networks7–13.

The goldfish oculomotor integrator, however, shows  seconds-long
persistent activity even after extensive disruption of the integrator cir-
cuit14. Furthermore, no recurrent collateral axons have been found in
the goldfish integrator nuclei. In addition, in the majority of the cells
recorded, the amplitude of the membrane fluctuations, which pre-
sumably originate from excitatory postsynaptic potentials (EPSPs),
was independent of their firing rate (which corresponds to the eye
position)6. This suggests that, at least in these cells, the EPSPs do not
originate from recurrent synapses. Moreover, recent theoretical stud-
ies suggest that finely graded persistent activity requires a large num-
ber of cells12,13, whereas the number of neurons in the goldfish
oculomotor neuronal integrator does not exceed 40 (ref. 14).

Very recently, graded persistent activity has been observed in single
neurons in slices of the entorhinal cortex15. Although the required 
in vitro stimuli were unnaturally long, this has been proposed as a 
single-neuron mechanism that could subserve working memory.
These results motivate the search for alternative, single-neuron mech-
anisms for graded persistent activity and integration. Such a mecha-
nism requires the sustained firing rate of the neuron to be
proportional to the integral over time of its previous synaptic inputs.
The time constant of the membrane potential of neurons in the gold-
fish oculomotor neuronal integrator is short, as indicated by its fast
response to pulse current injections6. This suggests that the sustained
firing rate of the cell reflects the value of a dynamic variable other
than the membrane potential that memorizes the integral of synaptic
inputs but not that of current injections.

Calcium concentration is a plausible candidate for such a variable.
Intracellular calcium dynamics generate rich spatiotemporal patterns,
including oscillations16,17 and propagating waves18,19. Of particular
interest to us are calcium wave-fronts, which have been observed in
several cell types20–23, including neurons24,25. These phenomena result
from regenerative calcium dynamics that involves the release of cal-
cium from internal stores into the cytoplasm. This release is gated by
various channels whose principal activator is the cytoplasmic calcium
concentration ([Ca2+]i) itself. Thus, increasing [Ca2+]i facilitates fur-
ther release of calcium from the stores17, a positive-feedback cycle
known as calcium-induced calcium release (CICR).

Here we report that calcium wave-fronts within single neurons can
generate graded persistent activity and temporally integrate incoming
inputs. The diffusion of calcium together with its nonlinear autocat-
alytic dynamics give rise to wave-fronts of high calcium concentra-
tions along dendritic processes of our model neuron. These fronts
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The calculation and memory of position variables by temporal integration of velocity signals is essential for posture, the
vestibulo-ocular reflex (VOR) and navigation. Integrator neurons exhibit persistent firing at multiple rates, which represent 
the values of memorized position variables. A widespread hypothesis is that temporal integration is the outcome of reverberating
feedback loops within recurrent networks, but this hypothesis has not been proven experimentally. Here we present a single-cell
model of a neural integrator. The nonlinear dynamics of calcium gives rise to propagating calcium wave-fronts along dendritic
processes. The wave-front velocity is modulated by synaptic inputs such that the front location covaries with the temporal sum 
of its previous inputs. Calcium-dependent currents convert this information into concomitant persistent firing. Calcium dynamics
in single neurons could thus be the physiological basis of the graded persistent activity and temporal integration observed in
neurons during analog memory tasks.
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propagate at a speed that is proportional to the synaptic input to the
cell, resulting in instantaneous front locations that vary in proportion
to the temporal integration over previous inputs. Calcium-dependent
currents translate the location of the fronts into concomitant persis-
tent spiking activity. We show that integration by calcium dendritic
dynamics can be considerably robust, due to the underlying nonlin-
earity and granularity of the dendritic calcium dynamics and the
summation of signals from multiple dendritic branches.

RESULTS
The generation of calcium fronts
It has been suggested that calcium fronts are the outcome of the com-
bined effect of the nonlinear CICR dynamics and diffusion26. We used
a simple phenomenological model for the CICR mechanism. The rate
of change of [Ca2+]i in a small dendritic compartment is described by
an N-shape reaction function, which includes the combined effects of
uptakes of calcium from the cytoplasm by pumps and leakage through
the membrane, as well as the nonlinear receptor-mediated release
from the stores (equation (1) in Methods; Fig. 1a–c). In an appropriate
range of parameters, this function gives rise to two stable states: low
and high [Ca2+]i. When [Ca2+]i is low, the calcium channels in the
stores are closed, resulting in a stable low [Ca2+]i state. Conversely, if
[Ca2+]i exceeds a threshold (the middle zero crossing of the reaction
function), it triggers the release of calcium from internal stores, which
leads to a high [Ca2+]i steady state26,27. In a long dendritic branch, this
local bistability of the calcium dynamics may give rise to a spatial pro-
file of [Ca2+]i that depends on the concentrations at the ends of the
dendritic branch. In our model, the [Ca2+]i level at one end of the den-
drite is kept in the low [Ca2+]i state, whereas the other end is in the
high [Ca2+]i state (Fig. 1d–f). In this case, the solution of the reaction-
diffusion equation of [Ca2+]i along the dendritic branch (equation (2)
in Methods) is a profile of [Ca2+]i in the form of a front, which con-
nects the region of the branch in the low [Ca2+]i state with the region
in the high [Ca2+]i state (equation (3) in Methods). This profile can be
either stationary (Fig. 1d) or moving (Fig. 1e,f), depending on the
properties of the reaction function. The area under the positive part of
the function drives the dynamics toward increasing values of [Ca2+]i.
Similarly, the negative part of the function drives the dynamics toward
decreasing values of [Ca2+]i. If the two areas are equal (Fig. 1a), there is

no net force acting on the front, and it remains stationary. This sta-
tionary front can be stably located anywhere along the bulk of the den-
drite (Fig. 1d). The multiplicity of stable front positions enables the
dendrite to function as a sustained memory of an analog parameter. If
the negative area is larger than the positive one (Fig. 1b), the low
[Ca2+]i state is more attractive. In this case, the solution of the reac-
tion-diffusion equations is a front that propagates to the high [Ca2+]i
end of the dendritic branch, thereby increasing the region of the 
dendrite with a low [Ca2+]i level (Fig. 1e). The converse holds for a
negative bias in these areas (Fig. 1c,f).

Synaptic inputs, in particular the activation of metabotropic gluta-
matergic receptors (mGluRs), can modulate the release of calcium
from the stores19,28. This will affect the calcium profile along the den-
drite. For example, a decrease in the rate of calcium release from the
internal stores will increase the negative area under the reaction func-
tion (Fig. 1b), thereby causing a previously stationary front to propa-
gate toward the high [Ca2+]i end of the dendrite, which will increase
the region of the dendrite with a low [Ca2+]i level (as in Fig. 1e).
Conversely, an increase in the rate of calcium release will cause the
front to propagate in the opposite direction (as in Fig. 1f). We mod-
eled the effect of synaptic input by incorporating an input-dependent
bias in the reaction function. In this way, the synaptic input controls
both the direction and the speed of the propagation of the [Ca2+]i
front. When the dendritic branch receives time-varying, spatially
homogeneous synaptic input, the front moves with a velocity that is
proportional to the strength of the instantaneous input, and therefore
the location of the front is proportional to an integral over time of the
input (equation (5) in Methods). This is illustrated in Fig. 2, where a
dendritic branch receives synaptic pulses of varying strength and
duration (Fig. 2a). Each burst shifts the front so that its location accu-
rately encodes the time integral of the input (Fig. 2b,c). In the context
of the oculomotor integrator, the input pulses represent burst-like
saccadic commands, and the location of the front represents the eye
position5,6. Note that although the synaptic input is homogeneous
along the entire dendritic branch, it affects the location but not the
shape of the front along the dendrite (Fig. 2d).

Readout mechanism
Ultimately, information stored in the [Ca2+]i signals must be
decoded by the membrane potential at the axon hillock and com-
municated by action potentials. [Ca2+]i influences the membrane
potential through a variety of calcium-dependent hyperpolarizing
and depolarizing conductances. Specifically, a muscarinic-activated,
calcium-sensitive nonspecific cationic current has been shown to be
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Figure 1 The generation of a [Ca2+]i front. (a–c) Three examples of a [Ca2+]i
reaction function f(c) (see equation (1) in Methods). The zero crossings of
f(c) correspond to the fixed points of the local dynamics in a small dendritic
compartment. The functions in a–c all have the same stable fixed-points,
corresponding to the same low and high [Ca2+]i states (left arrow; c = c1 =
0.1 µM; right arrow; c = c3 = 0.4 µM), but differ in the value of the
intermediate unstable fixed point, c2. The values of c2 is 0.25 µM 
(a); 0.3 µM (b); 0.2 µM (c). (d–f) [Ca2+]i along a dendrite. If [Ca2+]i in the
right and left ends of the dendrite are kept in the low and high [Ca2+]i
states, respectively, the [Ca2+]i profile along the dendrite is a front
(equation (3) in Methods). (d) If the areas of the negative (light gray) and
positive (dark gray) parts of the reaction function are equal as in a, the front
remains stationary at any location along the dendrite, illustrated here by
two additional stationary fronts (dashed lines). (e) If the negative part is
larger than the positive one as in b, the front will move to the left,
increasing the region of low [Ca2+]i. (f) Conversely, if the positive part is
smaller, as in c, the front will move to the right.

©
20

03
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
at

u
re

.c
o

m
/n

at
u

re
n

eu
ro

sc
ie

n
ce



A R T I C L E S

essential for graded persistent activity in entorhinal cortex neu-
rons15. In our model, we incorporated a calcium-dependent
cationic current into a spiking neuron model (Fig. 3a). The calcium-
dependent cationic channels are open solely in regions of the den-
drite where [Ca2+]i is high (red in Fig. 3a). Consequently, the total
amount of depolarizing current (number of arrows in Fig. 3a)
depends on the location of the [Ca2+]i front along the dendrite.
Below we discuss a more biologically plausible model, where the
neuron is composed of many dendritic branches.

According to studies of integrator neurons in vitro, the relationship
between firing rate and applied current is approximately linear, over a
large range of input currents29,30. Therefore, we incorporated the cal-
cium-dependent, nonspecific cationic current in a spiking neuron
model in which the firing rate increases approximately linearly with
the injected current above a threshold value31 (see Supplementary
Methods online). The firing rate as a function of the front location is
illustrated in Fig. 3b. When the front is located at the extreme left end
of the dendrite, the amount of calcium-dependent conductance is
small and the cell does not fire. However, beyond a threshold of 5 µm
from the tip of the dendrite, the firing rate is almost linear with the
location of the front.

This model cell can accurately integrate incoming inputs. This is
illustrated in Fig. 4, where the cell receives synaptic pulses of varying
strength and duration as in Fig. 2a. The membrane potential at three
different time intervals (denoted by black bars in Fig. 2a) is depicted
in Fig. 4a–c. In the absence of input, the firing rate persists at a con-
stant rate, reflecting the constant value of the integral (Fig. 4a). With
the onset of positive external input, the firing rate increases (Fig. 4b),
and when this input is terminated, the new firing rate persists at a new
level, which corresponds to the new value of the integral (Fig. 4c).
During this whole time, the instantaneous firing rate (line in Fig. 4d)
is proportional to the time integral of the input (circles in Fig. 4d).

The effect of granularity
Real dendrites possess a considerable degree of spatial granularity,
both in the sites of the synaptic inputs as well as in the locations of the
intracellular calcium-secreting organelles. To test the consequences of
this granularity, we simulated the propagation speed of [Ca2+]i fronts
in a chain of discrete calcium compartments (equation (7) in
Methods). As shown in Fig. 5, the basic features of memory and inte-
gration are robust to the loss of spatial uniformity. The main effect of
system granularity is the presence of an input threshold26,32, below
which the front does not move (arrow). Although such a threshold
may lead to some loss of information, it endows the system with
important resilience to weak distracting stimuli, a property which is
known to be present in working-memory systems4. The granularity
also yields a considerable robustness of the system to changes in the
reaction function. In particular, a perturbation in the reaction func-
tion that yields an excess in the positive area by as much as 15% (and
a concomitant decrease in the negative area), will not result in a loss of
persistence and memory.

Multi-dendrite computation
The local nature of calcium signaling enables the system to take
advantage of the presence of multiple dendritic branches by using
them to perform parallel computation (Fig. 6a). One advantage of
parallel computation is the ability to overcome the adverse effects of
heterogeneity and noise, which are abundant in biological systems.
Multidendritic computation overcomes these effects in the same way
as the pooling of noisy signals in neuronal ensembles. An example is
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Figure 2 The effect of homogeneous synaptic input on the calcium front
(equation (5) in Methods). (a) The stimulus consists of two spatially
homogeneous positive pulses and one negative pulse, of widths 100 ms
and 400 ms, respectively. The black bars correspond to Fig. 4a–c. (b) The
integral over time of the input. (c) The local [Ca2+]i along the dendrite
(color coded) as a function of time. Color scale at right ranges from blue 
(c = 0.1 µM) to red (c = 0.4 µM). Note that the location of the front follows
the temporal integral of the input (compare to b). (d) The shape of the front
is independent of the location and of the input. The three fronts (dashed,
solid and dash-dot) are sampled at three different points in time, denoted
by white lines in c above.

Figure 3 The conversion of [Ca2+]i into spikes. (a) A schematic drawing of a
model neuron composed of one dendritic process (blue, low [Ca2+]i; red, high
[Ca2+]i). The conductance of calcium-dependent cationic channels depends on
the local [Ca2+]i, and therefore the total calcium-dependent cationic current is
proportional to the location of the front along the dendrite. (b) Simulation of
the firing rate of the model neuron as a function of the location of the front
along a 30-µm dendrite (see Supplementary Methods online).
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A R T I C L E S

shown in Fig. 6b–f, where multiple branches integrate sinusoidal
inputs, similar to time-varying head velocity in VOR experiments.
Here, each granular dendrite receives the same cosine stimulus 
(Fig. 6b) in the presence of random spatial inhomogeneity in the den-
dritic calcium dynamics, that is, in the distribution of calcium stores
or the synaptic inputs (equation (7) in Methods). Because of this spa-
tial inhomogeneity, each dendrite shows a considerable drift in the
location of the [Ca2+]i front (Fig. 6d,e). Therefore, a firing rate based
on the calcium dynamics in a single dendrite would significantly
deviate from a perfect integrator. However, the total area of high
[Ca2+]i summed over 100 dendritic branches deviates only slightly
from the desired integration, and therefore the firing rate of single
neurons can accurately integrate incoming inputs even in the pres-
ence of strong noise (compare Fig. 6c and f).

DISCUSSION
Calcium computation
The nonlinear and local nature of calcium dynamics enables cells to
generate a wide repertoire of spatiotemporal patterns, which are used
to control processes as diverse as fertilization, proliferation and devel-
opment, but also cell death through necrosis and apoptosis17. In neu-
rons, calcium modulates membrane potential, synaptic release, short-
and long-term plasticity and axonal growth33. Calcium is also criti-
cally involved in other information processing tasks, such as the
detection of the direction of image motion in rabbit retina34. Very
recently, graded persistent activity, which relies on activity-dependent
[Ca2+]i changes, has been found in single neurons in slices of entorhi-
nal cortex15. This area is known to be associated with memory func-
tions, and the established persistent activity has been proposed as a

single-neuron mechanism subserving working memory. In this study,
we have shown that calcium dynamics can also be the physiological
basis for the graded persistent activity observed in neurons during
temporal integration tasks.

We based our model on the hypothesis that calcium wave-fronts
result from the combined effect of local calcium bistability and diffu-
sion. This mechanism of wave- front generation by bistability and dif-
fusion is quite general and has been studied extensively in many
systems of excitable media35. In the present case, we propose that the
bistability between two equilibria of calcium levels is the outcome of
CICR. To generate the desired [Ca2+]i bistability by CICR, several
conditions must be met. It may be necessary to assume that the flux of
calcium through the plasma depends on the concentration of calcium
in the stores36 or that this flux is small compared to the flux through
the calcium stores membrane26,27,37. In addition, high levels of
[Ca2+]i have been shown to inactivate the release of calcium from
internal stores which could potentially destabilize the high calcium
state38. The slow oscillations and wave fronts of [Ca2+]i observed in
diverse biological systems16–25 indicate in our view, that under diverse
conditions this inactivation is only partial and therefore does not
destroy [Ca2+]i bistability39. Our work calls for experimental elucida-
tion of the mechanisms underlying calcium bistability and wave-
fronts in nerve cells.

The dynamic range of calcium concentration participating in
calcium computation is still unclear, particularly as high calcium
concentrations are toxic and can result in cell death. Several studies
have shown that in darkness, the cytoplasmic calcium concentra-
tion in retinal rods is 0.25–0.55 µM40–42. Its concentration in
suprachiasmatic neurons oscillates with a 24-h period, alternating
between 0.44 µM at the circadian peak and 0.12 µM at the nadir43.
These values are consistent with our model, in which the calcium
concentration cannot exceed 0.4 µM.
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Figure 4 Integration of a time-dependent spatially homogeneous stimulus.
The input is the same as in Fig. 2a, and the model neuron is as in Fig. 3.
(a–c) The membrane potential at three time intervals, denoted by black
bars in Fig. 2a. (a) Initially there is no synaptic input, and the firing rate
persists at a constant rate, which corresponds to a stationary calcium 
front. (b) With the onset of the external input, the location of the front and
consequently the firing rate change in proportion to the integral over time of
the input. (c) After the termination of the input, the spiking activity shows a
new persistent state, this time at a different rate, encoding the new position
of the [Ca2+]i front. (d) The instantaneous firing rate (the inverse of the
interspike interval; line) is proportional to the location of the front and
accurately reproduces the integral over time of the input (circles).
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Figure 5 The velocity of the front as a function of the constant external
input in a granular dendrite. Dotted line represents a continuous
homogeneous dendrite; solid line shows a simulation of a granular dendrite
(equation (7) in Methods), with 15 compartments of size ∆x = 2 µm. Inset,
magnification of the boxed region. Note that when the input is smaller than
I = 0.05 (arrow), the front does not move, giving rise to an input threshold
(see magnification in inset) However, the response to stronger inputs in the
granular case is very similar to the response in the homogeneous,
continuous dendrite.

©
20

03
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
at

u
re

.c
o

m
/n

at
u

re
n

eu
ro

sc
ie

n
ce



A R T I C L E S

Relation to previous work
Previous models of neural integrators have assumed that integra-
tion is the outcome of the collective behavior of recurrent excita-
tory networks. The early models approximated the neurons and the
synaptic connections as linear elements7–11. Despite their lack of
biophysical realism, these models provided a conceptual frame-
work for understanding the conditions in which network interac-
tions give rise to long time scales and enable accurate integration.
Essentially, the long time scale, which is required for holding the
value of a position variable in memory, is achieved by tuning the
network connections such that the gain of the network is exactly 1.
These models suffer from lack of robustness to small changes in the
network parameters. For example, a slight increase in the overall
coupling strength results in an increase in the network gain, leading
to divergent neuronal activity. Conversely, a slight decrease in the
coupling strength results in convergence to a single stable state and
the loss of the memory of the desired integral. In addition, it was
unclear how networks composed of spiking neurons could possess
a constant gain at different levels of activity. These linear network
models have been extended to incorporate conductance-based 
neurons with a highly nonlinear spiking mechanism and biologi-
cally feasible synapses12. The combination of a threshold-linear,
frequency-current curve for single neurons and synaptic saturation
gives rise to nearly constant network gain, which can be made to be
close to 1 throughout the network dynamic range. The introduc-
tion of nonlinearity to the model also makes it more robust to small
changes in the network parameters. However, the required level of
fine-tuning of the parameters of the single-neuron dynamics and
the synaptic strengths still remains high. Several learning rules have
been proposed as possible mechanisms for self-tuning of the net-
work connections to the desired values44–46, but at present, the effi-
ciency of these rules remains unclear. A different solution to the
problem of robust integration has recently been proposed13, which
is based on embedding bistable neurons in a heterogeneous recur-
rent network. It has been shown that such a network can integrate
incoming inputs robustly, even when the network parameters are
not finely tuned. However, it is difficult to reconcile this model
with the absence of bistability in the membrane potential of neu-
rons of the goldfish oculomotor neuronal integrator6. The underly-
ing assumption of the models mentioned above is that persistent

activity and integration are an emergent property of recurrent net-
work dynamics. However, accumulating experimental data suggest
that at least in the goldfish oculomotor neuronal integrator, the
observed behavior is the outcome of the properties of single neu-
rons and does not rely on network interactions, supporting our
hypothesis of a single-neuron integrator. The underlying non-
linearity and granularity of our model endows it with a consider-
able degree of robustness to global mistuning of parameters. In
addition, robustness to local spatial inhomogeneity is provided by
averaging over multiple dendritic branches.

Experimental predictions
Our model predicts that regenerative spatiotemporal patterns of
[Ca2+]i dynamics exist in the dendrites of neurons in prefrontal cor-
tex, hippocampus and integrator brainstem nuclei, and that they
vary systematically with synaptic input and sensory stimuli in a
graded fashion. The existence of these patterns can be verified exper-
imentally by calcium imaging techniques, and the pharmacological
manipulation of intrinsic calcium dynamics would interfere with
normal integration. Additionally, persistence and integration should
be observed even in the absence of recurrent synaptic input. Such
experiments may reveal that as a computational system, the single
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Figure 6  Parallel integration of input by multiple dendritic branches in 
the presence of noise. (a) A schematic drawing of the neuron. The entire
dendritic tree receives the same time-dependent spatially homogeneous
input, in addition to time-independent inhomogeneous noise. [Ca2+]i fronts
propagate along many different dendritic branches simultaneously, with
velocities which depend on the homogeneous input, but also on the local
noise in each branch (red, high [Ca2+]i; blue, low [Ca2+];). The locations 
of the [Ca2+]i fronts in all the dendritic branches determine the total
amount of calcium-dependent current that reaches the axon hillock and
consequently the firing rate. (b–f) An example of a simulation of dendritic
integration of sinusoidal VOR input I(t) = Acos(ωt), with A = 0.8, ω = 2π
Hz, in the presence of strong quenched noise Ix which is sampled
independently for each dendritic compartment of size ∆x = 2 µm from 
a uniform distribution between –0.2 and 0.2 (Methods). (b) The
homogeneous input. (c) The temporal integral of the input. (d,e) Location of
[Ca2+]i fronts as a function of time in two dendritic branches. Note that the
main effect of the noise is the slow drift in the location of the front, which
prevents accurate integration of the time-dependent input based on a
single dendritic branch (compare to c). Color scale as in Fig. 2. (f) The total
calcium concentration of a neuron with 100 dendritic branches averages
out the spatial noise in the different branches, yielding a firing rate (blue)
that accurately follows the temporal integral of the input (c).
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A R T I C L E S

neuron is far more powerful than the McCulloch and Pitts47 point-
like threshold unit that has dominated much of neural modeling in
the past half-century.

METHODS
The autocatalytic [Ca2+]i dynamics in one small dendritic compartment is
described by a simple phenomenological model, a third order polynomial
function:

(1)

where c = [Ca2+]i. The terms c1 (0.1 µM) and c3 (0.4 µM) correspond to the low
and high [Ca2+]i stable fixed points, respectively. The values of c1 and c3 are
chosen such that the dynamics of [Ca2+]i falls within the physiological range17.
The c2 value is the unstable intermediate fixed point (c1 < c2 < c3). The value of
K (889 µM–2s–1) is chosen so that the front width equals 2 µm (see below).

Incorporating the diffusion in a homogeneous dendrite, we obtain the one-
dimensional reaction-diffusion equation:

(2)

where D is the cytoplasmic calcium diffusion coefficient. The diffusion coeffi-
cient of free calcium in the cytoplasm is Dfree = 220 µm2s–1, but its buffering
strongly reduces the effective diffusion coefficient to Deff = 10–70 µm2s–1,
depending on its concentration48. Here we take D = 40 µm2s–1. We assume that
one end of the dendrite, say the left end, is held at high [Ca2+]i while the other
end is held at low [Ca2+]i. The boundary conditions could result from hetero-
geneity at the ends of the dendrite. For example, deficiency of calcium stores at
one end would result in low values of [Ca2+]i, whereas a high density of cal-
cium channels will generate high local values of [Ca2+]i. The solution of the
above reaction diffusion equation for a long dendrite35 has the form of a front,
which moves with constant velocity:

(3)

where λ is the width of the front. With the above parameters, λ = 2 µm, similar
to experimental observations24. The center of the front equals:

(4)

where v is the front velocity. With our parameters, the maximum value of v is 
S = 40 µm/s. In the case where c2 is half-way between c1 and c3 (c2 = cm),
v = 0 and the front is stationary at a location L(0), which can be anywhere in
the bulk of the dendrite. We have chosen a cubic form for the reaction function
f(c) in equation (1) for its analytical tractability. The qualitative behavior of
our model is insensitive to the precise form of this function. In general, the
sign and magnitude of the front velocity depends on the area under the reac-
tion function. This can be seen by a spatial integration of equation (2). Noting
that the derivatives of the front profile near the boundaries are small, the net
rate of change in calcium is proportional to the integral of f(c). Hence if the
negative and positive areas under f(c) are equal the front is stationary35.

We modeled the effect of a spatially homogeneous synaptic input on
[Ca2+]i by:

(5)

where I(t) is the time-dependent and spatially independent input in dimen-
sionless units between –1 and 1. The function g(c) describes the [Ca2+]i

∂c                      ∂2c                                              c3 – c1
     = f (c) + D         + g (c) ⋅ I (t);   g (c) ≡ K ⋅             ⋅ (c – c1) ⋅ (c – c3)
∂t                    ∂x2                                                  2 

1L(t) = L(0) + vt;    v = √2DK (c2 – cm);     cm =    (c3 + c1)2

               c1 + c3        c3 – c1             x – L(t)                  2√2D
c(x,t) =                +               tanh(               );      =
                  2              2                     λ                   (c3 – c1)√K

λ

∂c                       ∂2c
      = f (c) + D
∂t                       ∂x2

dc
      = f (c); f (c) ≡ –K(c – c1) ⋅ (c – c2) ⋅ (c – c3)
dt

dependence of the response of the receptors and the stores to incoming input.
When c ≈ c1 or c ≈ c3, g(c) ≈ 0, preventing [Ca2+]i from exceeding the satura-
tion terms c1 and c3. Indeed, both low and high [Ca2+]i block ionic chan-
nels49,50. In our model, c2 = cm, so that in the absence of input, the front is
stationary at an arbitrary location. The effect of the input I(t) is equivalent to
changing the value of c2. In fact, the solution of equation (5) is the same as
equation (3), but with:

(6)

We modeled a granular dendrite as a one-dimensional chain of connected
compartments positioned at locations x, which are multiples of ∆x, where ∆x
is the length of each compartment. We can describe the [Ca2+]i dynamics
using the following set of differential equations:

(7)

where cx is [Ca2+]i in the dendritic compartment located at x. Spatial noise is
introduced by replacing I(t) in equation (7) by [Ix+I(t)], where Ix is a time-
independent random noise to the compartment at x, drawn from a uniform
distribution, independently for each compartment.

The spiking neuron parameters appear in the Supplementary Methods
online.

Note: Supplementary information is available on the Nature Neuroscience website.
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