contents next up previous
Next: Appendix A: Morris-Lecar Up: No Title Previous: Summary

References

1
Baer, S.M., Rinzel, J., and Carrillo. H., 1995, Analysis of an autonomous phase model for neuronal parabolic bursting, J. Math. Biology, 33, 309-333.

2
Chay, T.R. and Keizer, J.E., 1983, Minimal model for membrane oscillations in the pancreatic -cell, Biophys. J., 42, 181-190.

3
Cole, K.S., Guttman, R., and Bezanilla, F., 1970, Nerve excitation without threshold, Proc. Nat. Acad. Sci., 65, 884-891.

4
Connor, J.A., Walter, D. and McKown,R., 1977, Neural repetitive firing: modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons Biophys.J., 18, 81-102.

5
Doedel, E.J.: 1981, AUTO: A program for the automatic bifurcation and analysis of autonomous systems, Cong. Num., 30, 265-284.

6
Edelstein-Keshet, L., 1988, Mathematical Models in Biology, Random House, NY.

7
Destexhe, A., McCormick, D.A., and Sejnowski, T.J., 1993, A model for 8-10 Hz spindling in interconnected thalamic relay and reticular neurons, Biophys. J., 65, 2473-2477.

8
Ermentrout, G.B., 1996, Type I membranes, phase resetting curves, and synchrony, Neural Computation, (in press).

9
Ermentrout, G.B. and Kopell, N., 1991, Multiple pulse interactions and averaging in systems of coupled neural oscillators, J. Math. Biology, 29, 195-217.

10
FitzHugh, R., 1960, Thresholds and plateaus in the Hodgkin-Huxley nerve equations, J. Gen. Physiol., 43, 867-896.

11
FitzHugh, R., 1961, Impulses and physiological states in models of nerve membrane, Biophys. J. 1, 445-466.

12
FitzHugh, R., 1969, Mathematical models of excitation and propagation in nerve, in: Biological Engineering, (ed., H.P.Schwan), McGraw-Hill, NY.

13
Glass, L. and Mackey,M.C., 1988, From Clocks to Chaos: The Rhythms of Life, Princeton University Press.

14
Goldstein, S.S. and Rall, W., 1974, Changes of action potential shape and velocity for changing core conductor geometry, Biophys. J., 14, 731-757.

15
Guttman,R.,Lewis,S. and Rinzel,J., 1980, Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator, J. Physiol.(London), 305, 377-395.

16
Hansel, D., Mato, G., and Meunier, C., 1995, Synchrony in excitatory neural networks, Neural Computation, 7, 307-335.

17
Hayashi, H. and Ishizuka, S., 1992, Chaotic nature of bursting discharges in the Onchidium pacemaker neuron, J. Theoret. Biol., 156, 269-291.

18
Hille, B., 1992, Ionic Channels of Excitable Membranes, 2nd edition, Sinauer, Sunderland, MA.

19
Hodgkin,A.L., 1948, The local electric changes associated with repetitive action in a non-medullated axon, J. Physiol. (London), 107, 165-181.

20
Hodgkin, A.L. and Huxley, A.F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117, 500-544.

21
Kepler, T.B., Abbott, L.F. and Marder, E., 1992, Reduction of conductance-based neuron models, Biol. Cybern. 66, 381-387.

22
Kopell, N., 1988, Toward a theory of modelling central pattern generators, in Neural Control of Rhythmic Movements in Vertebrates (eds., A.H.Cohen, S.Rossignol, and S.Grillner), Wiley, New York.

23
Morris, C. and Lecar,H., 1981, Voltage oscillations in the barnacle giant muscle fiber, Biophysical J. 35, 193-213.

24
Nagumo, J.S., Arimoto, S., and Yoshizawa, S., 1962, An active pulse transmission like simulating nerve axon, Proc. IRE, 50, 2061-2070.

25
Perkel, D.H., Schulman, J.H., Bullock, T.H., Moore, G.P. and Segundo, J.P., 1964, Pacemaker neurons: effects of regularly spaced synaptic input, Science, 145, 61-63.

26
Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T.,1986, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press.

27
Rand,R.H. and Armbruster, D., 1987, Perturbation Methods, Bifurcation Theory, and Computer Algebra. Applied Mathematical Sciences, 65, Springer, New York.

28
Rinzel, J., 1978, On repetitive activity in nerve, Federation Proc., 37,2793-2802.

29
Rinzel, J., 1985, Excitation dynamics: insights from simplified membrane models, Federation Proc., 44, 2944-2946.

30
Rinzel, J. and Lee,Y.S., 1987, Dissection of a model for neuronal parabolic bursting, J. Math. Biol., 25,653-675.

31
Rinzel, J. and Ermentrout, G.B., 1989, Analysis of neural excitability and oscillations, in: Methods in Neuronal Modeling: From Synapses to Networks, (eds., C. Koch and I. Segev), MIT Press, Cambridge MA.

32
Rush, M.E. and Rinzel, J., 1995, The potassium A-current, low firing rates, and rebound excitation in Hodgkin-Huxley models, Bull. Math. Biol., 57, 899-929.

33
Somers, D. and Kopell, N., 1993, Rapid synchronization through fast threshold modulation, Biol. Cybern., 68, 393-407.

34
Strogatz, S. H., 1994, Nonlinear Dynamics and Chaos, Addison-Wesley, New York.

35
Traub, R.D. and Miles, R., 1991, Neuronal Circuits of the Hippocampus, Cambridge University Press, Cambridge,UK.

36
Wang, X.-J. and Rinzel, J., 1995, Oscillatory and bursting properties of neurons, in: Handbook of Brain Theory and Neural Networks, (ed., M.A.Arbib), MIT Press, Cambridge, MA. 686-691.

37
Wilson, H.R. and Cowan,J.D., 1972, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J., 12, 1-24.

38
Winfree,A.T., 1980, The Geometry of Biological Time, Biomathematics 8, Springer-Verlag, New York.



Bard Ermentrout
Mon Jul 29 17:47:46 EDT 1996