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Abstract

Applications of mathematics and computational techniques to our understanding of neuronal systems are provided. Reduction

of membrane models to simplified canonical models demonstrates how neuronal spike-time statistics follow from simple properties

of neurons. Averaging over space allows one to derive a simple model for the whisker barrel circuit and use this to explain and

suggest several experiments. Spatio-temporal pattern formation methods are applied to explain the patterns seen in the early stages

of drug-induced visual hallucinations.
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1. Introduction

For many years, mathematics and computational

methods have played an important role in our under-

standing of the nervous system. The goal of this chapter

is to present some examples of how mathematical

techniques can be applied at a variety of levels to in-

crease our understanding of neural systems. We begin

with a description of the biophysical principles under-
lying the generation of action potential in single neu-

rons. The crucial modeling idea is to represent the

electrical properties of biological membranes using an

equivalent circuit consisting of capacitors and resistors

in parallel. We then use phaseplane methods to study a

simplified single neuron model and show how the

dynamics on the plane can be further reduced to a scalar

dynamical system on a circle. Simulations of the reduced
model are used to explain the spiking statistics of single

neurons driven by noisy stimuli. We then turn our

attention to simple neuronal circuits involving networks

of excitatory and inhibitory neurons. A mean field

approximation reduces such networks to a planar sys-

tem, and phaseplane analysis enables us to explain

experimental results from the somatosensory (touch)

system of the rat. Finally, we examine large spatially
organized networks. We apply bifurcation theory to
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these networks and use the results to explain the pat-
terns seen during visual hallucinations.
2. Equivalent circuit models

The equivalent circuit model has become standard for

representing the dynamics of electrical activity observed

in single neurons. It is based on the idea that neuronal
activity can be completely described by the flow of dif-

ferent currents associated with the neuron’s membrane.

Currents are divided into those that can be represented

by linear circuit elements (passive currents) and those

that are voltage and/or time dependent and require more

complex dynamics (active currents). Both sets can be

understood in terms of the experimental observations

shown in Fig. 1a (see [13] for review).
2.1. Passive currents

The first observation is that neurons maintain a
constant voltage differential across their membrane

called the resting potential (Vm � �65 mV). This po-

tential arises from the fact that (1) neuronal membranes

are semi-permeable, allowing only certain ions to pass

from one side to the other (mostly sodium (Naþ),

Potassium (Kþ), and calcium (Caþþ)), (2) neurons ac-

tively maintain a concentration gradient across the

membrane of those same ions, and (3) the ions involved
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Fig. 1. Equivalent circuit model of neuronal activity. (a) Changes in neuronal membrane potential (V ) in response to different levels of injected

current (I). (b) I–V relationship of neuronal responses. (c) Circuit diagram representing capacitive and both passive and active resistive currents. (d)

Hodgkin Huxley current-balance equations and gating kinetics.
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carry an electrical charge. Potassium (Kþ), for instance,

has a higher concentration inside the cell and carries a

positive charge. Diffusive forces drive Kþ out of the cell.

The subsequent loss of positive ions leads to a net neg-

ative charge inside the membrane. The resulting elec-
trical force attracts positive ions, including those

attached to Kþ, back into the cell. The resting potential,

also called the equilibrium potential, is the voltage level

at which the diffusive and electrical forces arising from

all of the permeable ions are in balance. The equivalent

circuit element used to represent the resting potential is

an electromotive force (EMF) or battery.

The second observation is that direct injection of
current into a neuron induces an incremental change in

voltage. Within a range of current intensities, the in-

duced change in voltage in linear (Fig. 1b). According to

Ohm’s law (V ¼ IR), this suggests that the membrane is

functioning in part as a linear resistor. (Non-linearities

in the relationship are discussed below.) Experimentally,

the conductance of the membrane is measured from the

slope of the line obtained by plotting the change in
voltage induced by different intensities of injected cur-

rent. Even though many different ions contribute to the

change in voltage, a single leak conductance, gL, is often

used to account for all of the passive ionic currents.

The third observation is that voltage changes due to

current injection follow an exponential time course. This

suggests that neuronal membranes operate as an RC-

circuit, i.e. a linear resistor in parallel with a capacitor.
Neuronal membranes are composed of a double layer of

lipid molecules peppered with proteins. Proteins have

low specific resistivities (�1 X cm) and comprise the

protein channels through which charged ions flow across

the membrane. Lipids, on the other hand, have high

specific resistivities (�109 X cm). They provide an effec-

tive insulation between the highly electrolytic internal

and external cellular solutions, exactly the arrangement
required for a parallel plate capacitor. A current injected

into the membrane is divided between a capacitive cur-
rent that charges the lipid bilayer, and an ionic current

that flows through the protein channels. For an RC-

circuit, the time constant of voltage change is s ¼ RC.

Experimentally, therefore, the capacitance of a neuron is

obtained by measuring the observed time constant of the
membrane potential’s exponential rate of change and

dividing it by the resistance measured as described

above.

2.2. Active currents

Most observed currents exhibit a constant conduc-

tance only within a range of voltages. In fact, some non-
linearity in the current-to-voltage relationship is

expected even for completely passive currents. For in-

stance, when the voltage is such that both diffusive and

electrical forces are driving ions in the same direction,

the observed conductance can be larger than a simple

linear relationship would predict. In many cases, how-

ever, the non-linearity, or rectification, in a channel’s

conductance cannot be explained by passive properties
alone. Moreover, as seen in Fig. 1a, conductance is often

observed to not only depend on voltage but also to

change over time.

In order to explain the anomalous rectification ob-

served in many neuronal currents, Hodgkin and Huxley

[11] proposed the gating model of channel conductance.

The idea is that some of the protein channels that allow

ions to pass through the membrane also have charged
gating particles that open or close the channel in a

voltage and time dependent manner, thus changing the

conductance. For instance, the conductance of active Kþ

currents are represented by a maximal conductance gK

times n4, where n is the probability that a gating particle

is open, and the exponent signifies the number of gating

particles on the channel.

The dynamics of the gating particles are modeled
using first order kinetics as shown in Fig. 1d. Here aðV Þ
is the voltage-dependent rate at which open channels
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close and bðV Þ is the rate at which closed channels open.
In the case of active Naþ currents, experiments suggest

that two types of independent gating particles are in-

volved, three activation gates, m, and one inactivation

gate, h. The voltage and time dependence of each gate

can be determined experimentally by examining con-

ductance changes associated with each individual cur-

rent. The equivalent circuit element used to represent

active neuronal conductance is a variable resistor.

2.3. Current-balance equations

Taken together, the passive and active currents de-

scribed above comprise the equivalent circuit or parallel

conductance model of neural activity shown in Fig. 1c.

The equation describing the dynamics of the circuit is a

simple instantiation of Kirchoff’s first law: the sum of all
currents flowing toward a junction is zero. In particular,

an applied current divides into a capacitive current that

charges the membrane and resistive currents that pass

through active and passive channels. Customarily, the

equation is written as in Fig. 1d, with the capacitive

current (CdV =dt) set equal to the sum of the various

ionic currents.

A major success of the Hodgkin and Huxley model
was its ability to explain much more than the voltage

and time sensitivity of the various neuronal conduc-

tances. Once each of the currents had been properly

characterized, it was found that the same non-linear

gating mechanisms were sufficient to explain the gener-

ation of action potentials, i.e. explosive all or none

voltage spikes that initiate synaptic signaling between

neurons. Using the same set of current-balance equa-
tions, Hodgkin and Huxley demonstrated how action

potentials result from a stereotyped sequence of con-

ductance changes among the various ionic currents.

Besides Naþ and Kþ, a number of other voltage and

time-dependent conductances have been described.

Caþþ channels are thought to underlie the generation of

action potential bursts that characterize activity in some

neurons of the thalamus and cerebral cortex [21]. Spike
adaptation, a decrease in the rate of action potential

generation over time, depends on Kþ channels that are

sensitive not only to voltage, but also to the concen-

tration of Caþþ inside the neuron [16]. Naþ channels

that function on a slower time scale and lack an inac-

tivation gate may be responsible for enhancing signals

that arrive from other neurons [31]. Each of these cur-

rents can be incorporated into the current-balance
framework with the addition of appropriate conduc-

tances and kinetics to the set of equations.

2.4. Dynamic clamp

A recent and exciting application of the current-bal-

ance equations involve using them to modify the func-
tion of real neurons. This is done by using computer
models in real time, and the method is known as the

‘‘dynamic clamp’’ or ‘‘hybrid model’’ [29]. The idea is to

couple real neurons to simulated ionic currents, or even

entire simulated membranes. An electrode is used to

measure the membrane voltage of a real neuron. The

measured voltage is used to calculate simulated ionic

currents. The simulated currents are then injected back

into the neuron through the same electrode. The most
common applications of the technique are to ‘‘insert’’

new electrical channels into a neuron’s membrane or to

‘‘subtract’’ an existing channel and study the effect on

the neuron’s behavior. The method was first applied to

study neurons in the lobster digestive system [29], while

more recent studies have examined single neuron

behavior in the mammalian brain, [12]. Another devel-

oping application is to use the hybrid model method to
construct circuits of simulated neurons modeled on

programmable analogue microchips [17]. Recent col-

laborations have explored this technique to study how

neuronal circuits control brain rhythms during sleep

[18].
3. Phaseplanes and spiking

The Hodgkin-Huxley current-balance model de-

scribed above is a four-dimensional dynamical system.

This makes its rigorous mathematical analysis difficult.

Morris and Lecar (see [26]) devised a very simple model

neuron based on only three conductances, a fast calcium

channel, a slow potassium channel, and a passive leak

channel. Using the equivalent circuit formulation de-
scribed above, the equations are:

C
dV
dt

¼ I þ gLðVL � V Þ þ gCam1ðV ÞðVCa � V Þ

þ gKwðVK � V Þ;

dw
dt

¼ w1ðV Þ � w
swðV Þ

:

The gating kinetics of the calcium channel (m1ðV Þ)
are fast enough to be considered as acting instanta-

neously. Thus, the system requires only two dynamic

variables and can be rigorously and completely analyzed
using phaseplane methods.

Phaseplane analysis is one of the most useful methods

that comes to theoretical neuroscience from the quali-

tative theory of differential equations. The idea is to

understand the dynamics of two variables by plotting

one as a function of the other. The phaseplane gets

its name from the idea that by plotting two dynami-

cal variables, particularly ones that undergo some sort
of periodic, or stereotyped behavior, we can study

the relative ‘‘phase’’ of one variable against the other.

For example, consider a neuron generating an action
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potential. The membrane voltage makes an excursion
from some resting level, to the peak voltage level, back

through an undershoot or after-hyperpolarization and

then returns to rest. The recovery variable, w, follows a

corresponding trajectory in response to the membrane

voltage. Plotting the voltage against the recovery vari-

able (see Fig. 2a and b) results in a closed loop, or tra-

jectory, on the phaseplane.

The phaseplane is characterized by several landmarks
that help to define and visualize the dynamics. For in-

stance, the nullclines of the system are defined as the

curves along which one or the other variable remains

constant. The curve along which dV =dt ¼ 0 defines the

V -nullcline, while dw=dt ¼ 0 defines the w-nullcline. At

the points where the two nullclines intersect neither

variable changes; the intersection points define the

steady states of the system. One such point is the neu-
ron’s resting potential, marked R. This is an attracting

fixed point, small transient disturbances of the mem-

brane voltage, by means of an externally applied current

or activation of voltage-dependent conductances for

instance, will in time relax and the potential will return

to rest. Another steady state point is the neuron’s

threshold potential, marked T . This is a repelling fixed

point, so that trajectories that approach threshold either
return to rest or continue past resulting in the generation

of an action potential.
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Fig. 2. (a) An action potential, or spike, in the membrane voltage plotted in
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points but rather an attracting limit cycle corresponding to a state of repetitiv

mark the critical points achieved by the model––rest and threshold. The mod
Using the phaseplane we can visualize the effect
of injecting currents into a neuron. Mathematically,

injecting a steady positive current corresponds with

adding a positive constant to the right hand side of the

voltage equation. On the phaseplane, the voltage null-

cline is raised. This alters the location of the fixed points.

When the voltage nullcline rises sufficiently, the rest and

threshold steady states converge, then vanish. This re-

veals a periodic or limit cycle solution on the phaseplane
corresponding to the repetitive generation of action

potentials or ‘‘firing’’ by the neuron. Like steady states,

limit cycle can be either attractive or repelling. In

physiological terms, the two cases correspond to sus-

tained firing that is robust to small deflections in the

membrane parameters (e.g. noise in Vm or gL) or repet-

itive activity that is exquisitely sensitive to perturba-

tions. The robustness or sensitivity can be in either the
amplitude, or frequency of the firing events. Note also

that neurons can fire at extremely low frequencies, as

well as extremely high frequencies, depending on the

amplitude of the input.

An important and rather surprising detail is that the

trajectory of the limit cycle remains constant in shape no

matter how fast the cell fires (or traverses the loop).

Experimentally, this corresponds to the invariant shape
of generated action potentials. Mathematically it allows

us to consider the loop as an invariant structure that
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does not alter with the systems dynamics. Thus if we can
find a way to track only the quantities that change we

should be able to simplify the model. Formally this is

done by the method of normal forms that comes to us

from bifurcation theory. Here we will talk about the

heuristic idea (see [8] for details).

As the steady states converge and the limit cycle

emerges, the system approaches a point of bifurcation in

the dynamic solutions. When we examine the eigen-
values of the linearized model near this bifurcation, we

see that there is one real eigenvalue that goes through

zero. This implies that the bifurcation is of a saddle-node

on an invariant circle, which gives us the mathematical

basis for treating the trajectory loop as an invariant. To

find the mathematical ‘‘center’’ of this loop, we describe

the changing voltage around the loop using an angle

variable, h. Let us set the zero angle, h ¼ 0 at the resting
voltage level and let h increase in a counterclockwise

direction around the loop. The action potential is then a

revolution of the w=v relative angle or ‘‘phase’’ from 0

through p and back to 2p. Now the trick is to find a

mathematical transformation of variables from the ori-

ginal equivalent circuit model such that one of the new

variables lies along the invariant limit cycle and the

remaining variables are orthogonal to it. For a dynam-
ical system having a saddle-node bifurcation such a

transformation can always be found, and yields the

equation:

dx
dt

¼ qx2 þ pI ; ð1Þ

where the variable x describes the dynamics, p and I are

parameters that includes such things as external inputs,

and q > 0 is a parameter that depends on the details of

the original full model. This equation is a bit cumber-

some since it goes to infinity in finite time (in terms of

the neural model the action potential happens at infin-

ity). We deal with the singularity by wrapping x onto a

circle using a tangent change of variables: x ¼ tan h
2
, thus

arriving mathematically at the phase variable described

above. The final equation for the theta-model becomes:

dh
dt

¼ qð1 � cos hÞ þ ð1 þ cos hÞpI : ð2Þ

The important thing to notice is that this model is very
simple, and yet reproduces the behavior of the more

complex equivalent circuit model. In addition, the

theta-neuron is a canonical model for a whole class of

conductance based models exhibiting saddle-node

bifurcation dynamics. More specifically, any conduc-

tance based model of a neuron that exhibits a saddle-

node bifurcation can be described by the theta-neuron.

Thus if we can understand the behavior of the theta-
neuron, we will also understand more about the func-

tion of many different types of neurons. For example

here are some of the properties of the theta-neuron that
reflect the general behavior of pyramidal neurons found
in the neocortex:

• Action potentials are all-or-none events. That is,

when stimulated subthreshold activity returns to rest.

But when the firing threshold is passed, a complete

spike occurs.

• The model, and the neurons, generate continuous

trains of action potentials in response to constant
current injections.

• Repetitive firing appears with arbitrarily low frequen-

cies.

• The input-current/output-frequency (IF) curve can be

readily fit with a square root (instantaneous IF) or

linear (steady state IF) function, both of which have

been observed in real neurons.

All of the above are rather basic properties that show

us that the reduced model does contain dynamical

‘‘information’’ about real neurons. Next we use this

reduced model to explore the dynamics underlying more

complicated behaviors.
4. Statistics of cortical neural activity in vivo

A long standing debate in neuroscience concerns

whether neurons code information about the world in

terms of the average frequency of spike generation, or

through the precise timing of individual spikes. The

second hypothesis has been criticized as unlikely since

the firing of neurons in the living brain is very irregular

(e.g. see [28]). On the other hand, several experiments
have shown that neurons are capable of producing reli-

ably timed action potentials. In one particular experi-

ment, it was demonstrated that, with constant levels of

current injection, neurons generate spikes at a set rate

but with irregular timing. With repeated noise-like cur-

rent injections, however, the particular firing times were

much more precise with regard to the input [20]. Mod-

eling results demonstrate that the theta-neuron displays
similar responses to constant vs. noisy input (Fig. 3) [8].

Here, we examine how the model can be used to capture

and explain these rather non-intuitive findings.

The theta-neuron with noisy Vm but constant current

input is essentially an intrinsic oscillator perturbed by

random voltage noise or, in the language of mathe-

matics, a non-linear renewal process. Thus, the start

time of each successive spiking cycle depends on the time
of the previous spike. Since the spike times are perturbed

by the noise in the ‘‘voltage’’, uncertainty builds with

each successive spike. In fact, it can be shown analyti-

cally [8] and numerically (Fig. 3), that this uncertainty,

measured as the trial-to-trail variance of spike times,

builds as the square root of the spike number multiplied

by the variance of the first spike time [6].



Fig. 3. (a) Response of the theta-neuron model (with noisy Vm) when stimulated by a constant current. The upper graph shows spike timings over

repeated trials presenting the same constant stimulus. Early spikes come with the same timing, while later spikes shift randomly. The bottom graph

shows plot of the uncertainty in spike times, calculated as the standard deviation of the spike-times across trials. As we can see, the uncertainty builds

with each successive spike. (b) Response of the same theta-neuron model when repeatedly stimulated by a noisy current. The spikes remain consistent

throughout each trial (upper graph). and the uncertainty remains low from spike to spike (bottom graph).
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On the other hand, when the same theta-neuron is

driven by jagged, repeated noise-like currents, the spike

times depend not on each other but on the dynamics of

the stimulus. If the stimulus is such that it rapidly pushes

the voltage beyond threshold, then an action potential is
generated, and it is generated at the same point of the

input across all trials. Thus the uncertainty is low, and

does not build with each spike.

This analysis implies that for neurons to encode

information with precise spike-timing they should spike

in response to sharp shock-like inputs. At the same time,

slow inputs would be encoded in a neurons average

firing rate. Ongoing analysis of the theta-neuron sug-
gests that these two encoding schemes may not be

mutually exclusive, but that the two modes can multi-

plex in the spike output of a single neuron [7]. Fur-

thermore the canonical model approach has also

clarified some possible biophysical mechanisms for

synchronous oscillations in circuits of neurons coupled

with excitatory synapses and how these related to the

underlying bifurcation structure of membrane excit-
ability [35].
5. Activity models

The previous sections showed how to reduce the

current-balance equations to a simple scalar model to

understand the dynamics of single neurons. In many

experimentally relevant cases, it is desirable to simplify

the dynamics still further by using so-called activity or

firing rate models. In these models the relevant quantity

is not the spike time or potential of an individual neu-
ron, but rather the generalized activity level or firing rate

in single neurons or neuronal populations.

In contrast to the biophysical representation provided

by the current-balance equations, activity models are
based on a more functional description of neuronal

activity. They are most often used to study interactions

between large neuronal populations or, more generally,

in cases where a biophysical model would be too

impractical or too complex. In this section, we present a
functional derivation of the activity model and then de-

scribe an example in which it is used to examine the

processing of sensory input in the rodent whisker system.

5.1. Deriving the equations

The central equation of activity models describe the

relationship between three distinct measures of neuronal
activity: voltage, firing rate, and synaptic drive (de-

scribed below). The generation of an action potential, or

the ‘‘firing’’ of a neuron activates synaptic connections

made onto other neurons. Activated synapses evoke

voltage changes, or post-synaptic potentials (PSPs), on

the receiving neurons. PSPs are often represented as

following a characteristic time course described using an

�alpha’ function, aðtÞ [25]. PSPs can be either positive or
negative depending on whether the synapse is excitatory

(EPSPs) or inhibitory (IPSPs). For a series of action

potentials, alpha functions sum and the voltage, V , in

the post-synaptic neuron is given by

V ðtÞ ¼
X
i

aðt � tiÞ;

where i spans the number of action potentials and ti is

the arrival time for each. In a population of neurons, the

distribution of action potentials over time is often de-

scribed using a continuous function that represents the

average firing rate of the population, F ðtÞ. Moreover,

the average firing rate depends on the average voltage
level so that F ðtÞ ¼ F ðV ðtÞÞ. Splitting the population

into excitatory vs. inhibitory neurons, the equation for

the average excitatory population voltage is given by



Fig. 4. Activity model of rodent barrel cortex. (a) Schematic diagram

of synaptic connections between excitatory (Se) and inhibitory (Si)

barrel populations and from the thalamus (T ). Excitatory synapses are

represented by lines, inhibitory synapses by dots. (b) Activity formu-

lation of barrel activity incorporating thalamic input.
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VeðtÞ ¼ ee

Z t

�1
aeðt � t0ÞFeðVeðt0ÞÞdt0

� ie

Z t

�1
aiðt � t0ÞFiðViðt0ÞÞdt0: ð3Þ

Here, the two populations have distinct alpha and

firing rate functions and ie (for instance) represents the

relative strength of synapses from the inhibitory to

excitatory population. The average voltage of the

inhibitory population is defined similarly.
An alternative formulation of the activity model can

be expressed if we define the synaptic drive of each

population as

Se ¼
Z t

�1
aeðt � t0ÞFeðVeðt0ÞÞdt0;

Si ¼
Z t

�1
aiðt � t0ÞFiðViðt0ÞÞdt0

so that, again taking the excitatory population as an

example,

Se ¼
Z t

�1
aeðt � t0ÞFeðeeSe � ieSiÞdt0: ð4Þ

Moreover, if we assume that the alpha functions are

described by simple exponential decay (e.g. ae ¼ e�t=se ),

then we may differentiate to obtain,

se

dSe

dt
þ Se ¼ FeðeeSe � ieSiÞ:

Eq. (3) is called the voltage formulation while (4) is the

activity formulation [5]. Intuitively, the term synaptic

drive derives from the units of eeSe (for instance),

describing the voltage change induced by excitatory

synapses. In most models, ee has units of volts 
 synapse,

the connection strength times the number of synapses.

Thus Se has units of 1/synapse, a dimensionless quantity
per synapse, i.e. synaptic drive [22]. As described below,

the activity formulation in particular allows for

straightforward incorporation of biological data into

the model system.

5.2. Whiskers and Barrels

Deflecting a single whisker on a rodent’s face acti-
vates a chain of neurons starting from the periphery, to

the brain stem, to the thalamus, and finally to an ana-

tomically defined cluster of neurons in neocortex col-

lectively referred to as a whisker barrel [34]. Each barrel

contains two principal cell populations, excitatory neu-

rons and inhibitory neurons. Both populations receive

excitatory synaptic inputs from the thalamus. In addi-

tion, both populations send reciprocal connections to
neurons of the other type and recurrent connections

to neurons of the same type (Fig. 4a) [30]. Excitatory

barrel neurons also send synaptic connections beyond
the barrel onto neurons in other brain regions [33].

Therefore, using both the activity model and experi-

mental data, the goal is to understand how synaptic

interactions within a barrel operate on population input
signals arriving from the thalamus and transform them

into output signals emanating from the excitatory pop-

ulation.

In the laboratory, experiments measure the number

and timing of action potentials generated by thalamic

and barrel neurons in response to a whisker deflection.

More generally, data from many neurons is pooled into

an average firing rate for each population. The useful-
ness of the activity model derives from the fact that it

represents neuronal activity in a form compatible with

this experimental data. Since data from both thalamic

and barrel neuron populations is measured in terms of

average firing rate, thalamic data can be used directly as

input to the model (THALðtÞ), and excitatory barrel

population data can be used directly to evaluate the

excitatory output of the model (Fe, Fig. 4b).
In practice, the precise shape of the firing rate func-

tions (Fe and Fi) are determined experimentally by

examining the firing rates of thalamic and barrel neu-

rons in response to a well-chosen battery of whisker

deflections [15,22]. Once simulated responses match the

experimental data, the model can then be used both to

predict responses to novel stimuli and to understand the

mechanisms by which those responses are generated.
One prediction of the barrel activity model is that the

size of the excitatory response is sensitive to the distri-

bution of thalamic population input. To understand

why this is so, we examine the phaseplane obtained from

the model system in response to two thalamic popula-

tion inputs [24]. On the phaseplane, activity levels of the

excitatory and inhibitory populations are plotted on the

x- and y-axis, respectively. Over the course of an input
signal, changing activity levels are tracked by the re-

sponse trajectory over successive planes at time points

indicated by the small roman numerals (Fig. 5a and b).

The thin curved (straight) line is the excitatory (inhibi-

tory) nullcline, i.e. points at which dSe=dt ¼ 0

(dSi=dt ¼ 0).



Fig. 5. Phaseplane analysis of simulated barrel response to thalamic input distributions. (a) Two simulated thalamic input distributions differing in

time course but with the same total activity. (b) Phaseplane representation of barrel population responses. Successive planes show ongoing response

at the time points indicated by small roman numerals.
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For the rapidly rising thalamic input, the nullclines

rise quickly as does the networks response (Fig. 5b, i to

ii). For the slowly rising input, the nullclines rise more

slowly. The response trajectory remains close to the

nullcline where changes in activity are relatively smaller
(Fig. 5b, i to iv to v). Thus, despite the fact that both

inputs consist of the same total amount of thalamic

activity (Fig. 5a), the rapidly rising input distribution

generates a much larger response from the network than

the slowly rising input distribution (Fig. 5b iii vs. vi).

This prediction of the model has been verified experi-

mentally by examining the response of real barrel neu-

rons to different distributions of thalamic input [23].
Fig. 6. Form constants (i) funnel, (ii) spiral, (iii) lattice and (iv) cob-

web.
6. From cave paintings to the structure of the cortex

For years, people have been fascinated by Paleolithic

rock paintings such as are found in the famous Lascaux

caves in France and on the sandstone walls in the

American Southwest. These pictures often depict ani-
mals and human-like images. However, there are also

more abstract designs such as spirals, sunbursts and

mandalas which occur across all cultures in this art. One

of the questions that anthropologists have asked is what

are the possible meanings of these abstract symbols. A

number of researchers have suggested that they are

paintings drawn by shamans (‘‘medicine men’’) while in

trance states and that the drawings represent visual
imagery that is a consequence of an altered state of

awareness [9,10,19]. In particular, anthropologists draw

an analogy between the iconic forms of cave art and the

patterns reported in the early stages of hallucination

[14], as well as the patterns perceived during certain vi-

sual stimuli such as eyeball pressure and flickering light

[32]. The latter patterns, called phosphenes, and their

drug-induced analogues were classified by Kluver into
four different types he called ‘‘form constants’’:

• tunnels and funnels,

• spirals,

• lattices such as honeycombs and checkerboards,

• cobwebs.
Representatives of these are shown in Fig. 6. Thus,

anthropologists propose that the abstract geometric

designs found in cave and rock paintings are depictions

of internal imagery imagined by shamans who are in

drug or trance-induced mental states. In fact, as we will
see, many of the more common designs can be predicted

by examining the structure of neural activity patterns in

the visual cortex.

We have seen how to go from detailed biophysics to

reduced models that can be used to study local sensory

circuits. What happens when many such circuits are

coupled together in a spatially structured manner? The

striate visual cortex is notable due to its almost crys-
talline organization of cells that respond to orientation,

color, and position in the visual field. That is, the visual

cortex is organized into columns (not unlike the barrels)

and within each column are neurons that respond to (i)

spatial positions on the retina; (ii) inputs from the left
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and right eyes; (iii) oriented lines; and many other visual
modalities. The connections between cells are not ran-

dom. For example, cells in one column responding to

vertical lines are connected more strongly to cells of the

same orientation in neighboring columns. The conse-

quences of this highly structured connectivity have been

explored in a number of papers. Ermentrout and Cowan

[3] showed that spontaneous symmetry breaking in

spatially organized cortical networks could account for
coarse spatial activity patterns perceived during hallu-

cinations. More recently, Bressloff et al. [1] have incor-

porated coupling between orientation-sensitive cells to

explain other types of more complex hallucinatory pat-

terns. In this final section, we will use these ideas to

understand a possible context for the ancient cave

drawings described above.

Let us first consider a very general neural network
architecture:

si

dui
dt

¼ �ui þ Fi

X
j

Wijuj

 !
ð5Þ

which represents the activities of many coupled neurons.

Wij represents the strength of connections between neu-

rons so that Eq. (5) is a generalization of Eq. (4). This
network can be separated into as many layers as desired;

we include no intrinsic organization. Suppose that we

subtract off the background activity of the network so

that uiðtÞ represents the deviation from background and

Fið0Þ ¼ 0. For simplicity, we set si ¼ 1. We can ask

whether or not this background state is stable. To

determine this, we need to linearize about the rest state,

u ¼ 0. The stability is determined by the eigenvalues of
the matrix:

M ¼ �I þ Q;

where Qij ¼ F 0
i ð0ÞWij. If Q is small enough (that is, there

is only weak coupling between units or F 0
i ð0Þ is small)

then the eigenvalues of M have negative real parts and

any perturbations decay to the background state.

However, suppose some external influence (e.g. flicker-

ing light, hallucinogens, etc) ‘‘excites’’ the network by,

for example, making the slopes of Fi large. Then, it is

possible that some eigenvalues of M can become positive

and this leads to instabilities. The ‘‘shape’’ of the
activities that arise from this instability is, to lowest

order, a combination of all the eigenvectors of Q whose

eigenvalues have simultaneously become positive.

Generically for a random symmetric network, we expect

either a transcritical or pitchfork bifurcation leading to

a single excited mode reflecting the organization of the

random network. If the effect of hallucinogens or other

external stimuli is to produce an overall increase in
excitability of the network, then is it possible that the

background state can become unstable leading to a

spontaneous pattern of activity reflecting the associative
organization of the recurrent network. If there are many
nearly identical eigenvalues, then the resulting patterns

can be complex mixtures of the eigenvectors and the

dynamics governing the patterns.

Consider, for example, an associative weight matrix,

Wij ¼
Xm
k¼1

nk
i n

k
j ;

where n1; n2; . . . ; nm are m vectors to be memorized. If

each of these has unit magnitude and are nearly

orthogonal, then the weight matrix, W has an m-fold

eigenvalue k ¼ 1 with these m vectors as eigenvectors.

Standard bifurcation methods can be applied to derive a

set of amplitude equations for the m eigenvectors. These

have the form:

A0
i ¼ mAi þ p2ðA1; . . . ;AmÞ þ p3ðA1; . . . ;AmÞ; ð6Þ

where m is a parameter which governs the stability of the

background state and p2, p3 are quadratic and cubic

terms respectively. The activity pattern that arises past
the bifurcation point has the form:

uðtÞ � A1ðtÞn1 þ 
 
 
 þ AmðtÞnm:

Thus, for an associatively connected network, the

resulting patterns of activity which occur when the

background state becomes unstable are dynamically

varying mixtures of various ‘‘learned memories.’’

What does this have to do with form constants? The
analysis sketched above assumes that the weight matrix,

Wij, has no structure or that it has structure arising from

learned memories. In associative areas of the brain, this

is likely to be true. However, as we mentioned above,

visual cortex has a great deal of structure. The connec-

tions are far from random and have numerous intrinsic

symmetries. For example, if the weight matrix is that

associated with a two-dimensional spatial grid with
coupling that depends only on distance, then the eigen-

vectors associated with W have doubly periodic structure

(e.g. stripes or hexagons or spots). The resulting patterns

that arise in the two-dimensional network consist of

combinations of striped and spotted patterns.

How would a striped pattern of activity in cortex be

perceived? The answer is the key to understanding

Kluver’s form constants. Consider a pattern of light
imposed on the retina. Since there is a topographic map

from the retina to the visual cortex, this results in a

pattern on the cortex. Conversely, each spatial pattern

of activation on the cortex is associated with a virtual

pattern on the retina. In particular, Schwartz [27]

showed that each point (r; h) in polar retinal coordinates

centered at the fovea is associated with a point (x; y) in

the cortex. The transformation is:

x ¼ a
�

ln 1

�
þ �

w0

r
�
; y ¼ brh

w0 þ �r
;

and the inverse of this map,



Fig. 7. (a) The retinal–cortical transformation and its action the (b)

funnel and (c) spiral form constants (after Bressloff, et al. [1]).
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r ¼ w0

�
e
x�
a

�
� 1
�
; h ¼ �y

b 1 � e�
x�
að Þ ;

allows us to transform a cortical pattern to its retinal

analogue. Near the fovea, the map is the scaled identity.

Far from the fovea, the map is the complex log and its
inverse is the complex exponential. Fig. 7 shows the

action of this map along with its effect on a funnel and

spiral form constant.
Fig. 8. Bifurcating patterns in cortical (left) and retinal (right) coordinates.

connections and lower panels to distance- and orientation-dependent connec
This map coupled with the idea that visual halluci-
nations arise as a consequence of stability loss, first in

striate cortex and later in higher association areas, al-

lows us to explain the form constants of Kluver and

indirectly explain the abstract designs of shamanistic

paintings. Ermentrout and Cowan [3] exploited the

symmetry of connections based on spatial position and

used group theory to show that the spatial patterns

which bifurcate from the background state are nothing
more than stripes and spots. The normal form Eqs. (6)

have a vastly simplified structure. For example, the

following form arises:

A0
1 ¼ mA1 � A1 aA2

1

�
þ bA2

2

�
;

A0
2 ¼ mA2 � A2 aA2

2

�
þ bA2

1

�
;

where a, b are model-dependent constants and A1 is the

amplitude corresponding to horizontal stripes of activity

while A2 is the amplitude corresponding to vertical
stripes. If A1 6¼ 0, A2 ¼ 0 (A1 ¼ 0, A2 6¼ 0) then hori-

zontal (vertical) stripes occur while if A1 ¼ A2 then spots

occur. The stability of these bifurcating patterns is

dependent only on the constants a, b. Fig. 8 shows

examples of horizontal stripes and spots of activity in

cortical coordinates (top left) as well as the perceived

image in retinal coordinates (top right).

If the structure of the connectivity matrix incorpo-
rates the orientation specificity of cortical neurons, then

the associated eigenvectors are more complicated but

are interpreted by the visual system as periodically ar-

rayed line segments. Bressloff et al. [1] have analyzed this

case and derived the normal form equations. The pat-

terns corresponding to the fixed points of the normal

form equations are more complicated than just stripes

and spots. However, they complete the enumeration of
the form constants. Two examples are shown in the

lower panels of Fig. 8 and correspond to lattice and

cobweb form constants.
Upper panels correspond to patterns arising from distance-dependent

tions (after Bressloff, et al. [1]).
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