Comp Neuroscience
In this tutorial, we will explore the role of different currents on the firing properties of cortical neurons. It is based on a tutorial from the book of McCormick and Huguenard which is a DOS-based implementation of their model for thalamic and cortical neurons. The two papers that form the basis for this tutorial are in J. Neurophysiology 68:1373-1400 (1992). I have implemented their model in an xpp file which is given below and will also show you the equations. There are 11 conductances that are used. By changing them, you can look at different currents, turning them on and off as you'd like. The conductances are
Here is the file
# the McCormick-Huguenard channel models -- Mix and match as you like # # UNITS: millivolts, milliseconds, nanofarads, nanoamps, microsiemens # moles # cell is 29000 micron^2 in area so capacitance is in nanofarads # all conductances are in microsiemens and current is in nanofarads. # par I=0,c=.29 v'=(I -ina-ik-ileak-ik2-inap-it-iahp-im-ia-ic-il-ih+istep(t))/c # the current is a step function with amplitude ip istep(t)=ip*heav(t-t_on)*heav(t_off-t) par ip=0.0,t_on=100,t_off=200 # passive leaks par gkleak=.007,gnaleak=.00265 Ileak=gkleak*(v-ek)+gnaleak*(v-ena) # aux i_leak=ileak # INA par gna=0,Ena=45 Ina=gna*(v-ena)*mna^3*hna amna=.091*(v+38)/(1-exp(-(v+38)/5)) bmna=-.062*(v+38)/(1-exp((v+38)/5)) ahna=.016*exp((-55-v)/15) bhna=2.07/(1+exp((17-v)/21)) mna'=amna*(1-mna)-bmna*mna hna'=ahna*(1-hna)-bhna*hna # aux i_na=ina # Delayed rectifier IK par gk=0,Ek=-105 Ik=gk*(v-ek)*nk^4 ank=.01*(-45-v)/(exp((-45-v)/5)-1) bnk=.17*exp((-50-v)/40) nk'=ank*(1-nk)-bnk*nk # aux i_k=ik # INap same tau as Na but diff activation par gnap=0 inap=gnap*map^3*(v-ena) map'=(1/(1+exp((-49-v)/5))-map)*(amna+bmna) # aux i_nap=inap # ia A-type inactivating potassium current # ia=ga*(v-ek)*(.6*ha1*ma1^4+.4*ha2*ma2^4) mainf1=1/(1+exp(-(v+60)/8.5)) mainf2=1/(1+exp(-(v+36)/20)) tma=(1/(exp((v+35.82)/19.69)+exp(-(v+79.69)/12.7))+.37) ma1'=(mainf1-ma1)/tma ma2'=(mainf2-ma2)/tma hainf=1/(1+exp((v+78)/6)) tadef=1/(exp((v+46.05)/5)+exp(-(v+238.4)/37.45)) tah1=if(v<(-63))then(tadef)else(19) tah2=if(v<(-73))then(tadef)else(60) ha1'=(hainf-ha1)/tah1 ha2'=(hainf-ha2)/tah2 par ga=0 aux i_a=ia # # Ik2 slow potassium current par gk2=0,fa=.4,fb=.6 Ik2=gk2*(v-ek)*mk2*(fa*hk2a+fb*hk2b) minfk2=1/(1+exp(-(v+43)/17))^4 taumk2=1/(exp((v-80.98)/25.64)+exp(-(v+132)/17.953))+9.9 mk2'=(minfk2-mk2)/taumk2 hinfk2=1/(1+exp((v+58)/10.6)) tauhk2a=1/(exp((v-1329)/200)+exp(-(v+129.7)/7.143))+120 tauhk2b=if((v+70)<0)then(8930)else(tauhk2a) hk2a'=(hinfk2-hk2a)/tauhk2a hk2b'=(hinfk2-hk2b)/tauhk2b aux i_k2=ik2 # # IT and calcium dynamics -- transient low threshold # permeabilites in 10-6 cm^3/sec # par Cao=2e-3,temp=23.5,pt=0,camin=50e-9 number faraday=96485,rgas=8.3147,tabs0=273.15 # CFE stuff xi=v*faraday*2/(rgas*(tabs0+temp)*1000) # factor of 1000 for millivolts cfestuff=2e-3*faraday*xi*(ca-cao*exp(-xi))/(1-exp(-xi)) IT=pt*ht*mt^2*cfestuff mtinf=1/(1+exp(-(v+52)/7.4)) taumt=.44+.15/(exp((v+27)/10)+exp(-(v+102)/15)) htinf=1/(1+exp((v+80)/5)) tauht=22.7+.27/(exp((v+48)/4)+exp(-(v+407)/50)) mt'=(mtinf-mt)/taumt ht'=(htinf-ht)/tauht # il L-type noninactivating calcium current -- high threshold par pl=0 il=pl*ml^2*cfestuff aml=1.6/(1+exp(-.072*(V+5))) bml=.02*(v-1.31)/(exp((v-1.31)/5.36)-1) ml'=aml*(1-ml)-bml*ml aux i_l=il # calcium concentration par depth=.1,beta=1,area=29000 ca'=-.00518*(it+il)/(area*depth)-beta*(ca-camin) ca(0)=50e-9 aux i_t=it # ic calcium and voltage dependent fast potassium current ic=gc*(v-ek)*mc ac=250000*ca*exp(v/24) bc=.1*exp(-v/24) mc'=ac*(1-mc)-bc*mc par gc=0 aux i_c=ic # ih Sag current -- voltage inactivated inward current ih=gh*(V-eh)*y yinf=1/(1+exp((v+75)/5.5)) ty=3900/(exp(-7.68-.086*v)+exp(5.04+.0701*v)) y'=(yinf-y)/ty par gh=0,eh=-43 # im Muscarinic slow voltage gated potassium current im=gm*(v-ek)*mm mminf=1/(1+exp(-(v+35)/10)) taumm=taumm_max/(3.3*(exp((v+35)/20)+exp(-(v+35)/20))) mm'=(mminf-mm)/taumm par gm=0,taumm_max=1000 aux i_m=im # Iahp Calcium dependent potassium current Iahp=gahp*(v-ek)*mahp^2 par gahp=0,bet_ahp=.001,al_ahp=1.2e9 mahp'=al_ahp*ca*ca*(1-mahp)-bet_ahp*mahp aux i_ahp=iahp aux cfe=cfestuff # set up for 1/2 sec simulation in .5 msec increments @ total=500,dt=.5,meth=qualrk,atoler=1e-4,toler=1e-5,bound=1000 @ xhi=500,ylo=-100,yhi=50 init v=-63,hna=.39,nk=.02,mna=.008 done
It is pretty big and this is only a single compartment model! To load this up click here now.
The initial file is set up for a passive membrane. Change ip to 0.25 nA. Run the simulation. You will see the potential rise. Calculate the equilibrium potential with this much current. Calculate the time-constant of the membrane using the values for the leak conductances and the capacitance.
Now set gNa=12 and gK=2. Rerun the simulation. How many spikes? What is the firing frequency of the cell? Block the potassium current by setting gK=0. What happens? The cell is ``bistable'' there are two stable states a high potential and a low potential. What accounts for the initial drop in the potential shortly after the stimulus is turned on?
There are many other experiments you can do with this complicated model.
As a final exercise, I
want you to look at a phase-plane analysis of a simplifed model for
the T-current. In this model, there is only the T-current and a leak
current. The activation of the calcium current is made instantaneous
and thus the model is just a 2 dimensional system. I have also used
the linear conductance model. Here are the equations:
# T-current model
init v=-94,ht=.95
par I=0,c=.29
par ip=0,t_on=50,t_off=150
v'=(I -ileak-it+istep(t))/c
istep(t)=ip*heav(t-t_on)*heav(t_off-t)
# the current is a step function with amplitude ip
# passive leaks
par ena=45,ek=-105,eca=145
par gkleak=.007,gnaleak=.0005
Ileak=gkleak*(v-ek)+gnaleak*(v-ena)
#
aux i_leak=ileak
#
# IT and calcium dynamics -- transient low threshold
# permeabilites in 10-6 cm^3/sec
#
par gt=2
mt=1/(1+exp(-(v+52)/7.4))
IT=gt*ht*mt^2*(v-eca)
htinf=1/(1+exp((v+80)/5))
tauht=22.7+.27/(exp((v+48)/4)+exp(-(v+407)/50))
ht'=(htinf-ht)/tauht
@ dt=.25,total=500,xp=v,yp=ht,xlo=-100,xhi=40,ylo=-.1,yhi=1
@ nmesh=100,bounds=1000
done
If you fire this up, you will be in the (V,ht)
phase-plane. Answer the following questions