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Neural processes are dynamic phenomena, which means that they change
in time. These temporal variations are extremely important; indeed, many
sensory stimuli are coded according tho firing rates of the neurons and not
their absolute membrane potentials. The most accepted models of memory
and learning depend on the rates of change of the neurons, that is, the cor-
rellation between the activities of the post- and pre-synaptic cells. Recent
evidence has pointed to the importance of 40 Hz oscillations in binding di-
verse properties of visual and olfactory stimuli. Dynamic phenomena play
an obvious role in motor activity as well. Locomotion, whether stereotypical,
such as trotting of horses and grinding of the lobster stomato-gastric system,
or driven by feedback, as in navigation of an obstacle course, depends on pre-
cise temporal relations between the limbs and the various components of the
locomotor event. Autonomic processes such as breathing, hormonal secretion,
circadian cycles, and others also depend on temporal processes such as reg-
ular rhythms and more complex phemonena, e.g. spike bursts and irregular
activity.

Many pathologies are due to temporal difficulties in neural systems; not-
able among these are epilepsy, Parkinsonian seizures, and various EEG ab-
normalities. Indeed, the EEG is nothing more than a time series of the lumped
activity of many active neurons.

The language of dynamic phenomena is differential equations. A differen-
tial equation is an equation that relates the rate of change of some process to
other processes that are changing in time. The simplest example and one that
will play a role in neurobiology is the decay to rest of the membrane potential.
A passive membrane can be modeled by a capacitor with capacitance C' and
a resistor with resistance R and battery with potential V, in parallel, Fig 1

The quantity of interest is the voltage across the capacitor, V. This voltage
slowly leaks out of the capacitor across the resistor. Elementary circuit theory
tells us that the rate of change of the voltage is proportional to minus the



Figure 1: Passive Membrane Model

voltage difference. The rate of change of a quantity, V' (¢) with respect to
time is of course the derivative of that quantity with respect to time. Thus,
our statement above can be translated into mathematics to read as follows:

dV/dt = —k(V — E) (1)

where k£ > 0 is the constant of proportionality. For the circuit here, the con-
stant is 1/(RC'), where R is the resistance in ohms and C' is the capacitance
in farads. Note that the product of one ohm with one farad has the value of
one second. The quantity, RC' is called the membrane time-constant. Thus,
a membrane with 1MQ resistance and .01uF capacity would have a time
constant of 10 ms. The objective of the theory of differential equations is to
try to understand the behavior of systems like (1) and to use this knowledge
to predict the behavior of experiments. There are at least 5 different levels
at which one can study (1):

1. The most satisfactory may seem to be an explicit solution to the equa-
tion in terms of all of the parameters and time. This is usually im-
possible (and certainly impossible for all but the most elementary mod-
els of neural processes). Also, it is often fairly useless as anyone who
has spent a few minutes with a symbolic algebra program will attest.
For (1) an exact solution is easy to find.

2. Prove that a solution of the desired type exists. This is difficult for
non-mathematicians to understand: a proof is true and always true.
For equation (1), one might try to prove that positive solutions are
always decreasing. (You mathematicians should have no problem with

this)



3. Qualitative analysis of the equation. This means that rather than ob-
taining a precise solution to the equation, we attempt to analyse the
behavior by using properties of the equation. This methodology is
ideally suited to biological systems, where precise formulas for the vari-
ous quantities of interest are not known. For example, in a negative
resistance preparation such as various vertebrate neurons with excitat-
ory transmitters applied, the shape of the I — V relation is only ex-
perimentally known and no exact formula for the shape can be given.
Qualitative methods (which we will emphasize) are very good for this
purpose (see the Chapter 5 in the Koch-Segev book)

4. Numerical solutions. This is the best known way of studying mod-
els that depend on differential equations. All simulation tools such as
Genesis, the Hinds simulator, and XPP, numerically solve differential
equations as a means of understanding their behavior. Together with
qualitative methods, this tool provides a very complete combination for
studying differential equations.

5. Approximation methods. In many biological systems, there are many
different temporal regimes varying from milliseconds to months. In
many cases it is possible to hold some variables constant (those that
slowly change) or assume that their rapid variation can be averaged (for
those that are changing quickly). When this is done, one can often ob-
tain a simpler set of equations that can be explicitly solved or analyzed.
This is the technique we have used to analyze the lamprey CPG.

Equation (1) is called a first order differential equation (ODE) and in
order to solve it, we must specify one more condition. To see why, suppose
I tell you that someone is driving at 50 MPH down the turnpike. After one
hour, how many miles down the pike is he? To answer this, you must know
what milepost he started at. T'hat is, you must be given the initial position.
In general, you must specify an initial condition for each first order differential
equation. Thus, we must give the initial voltage in the capacitor in order to
solve (1). Equation (1) is of the following form:

de/dt = [(2)g(t)  @(0) = xo (2)

which can be solved by integration:

dz/(x) = g(t)di



so, we get:
[ dets@ = [ oo
For the above equation f(z) = —kz and ¢(t) = 1, hence:
In((V =V2)/(Vo = V2) = =t/(RC)
Inverting this equation, we obtain:
V(t) = V. + (Vo = Va) exp(—t/(RC))

The voltage decays exponentially from its initial value. The larger the resist-
ance, the slower it decays.

HOMEWORK

1. Suppose that the membrane has a resistence of 20M €2 and a capacitance
of 120 picofarads. The initial potential is 100 mV and the battery is
—60mV (a) What is the membrane time constant. (b) What is the
potential drop after 100 msec. (c) After how long has the potential
dropped to 25 mV.

2. A simple model for a periodically varying calcium conductance is:
CdV/dt = goa (14 5sin(wt))(Vea — V)

(a) Assuming that V' (0) = 0, what is the potential as a function of time.
(b) What are the dimensions of all the parameters. (c) As ¢t — oo,
what does the membrane potential tend to? (d) If V(0) = V¢, does
the voltage ever change?

There are usually many differential equationsin a model system. Consider
the following psychological example. Suppose that Harry is a fickle suitor and
Sally is the woman who he is interested in. The rate at which her love for him
changes depends on his love for her. Harry on the other hand is interested
only when she is not and loses interest as soon as she finds him attractive.
Let 2 denote the amount that Harry is attracted to Sally and let y denote the
amount that Sally is attracted to Harry. Then the equations are:

dz/dt = —y (3)
dy/dt = =z (4)



Figure 2: Typical negative feedback interaction

If 2(0) = 2o and y(0) = yo, then it is simple to verify that the solution to (3)
is:
z(t) = xocos(t) — yosin(t), y(t) = zosin(t) + yocos(t)

The point is not that this equation is solvable, but rather that it typifies
the interactions of “excitatory” and “inhibitory” processes. The variable y
“inhibits” z and z “excites” y as in Fig 2.

This type of interaction often leads to oscillations and is a form of delayed
inhibition. Another way to induce a delayed inhibition is to put it in directly:

dz(t)/dt = —z(t — 7 /2)

This is an example of a delay-differential equation. We will not study these
too much since they are very difficult to solve. However, solution to this prob-
lem is z(t) = Asin(t) We will see later that this notion of delayed inhibitory
feedback is responsible for most if not all oscillatory behavior in neurons.
Now consider a general system of two linear differential equations:

de/dt = ax+ by
dy/dt = cz+dy

The general solution to this equation (except for some special cases) is:

z(t) = Aexp(Ait) + Bexp(Aqt)
W) = CoxpOut) + Dexp(Aa)

where A, B, C, D are constants (perhaps complex) that depend on the initial
conditions and the parameters a, b, ¢, d and Ay  are the eigenvalues of the 2x2



matrix:

w=( )

Recall that the eigenvalues of a matrix M are the roots of the characteristic
polynomial which is

p(A) = det(AT — M)

where [ is the identity matrix of all zeros except the 1’s along the diagonals.
For the present example,

p(A) =N = (a+b)A+ ad — be (5)

This second degree polynomial has two roots. The quantity (a + d) is the
trace of the matrix M and the quantity ad — bc is the determinant of the
matrix. The roots of the polynomial can be either real or complex. If the
real parts are positive, then it is clear that the solutions (z(t), y(¢)) will grow
exponentially fast as ¢ increases. Thus, the solutuion will not be bounded.
On the other hand, if all the real parts are less than or equal to zero, then
the solutions will remain bounded as ¢ — co. As an example, the Harry-Sally
problem has ¢ = 0,6 = —1,¢=1,d = 0. So that the eigenvalue equation is:

M4+1=0

The roots of this are 44, where i = /—1. Since exp(it) = cost + isint, we
see that we recover the originally found solutions.

HOMEWORK

1. (a) Find the eigenvalues if a = 1,b = —2,¢ = 2,d = 1. Do solutions
grow exponentially or do they stay bounded. (b) How about if d = —3.

2. Answer (1a) for the following cases: (i) @ = 2,b=3,c =4,d = 0 (ii)
a=-1,b=2,c=-3,d=-2(iii) a=1,b=-3,c=2,d= -1

A short aside in linear algebra

Linear differential equations, which are ultimately very important since many
nonlinear systems are approximated by them near equilibria, are solved by
using techniques from linear algebra. The most crucial ideas are the notions



of eigenvalues and eigenvectors. I will assume that you know how to multiply
matrices together and that you can find the transpose of a matrix and the
inner product of two vectors. The norm of a vectoris the square root of the
sum of the squares of each element. The inner product of two vectors is the
sum of the products of each of the elements. Just for notational sake, A is an
n X m matrix means that A has n rows and m columns. The matriz norm of
A is the maximum over all rows of A of the sums of the absolute values of the
elements in each row. A row vectoris a 1 x n matrix and a column vectoris a
m X n matrix. Matrices are multiplied in the usual manner . To multiply an
nl X n2 matrix by an n3 X n4 matrix, you must have n2 = n3 and the result
is an n1 X n4 matrix. The 75 entry of the product of two matrices takes the
it" row of the first times the j* column of the second (ie the inner product of
a row from the first with a column from the second.) This is why the number
of columns in the first must equal the rows in the second. A square matrix
has an inverse if there is a square matrix B such that AB = BA = [ where
I is the square matrix with 1 along the diagonal and 0 everywhere else. A
matrix is invertible if and only if the determinant of that matrix is nonzero.

EXAMPLES
I define 4 matrices,
1 2 0
v (530
1 2
1 -1
¢ = 2 -1
1 0

D= (01 -2)

Note that D is a row vector. You can multiply BA but not AB since A has
3 columns and B has 2 rows so they are not compatible. If you multiply AC

you get a 2 X 2 matrix,
5 —1
3 -1



but if you multiply C'A you get a 3 X 3 matrix

-1 3 =3
0 5 -3
1 2 0

Only square matrices have inverses. It is easy to show that

o [ 5 =2

The norm of the row vector, D) is v/5. The matrix norm of A is 6. The
transpose of B is itself. We say such a matrix is symmetric. Symmetric
matrices play an important role in the theory of “neural nets.” The transpose
of D is a column vector.

Eigenvalues

Let A be a square matrix. Often we want to find vectors v such that
multiplication by A is equivalent to scalar multiplication:

Av = v (6)

where A is a complex or real scalar. If we can find pairs (A, v) such that
equation (6) holds, then we say that A is an eigenvalue and v is an eigenvector
for A. How do we solve this problem. Subtracting, we must have:

(M-A)wv=0

This is a linear system of equations. One solution is that v = 0 If the matrix,
M(X) = Al — A has an inverse, then this is the only solution. Thus, we
must find values of A such that A is not invertible. Recall that a matrix is
noninvertible if it has a zero determinant. Thus, we take the determinant To
do this, we take the determinant of M ()) and set it to zero. This results in a
n'" degree polynomial, the characteristic polynomial that has n roots. Thus,
a general n X n matrix has n eigenvalues.

Eigenvalues are either real or complex. A matrix which satisfies A7 = A
that is it is its own transpose (i.e. symmetric) always has real eigenvalues.

EXAMPLE



The matrix A from the above examples is symmetric. Since A is 2 X 2, it
follows that the characteristic polynomial is given by (5) so the eigenvalues
satisfy:

A —6A+1=0

whose solutions are A = (6 £ V62 —4)/2 or A = {5.82,.18}.
HOMEWORK

1. Use the matrices, A, B, C, D defined in the examples above. Compute
the following quantities:

AAT B? DC B+ AC

2. Compute AC and find its eigenvalues



