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Abstract.

The patterns of pigment on the shells of mollusks provide one of the most beautiful and

complex examples of animal decoration. Recent evidence suggests that these patterns may arise from
the stimulation of secretory cells in the mantle by the activity of the animal’s central nervous system.
We present here a mathematical model based on this notion. A rather simple scheme of nervous
activation and inhibition of secretory activity can reproduce a large number of the observed shell

patterns.

INTRODUCTION

THE GEOMETRICAL patterns found on the shells of mol-
lusks comprise some of the most intricate and colorful
patterns found in the animal kingdom. Their variety is
such that it is difficult to imagine that any single mecha-
nism can be found. Adding to their mystery is the dis-
turbing fact that, since many species hide their pattern in
the bottom mud, or beneath an opaque outer layer, it is
doubtful they could serve any adaptive function. Perhaps
these wonderful patterns arise as an epiphenomenon of
the shell secretion process. This may account for the ex-
treme polymorphism exhibited by certain species—a phe-
nomenon characteristic of traits shielded from selection.
Several authors have attempted to reproduce some of
these patterns using models that depend on some assumed
behavior of the pigment cells in the mantle that secrete
the color patterns (WADDINGTON & COWE, 1969; COWE,
1971; WANSHER, 1972; HERMAN & Liu, 1973; HERMAN,
1975; LINDsSAY, 1982a, b; WOLFRAM, 1984; MEINHARDT,
1984). These models have generally been of the “cellular
automata’” variety, and the postulated rules were chosen

so as to give interesting patterns, rather than to correspond
to known physiological processes (WADDINGTON & COWE,
1969; LINDsSAY, 1982a, b; WoOLFRAM, 1984). In the most
recent attempt, MEINHARDT (1984) modeled the growing
edge of the shell as a line of cells subject to activator-
inhibitor kinetics and a refractory period. He was able to
obtain a variety of shell-like patterns, suggesting that an
activator-inhibitor mechanism is likely to be involved in
the actual process.

Recently, CAMPBELL (1982) proposed a novel expla-
nation for the shell patterns. He reasoned that the pigment
cells of the mantle behaved much like secretory cells in
other organisms; that is, they secreted when stimulated by
nervous impulses. Therefore, the shell patterns could be
a recording of the nervous activity in the mantle. Because
the phylogeny of mollusks is well represented in the fossil
record, the implications of this view for the study of the
evolution of a nervous system are obvious.

Building on Campbell’s notion, and the suggestive sim-
ulations of Lindsay, Meinhardt, and Wolfram, we have
constructed a model for the shell patterns based on nerve-
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Figure 1

Three fundamental classes of shell pigment markings on Bankiwvia fasciata: a, longitudinal bands; b, incremental

lines; c, oblique stripes.

stimulated secretion of the mantle epithelial cells. This
model differs from previous models in at least one impor-
tant aspect: it depends on the “nonlocal” property of nerve
nets. That is, because innervations may connect secreting
cells that are not nearest neighbors, the possibility of co-
operative, long-range interactions is present. This greatly
enlarges the pattern-generating repertoire over nearest-
neighbor models, and has the virtue of relating directly to
the anatomy of the mantle. Despite its simplicity, the mod-
el is remarkably successful in mimicking a wide variety
of shell patterns.

The paper is organized as follows. First, we catalog a
number of regularities in the shell pattern that bear on
the neural hypothesis. In particular, those phenomena that
implicate a global organizer and preclude strictly local
interactions. Second, we sketch the model equations and
discuss their behavior. Third, we present patterns gener-
ated by simulations of the model and compare them to
actual shell patterns. Fourth, we discuss some experi-
ments the model suggests and some generalizations of the
model. The Appendices contain the mathematical details
of the model and a discussion of how it relates to other
models of shell patterns.

OBSERVATIONS ON SHELL PATTERNS

The variety of shell patterns is so enormous that it appears
that any attempt to classify them will inevitably leave out
many special cases. However, we do not hope to explain
all of the patterns; rather, we seek to model the global
features shared by all patterns in a restricted class. In
particular, we shall focus mostly on the patterns exhibited
by Nerita turrita and Bankivia fasciata (Figures 1, 2, 3).
These animals exhibit a representative variety of shell
patterns from which we can draw some inferences.
Many pigment patterns of gastropod shells are com-
posites of three basic types of patterns: (a) longitudinal
bands that run perpendicular to the lip of the shell, (b)
incremental patterns arranged parallel to the growing shell
edge, and (c) oblique patterns that run at an angle to the
lines of the shell. Some mollusk taxa have more specialized
types of patterns, such as the circular eye-spots on some
cowry shells, or the intricate tent-like patterns on cone
shells. Species differ in the categories of patterns that they
display. Nerita turrita shells are always dominated by
oblique patterns without longitudinal bands, whereas oth-
er members of the genus have shells with bands as well
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Figure 2

a, an incremental alternation in zebra stripes across the entire whorl of Bankivia fasciata; b, simultaneous termination

of stripes in B. fasciata.

as modified oblique lines. Shells of Bankivia fasciata are
highly polymorphic, with various combinations of these
pattern types, as illustrated in Figure 1.

Longitudinal bands require only simple developmental
controls. They could result from a mosaic mantle in which
regions continuously deposit pigment, along with shell,
separated by mantle zones that do not synthesize pigment.
In general, the number and position of bands appears to
be a genetic characteristic of the species, or of the individ-
ual in a polymorphic species. A second possibility—which
we shall illustrate with the model—is that the band width
and spacing are characteristic of the neural activity in the
mantle. The two mechanisms are not mutually exclusive,
as we shall discuss. Banding indicates that variation can
be a permanent (e.g., programmed) feature of the mantle
edge.

Incremental markings have several sources. Some ap-
pear to result from haphazard physiological stresses or
environmental factors that temporarily affect the activities
of the mantle as a whole. In addition, some species of
snails (other than the ones we shall consider here) show
regular periodic incremental shell patterns, indicating that
they are programmed in a deterministic and cyclic man-
ner. One of the most important incremental features seen
on shells of the two species we have chosen for analysis
are varices: time periods during which shell synthesis was
halted (Figures 2, 3). In general, mollusks do not produce
shell continuously, but go through cyclic periods of shell

building (producing about one-third to one-half whorl of
shell in the case of Bankivia fasciata), followed by ‘‘rest”
periods during which no shell is secreted. Shell patterns
often are reorganized at these major interruptions in shell
synthesis, and many sculptured shells produce flamboyant
ridges or spines along varices.

Oblique patterns are the most intricate, and have the
most implications for our theoretical model. They imply
that the activities involved in pigment secretion are coor-
dinated laterally and proceed dynamically across the man-
tle. For example, the oblique lines shown in most of the
shell illustrations in this paper represent a patch or do-
main of secretory activity that sweeps across the mantle,
eventually migrating to its edge. These mobile domains of
activity in the mantle behave in a variety of ways to pro-
duce the diverse appearance of the patterns.

EVIDENCE IN FAVOR OF LONG-RANGE
COORDINATION OF PATTERNS

The neural network model we propose here allows for
interactions and coordination beyond nearest neighbors.
As we shall demonstrate in the next section, this gener-
alization enormously enlarges the possible types of pat-
terns over previous models, which employ short range, or
“nearest neighbor” interactions. What evidence do we have
that pigment secretion is indeed a neurally controlled pro-
cess? We can offer no direct experimental support, for we



Page 372

The Veliger, Vol. 28, No. 4

Figure 3

Abrupt reorganization of patterns on shells of Nerita turrita (a), and after a break in a shell (b).

have not been able to find any anatomical studies of man-
tle innervation patterns nor of secretory cell physiology.
Therefore, aside from the general observation that secre-
tory cells in most organisms are influenced by neural ac-
tivity, we can offer only the following indirect evidence in
support of the neural activation hypothesis of shell pat-
terns.

Global reorganizations. At a varix, a shell pattern
may become systematically and simultaneously reorga-
nized across an entire shell (¢f. Figures 2a, b), sometimes
into an entirely different sort of pattern (Figure 3a). A
variety of new patterns may arise in this manner, rather
than arising locally and propagating as a wave across the
shell. Such changes in the “state” of the pattern can also
be initiated by a break in the shell (Figure 3b). It is hard
to see how such local perturbations could have such global
effects by means other than nervous activity.

It should be noted that physiological and (or) environ-
mental factors can influence the entire mantle simulta-
neously. Indeed, it has been demonstrated that changes in
diet can alter not only the color of the pattern, but the
pattern itself (D. Lindberg, personal communication). This
fact does not argue for or against the neural hypothesis,
for it is relatively common for dietary factors to affect
nervous activity, as well as other physiological systems.

However, because diet and other environmental factors
affect the pattern formed on a shell, there must be some
physiological mechanism that relates the two. That is,
there must be some mechanism whereby a systemic effect
allows two separated regions of mantle tissue to manifest
coincidental patterning. The two main avenues for trans-
mitting stimuli from the environment to the mantle cells
are soluble chemical factors (especially hormones) and
nervous connections. Both may modulate patterns, but in-
fluences that differentially affect discrete parts of the man-
tle simultaneously seem more plausibly mediated by the
nervous system.

Entrainment of lines. Shells in which oblique lines
become entrained in the middle of a longitudinal band
also suggest coordination of pattern across sizable dis-
tances, measured in cell diameters. A particular example
of this is the shell in Figure 4a, on which a band appears
spaced equidistant from the neighboring bands.

Termination of lines. On the shell in Figure 4b three
oblique lines terminated anomalously at about the same
time. These events occurred in regions of shell separated
by uninterrupted oblique bands. If these changes were due
to a signal that propagated from one locale to another,
that signal would have to have migrated cryptically past
the unaffected domains in the mantle. The simpler inter-
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Figure 4

a, appearance of a band spaced equidistantly between adjacent bands; b, simultaneous termination of several
separated zebra stripes without noticeable concurrent alteration of the stripes in between.

pretation is that the three separate areas were acted upon
by a signal that could be conveyed to multiple local regions
simultaneously.

Blotching. A polymorphism (not otherwise described
here) among Bankivia fasciata shells is blotching (Figure
5). On blotched shells areas of pigmentation abruptly dis-
appear or appear incrementally across large blocks of shell.
Alternatively, various segments of the mantle can be af-
fected simultaneously by blotching. Also, for some blotched
shells the zone of pigment deposition did gradually spread
along the mantle, indicating that blotching can be con-
trolled in a variety of ways.

Global appearance of patterns. On some shells a gen-
eral type of pattern gradually develops across the entire
mantle, but with no indication that the change sweeps
across the mantle; the saw-tooth pattern in Figure 6 il-
lustrates this phenomenon.

Checkerboard patterns. (Figure 7) It is possible to
create a checkerboard pattern from two sets of colliding
waves that propagate by strictly local interactions. How-
ever, it is remarkable that the checkerboard as a whole
can stay in register without drifting in alignment. This
synchronicity implies that a substantial segment of the
mantle cycles back and forth between an active and in-
active state in precise coordination. Adjacent subzones
switch states of activity simultaneously, but in opposite
directions.

THE NEURAL MODEL

In this section we present a qualitative description of the
shell pattern model. The mathematical discussion is given
in the Appendices. The model we shall present here is the
simplest possible neural model, and we do not expect to
reproduce every shell pattern, even those observed on the
two species we have selected for study. However, the mod-
el is capable of producing sufficiently diverse patterns that
we consider it a reasonable first approximation; we shall
suggest a number of improvements which will enlarge the
class of patterns, but at the expense of computational sim-
plicity.

BIOLOGICAL ASSUMPTIONS OF
THE MODEL

The basic assumption of the model is that the secretory
activity of the epithelial cells that generate shell patterns
is regulated by nervous activity. Specifically, we assume
that the secretory cells are enervated from the central gan-
glion and secrete or not as they are activated and inhibited
by the neural network that interconnects them with the
ganglion. Although arguments in favor of this hypothesis
were presented above, the issue can only be settled em-
pirically, and experiments are under way to test the neu-
ral hypothesis directly. Figure 8 shows a schematic of the
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Explanation of Figures 5 to 7

Figure 5. Blotched patterns on Bankivia fasciata shells. Figure 7. Checkerboard patterns on Bankivia fasciata.

Figure 6. Sawtooth patterns on Nerita turrita.

mantle and the secreting cells (EMBERTON, 1963; KAPUR daily) bursts of activity. At the beginning of each
& GiBsoN, 1967; NEFF, 1972; KNIPRATH, 1977). session the mantle aligns with the previous pattern
The specific assumptions that underlie the model are: and extends it by a small amount. This alignment

process probably depends on the ability of the mantle

(1.) Cells at the mantle edge secrete in intermittent (e.g., to sense (taste) the pigmented and (or) non-pigment-
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Figure 8

Diagram of the anatomy of the mantle region.

ed regions from the previous period of secretion.

Equivalently, a section of pigmented shell laid down

during the previous period will stimulate the mantle

neurons locally to continue the pattern.

The secretion during a given period depends on two

factors:

(a) the neural stimulation, S, from surrounding re-
gions of the mantle.

(b) the buildup of an inhibitory substance, R, within
the secretory cell.

The net neural stimulation of the secretory cells is

the difference between excitatory and inhibitory in-

puts from surrounding tissue.

(2.

(3

We incorporate these assumptions into the model as fol-
lows.

Secretion of Pigment Depends on Current
Neural Activity

Consider a line of secretory cells whose position along
the mantle edge is located by the coordinate x (Figure 9).
Let

P,(x) = the amount of pigment secreted by a cell at x
during the time period t (e.g., one day).

A[x) = the average activity of the mantle neural net at
position x on the mantle edge during one secretion
period, t.

R (x) = the amount of inhibitory substance produced by
cells at location x in day t.

S[P] = the net neural stimulation at location x during

period t. This will depend on sensing the pigment
secreted during the previous period, P,_,(x).

Then the equation governing the neural activity in the
mantle during period t + 1 is related to the pigment se-
cretion during period t by the equation

A(x) = S[P{x)] — R, (1]

Equation [1] says that the average neural activity,
A, i(x), at location x on the mantle during day t + 1
depends on the net neural stimulation at that location,
which is stimulated by sensing the previous day’s pigment
S[PAx)]. In the absence of stimulation, this nervous activ-
ity decays as the inhibitory substance R (x) builds up. The
inhibitory substance, R, builds up as pigment, P, is man-
ufactured, and is degraded at a constant rate (§ < 1):

Ro(x) = YP(x) + R (x) [2]

Finally, we assume that secretion of pigment will only
occur if the mantle activity is above a threshold value, A*:

P(x) =H(A — A%) (3]

where H(A — A*) is a threshold function for pigment
secretion: it is zero for A < A*, and one for 4 > A*.
Equations [1] and [2] describe how the activity, A, and
refractory substance, R, evolve in time; having computed
A, the actual pigment secretion is given by [3]. In the
computer simulations we have simplified the model even
further by incorporating equation [3] into equation [1],
and writing equations for P directly (¢f Appendix A).
This modification makes little difference in the computed
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Figure 9

Diagram of the model: MPC, mantle pigment cells; PCN, pigment cell neurons; MNN, mantle neural net; CG,
central ganglion; r, receptor cells sensing pigment laid down in time period t; P, pigment cells secreting pigment
in time period t + 1; E, excitatory neurons; I, inhibitory neurons.

patterns, but is somewhat simpler to simulate. Figure 9
shows a schematic of the model’s structure.

Neural Activity Depends on the Difference Between
Excitatory and Inhibitory Stimulation

Next, we must model the process of neural stimulation
that regulates the secretion of the pigment. We regard the
net stimulation of a cell at x to be the difference between
excitatory and inhibitory stimulations from nearby cells.
The situation is illustrated in Figure 10a: a cell located
at a position x on the mantle edge received excitatory
inputs and inhibitory inputs. The inhibitory signals are
generally more “long range” than the excitatory inputs;
that is, the mantle edge exhibits the property of short-
range excitation and long-range inhibition characteristic
of neural nets (BERNE & LEvY, 1983; ERMENTROUT &
CowaN, 1979). Moreover, we assume that the response
of a nerve cell is a saturating function of its inputs; that
is, both excitation and inhibition are sigmoidal functions
of their arguments, as shown in Figure 10b. The mathe-
matical form of the neural stimulation term we have em-
ployed is given in the Appendix.

When these assumptions are incorporated into the mod-
el equations there results a set of functional difference
equations that determines the pigment pattern, P(x) (cf.
equations [Al, 2]). In Appendix A we perform a linear
analysis on these equations. This gives some idea of the
repertoire of patterns the model can generate, and pro-
vides a guide to the numerical simulations presented be-
low.

The Model Parameters

Any model contains adjustable parameters, and equa-
tions [1]-{3] contain several. These parameters fall into

two categories: (A) those controlling the shape of the neu-
ral stimulation function, and (B) the production and deg-
radation rates of the inhibitory substance. Each parameter
corresponds to a definite physiological quantity, and so is
measurable, at least in principle.

Neural parameters. The neural stimulation function,
S, in equation [1] contains the curves for excitation, in-
hibition, and firing threshold shown in Figure 10. Each
of these functions must be described by formulae that con-
tain parameters to control their shapes. The functions we
have employed in our simulations are described in Ap-

Wo(x—x)

(b)

1 » 1

Figure 10

Diagram of the neural influence function and threshold
function.
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Simulations of: a, vertical stripes of constant width; b, vertical stripes of variable width; ¢, horizontal stripes.

pendix A; however, experience has shown that the qual-
itative predictions of the model depend only on the general
shapes of the functions, not on their particular algebraic
form.

Cellular parameters. Each secretory cell is character-
ized by its production rate of pigment under neural stim-
ulation and its production and degradation of refractory
substance, R. The production rate of pigment is controlled
entirely by the neural stimulation, S, and so no new pa-
rameters are required to describe it. The refractory sub-

stance, however, requires the two parameters: v to regu-
late the growth rate of R, and 4 to control the decay rate
of R.

Even though each of the model parameters has a direct
physiological interpretation, with enough parameters one
might feel that any variety of patterns is possible. How-
ever, this is not true. For a fixed neural structure, there
are but two adjustable parameters: ¥ and 8. Varying the
neural interactions involves changes in their shape-con-
trolling parameters, and analysis and simulation studies
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show that the resulting patterns can be classified into a
relatively small number of types. Within each distinct type,
variations of the parameters merely alter the relative di-
mensions of the pattern, and not its qualitative appear-
ance. However, parameter variations that exceed certain
thresholds, cause the pattern to shift not just its scale, but
its qualitative type as well. This “bifurcation” behavior
will be discussed further below.

PATTERNS GENERATED BY
THE MODEL

In this section we describe the patterns generated by the
neural model. We shall present numerical simulations of
the neural model which mimic certain patterns observed
on the shells of Bankivia fasciata and Nerita turrita.

Basic Patterns

Equations [1]-[3] constitute the simplest possible model
for a neural net; consequently, we cannot hope to repro-
duce all of the known shell patterns. However, we can
reproduce all of the basic patterns; moreover, it is easy to
see how the model can be elaborated to incorporate a
wider variety of patterns. We shall briefly discuss these
modifications here, and present a more detailed study in
a subsequent paper.

The three fundamental patterns exhibited by Nerita
turrita and Bankivia fasciata are longitudinal bands, incre-
mental lines, and oblique stripes (Figure 1). The param-
eter values that realize these patterns are given in Table
2 in Appendix A. Qualitatively, the conditions that yield
these patterns are as follows.

Vertical stripes (Figures la, 11) occur when refrac-

toriness is very low and the neural influence functions are
strong and thresholds small. There are two mechanisms
for producing stripes: one is similar to the Turing mech-
anism in diffusion-reaction models. That is, short-range
activation creates a laterally spreading zone of activity,
which is eventually quenched by the longer range inhib-
itory activity. This produces stripes whose width is con-
stant, as shown in Figure 11a. The stripe width is a func-
tion of the parameters (being roughly the width of the
activation-inhibition zone), and the locations of the stripes
are determined by the width of the domain (i.e., the size
of the mantle). A different mechanism produces stripes of
unequal widths, as shown in Figure 11b. It is also possible
to produce vertical stripes by simply activating certain
regions of the mantle permanently, so that secretion is
always turned on. Only experiments can distinguish be-
tween these two possibilities.

Horizontal stripes, or incremental lines (Figures 1b,
11c), are produced when the refractory parameters are
small and thresholds are high. This results from a syn-
chronized, or homogeneous oscillation along the entire
mantle (not to be confused with the incremental pattern
associated with the episodic nature of shell deposition).

Diagonal stripes, or zebra bands (Figures 1c, 2, 3, 4),
are characterized by very low thresholds and gradual cut-
offs. These arise as waves of activity propagate along the
mantle. If the neural structure is constant, the presence of
oblique stripes or vertical bands depends on the values of
the two parameters controlling the refractoriness, ¥ and
o. Figure 12 shows the parameter domain that character-
izes each pattern type.

The direction of the stripes produced by the model de-
pends on the parameter values. However, downward ori-
ented stripes (i.e., away from the apex of the shell) are
more common in Bankivia fasciata and Nerita turrita and
exhibit far fewer irregularities. Moreover, upward-di-
rected stripes appear to be more unstable, reverting to
downward stripes after a short progression. This points
to a consistent inhomogeneity in the mantle. Indeed, su-
perimposing a parameter gradient (e.g., in 6 and [or] ¥)
on the model equations strongly biases the direction of
striping in one direction. Interestingly, the direction of
stable striping is in the same direction as the spiral of the
shell. Because shell patterns are associated with shell con-
struction, this could indicate a physiological (anatomical)
correlation between the direction of shell growth and the
pattern direction, such as an asymmetry in the muscle
mass of the mantle. The direction of the zebra stripes can
switch at certain times, especially—but not exclusively—
at a varix.

Divaricate patterns. Zebra patterns may reverse di-
rections giving a herring-bone pattern. We have used the
observation that synchronous switching of the direction of
stripes indicates a global coordinating mechanism for the
pattern. In terms of the model, switching of the direction
of obliques involves a jump in a parameter value. The
model does not address what the underlying signal for
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Figure 13

a, divaricate patterns on Bankivia fasciata showing open and closed V’s; b, simulation of V’s.

such an event is, but does provide a mechanism for gen-
erating a coordinated reversal of the pattern orientation
(Figure 13). Lines that converge as the shell grows will
be called “closed V’s”; those that diverge as the shell grows
are “open V’s.” Pattern reversals that produce a “closed
V> frequently extend beyond the intersection a small
amount, forming a “snout” on the V. This is also a feature
of the simulations, because a collision of two obliques

admits a small overlap of the activation region extending

beyond the collision apex. Note also that the upward stripes
are shorter than the downward stripes, suggesting a man-
tle inhomogeneity. This has been suggested previously by
WRIGLEY (1948).

Wavy stripes (Figure 14). These are characterized by
very sharp cutoffs of the excitatory and inhibitory thresh-
olds, small thresholds, and large turnover of refractory
substance (y, 8 = 1). Note the “shocklike” discontinuities
in the stripes that the simulation reproduces.

Streams (Figure 15) are irregular striped patterns that
occur when the sharpness of the cutoff is quite large and
refractoriness is persistent (6 = 0.8).

Interaction Patterns

In addition to the basic patterns, additional designs
emerge from the interaction of the basic patterns. Typi-
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Figure 14

a, divaricate patterns (wavy bands) on Nerita turrita; b, simu-
lation.

cally, when two diagonals collide one of several things
happen.

Checks (Figures 7, 16) occur when the range of neural
interaction is large. As the sharpness of the excitatory and
inhibitory thresholds increases, the checks become more
stable and persistent.

On some shells, colliding diagonals pass through one
another. This cannot happen in our two-variable model.
In order to obtain this effect one must add a third variable;
this implies that the secretory activity of the mantle is
associated with more than one pigment, or that the mantle
can sustain several coexisting and independent patterns of
neural activity. We will deal with this phenomenon in a
subsequen: publication.

Tents. These patterns are not observed on Nerita turrita
or Bankivia fasciata, but are common on the cone shells.
We include them here because the model also can produce
a wide variety of tent patterns, examples of which are
illustrated in Figure 17. These patterns most easily arise
when the concentration of refractory substance, R, is very
low (8, ¥ < 1), the nonlinearities are extremely sharp,
and the range of neural interaction small. In this limit the
model resembles the “nearest neighbor” cellular automata
models of WOLFRAM (1984) and others (¢f. Appendix C).
Indeed, the tent patterns appear to arise from more lo-
calized interactions (“‘nearest neighbors” in the cellular
automata models) than the other patterns described herein.
In this regard, the models of Wolfram are able to mimic
a remarkable variety of these kinds of “local” patterns,
and the model presented here can do little better in pro-
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ducing tents. However, where tent patterns are overlain
with other patterns, which is frequently the case, then the
local nature of the automata models is insufficient (cf.
WRIGLEY, 1948).

One point worth mentioning about the tent patterns is
the apparent role that stochastic processes play in their
evolution. In the neural model we have not included such
stochastic features—although it would be trivial to do so—
because we were primarily interested in the patterns that

w
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Figure 15

a, wandering stripes on Bankivia fasciata; b, simulation.

could be produced in a deterministic fashion. In a subse-
quent study we shall demonstrate the role of stochastic
influences on the structure of the patterns.

DISCUSSION

We have constructed a model for shell patterns based on
the hypothesis that the secretion of pigment is stimulated
by neural activity. Our model postulates the simplest pos-
sible neural interactions: local activation and lateral in-
hibition, such as is found in the retina. Despite its sim-
plicity the model is able to reproduce a variety of observed
shell patterns, such as bands, diagonal stripes, and various
divaricate interference patterns that arise from the inter-
action of propagating bands.

The type of pattern generated by the model depends on
the nature of the neural interaction, its range, persistence,
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and threshold for activation. Very short-range interactions
and strong nonlinearities produce tentlike patterns char-
acteristic of the cone shells, and which resemble the pat-
terns generated by the automata models of Lindsay and
of Wolfram and his coworkers. Longer range interactions
produce interference patterns, such as checks and wan-
dering streams seen on Bankivia fasciata and other shells.
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Figure 16

Checkerboard patterns.

We have mapped out many, but not all, of the possible
patterns that arise from the neural hypothesis. The model
can be elaborated in several directions. For example, what
is the effect of postulating a more complex neural struc-
ture (such as long-range activation)? Many shells secrete
several kinds of pigments; including more than one pig-
ment into the neural model would increase enormously
the possible patterns it could generate, including the char-
acteristic of stripes passing through one another—a com-
mon phenomenon that the simple neural model presented
here cannot reproduce. It is clear from many studies (e.g.,
WRIGLEY, 1948) that the mantle is not a homogeneous
tissue as we have assumed here. By adding to the model
spatial gradients and periodic variations in the parameters
(e.g., refractoriness or density of innervation) a far greater
variety of patterns can be produced than from the homo-
geneous mantle we have assumed here. We shall present
simulations of more complex mantle structures elsewhere.
In addition to spatial variations, a variety of transition
patterns can be produced if parameter values evolve slow-
ly as the simulation proceeds. These are distinct from the
discontinuities and V-patterns that may involve a sudden,
global perturbation of a system parameter. In particular,
shell size is an important determinant of pattern. Small,
or young animals will typically exhibit less complex de-
signs, because fewer stripes will “fit” into a smaller do-
main. Moreover, as shell size (i.e., domain size in the
model) increases with growth, stripes widen until a
threshold is reached, whereupon another stripe interca-

lates, a phenomenon commonly observed, especially in
Nerita turrita. Such sudden shifts in behavior triggered by
smoothly varying a parameter are typical of models with
strong nonlinear terms (MAyYy & OSTER, 1976;
GUCKENHEIMER et al., 1976).

The cowries have a mantle that imprints a pattern over
a large expanse of shell, rather than just at the growing
edge. To model this, one must employ a two-dimensional
version of the neural model. Two-dimensional automata
models with very local interactions can produce patterns
that bear a striking resemblance to those found on the
map cowrie (N. Packard & S. Wolfram, personal com-
munication), and preliminary analysis of the neural model
indicates that the eye-spot pattern found on many cowries
can be easily obtained.

The neural model also touches on the problem of shell
construction, for as WRIGLEY (1948) and others have
pointed out, there is a correlation between the color pat-
terns and the geometrical features of the shell (e.g., pig-
ments may concentrate in the grooves between ridges, and
spines tend to be colorless). This is hardly surprising,
because the same mantle that deposits the color is busy
building the shell. However, this correlation between pat-
tern and form suggests that the neural model might be
extended to investigate the diversity of shell shapes and
their mode of construction.

If the neural hypothesis is correct, the shell is a hard-
copy record of the neural activity in the mantle. The fossil
record for these creatures is as complete as for any known
lineage. What can such an electroencephalogram tell us
about the evolution and ecology of mollusks? We shall not
speculate here, but the model suggests an explanation for
the diversity of patterns found on the same species in
different environments, and the similarity of different
species in the same environment. Moreover, the enormous
diversity of pattern within certain species may reflect the
fact that the patterns in those species are not visible during
the animal’s life. Being invisible to selection generally leads
to increased genotypic variance, and so we should expect
the color patterns in such species to be highly polymor-
phic.

The usefulness of any model stems not only from its
specific predictions and its ability to unify disparate ex-
perimental observations, but also from its fertility in sug-
gesting further experiments. If the neural hypothesis is
correct experiments that intervene with mantle neural ac-
tivity, without disrupting shell construction, need to be
devised. Perhaps the topical application of neuroactive
substances such as xylocaine, lysergic acid, or various kinds
of neurotransmitters can provide information. Probably
electrophysiological measurements will interrupt mantle
activity, but perhaps the neural connections between pig-
ment cells can be explicated in sufficient detail to deter-
mine the range of neural interactions characteristic of each
pattern type. It is a rich field for neurobiology and anat-
omy which will have a direct impact on larger issues of
evolution and adaptation.
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Figure 17

a, tent patterns characteristic of olive snails (e.g., tent olive or
royal purple olive (Oliva porphyria); b, tent patterns character-
istic of the textile or courtly cones—these patterns differ from
(a) by slightly longer range neural interactions.

Finally, we should mention the issue of the uniqueness
of the model. It would be gratifying if we could claim that
our model can reproduce the observed patterns better than
all competing models; however, this is not the case. Using
a mode] based on diffusion and reaction of chemical mor-
phogens, H. Meinhardt has produced simulations that are
equally as convincing in reproducing the shell patterns as
the neural model. The reason is clear: one can model the
phenomenon of local activation and lateral inhibition
characteristic of neural nets in a variety of ways. Any
number of diffusion-reaction mechanisms can produce this
effect by a slowly diffusing autocatalytic reaction that is
quenched by a fast diffusing inhibitor molecule (MEIN-
HARDT, 1982). Even the mechanical models that OSTER
et al. (1985) have employed to model the regular patterns
of microvilli on cells can be viewed as a mechanical im-
plementation of this neural-like property. Therefore, we
are left with the disappointing conclusion that it may be
quite difficult to infer mechanism from pattern alone, be-
cause several quite distinct cellular mechanisms can pro-
duce identical patterns. Thus the issue of whether the
patterns on mollusk shells arise from neural activity as
we have suggested here will be settled only by experi-
ments. Theory can provide only a shopping list of possible
mechanisms.
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APPENDICES
A. The Model Equations

In this Appendix we give the complete mathematical
expression for the model equations given in the text, as
well as the functional forms employed in the numerical
simulations.

The model consists of the three difference-integral
equations

Api(x) = S[P(x)] — R, [1]

Rii(x) = yP(x) + 6R,(x) [2]
Px) = H(4 — 4%) (3]

where 0 < v < 1 is the rate R increases and 0 < § < 1 is
its degradation rate.

We can further simplify the model by assuming that
the pigment secretion, P, is simply proportional to the
activity, A, and let the function S take care of the threshold
for secretion. This does not affect the patterns signifi-
cantly, and is somewhat easier to treat numerically and
theoretically. Thus the equations we shall deal with are

Pi(x) = S[P(x)] — R, [4]
Rii(x) = ¥P(x) + dR(x) (5]

The neural stimulation function, ${P(x)] in equation
(4] is composed of excitatory and inhibitory effects. Note
that the pigment secretion on day ¢ + 1 can depend only
on the excitation during day ¢ + 1; however, according to
the assumptions of the model, each day’s pattern of exci-
tation is stimulated by “tasting” the previous day’s pig-
ment pattern. We can safely assume that the time con-
stants for neural interactions are much shorter than those
of shell growth, so that we need deal only with the daily
average, or steady state firing rate of the neurons in the
mantle. Therefore, we define the following functionals:

Excitation:

E.i(x) = j; We(x' — 2)P(x") dx’ (6]

Inhibition:

L(x) = J; Wix" — x)P(x") dx’ (7]

Here the kernels Wg(x’ — %) and W, (x’ — x) weight
the effect of neural contacts between cells located at po-
sition x' and a cell at x; they effectively define the con-
nectivity of the mantle neuron population. In general, the
inhibitory kernel, W (x’ — x) is broader than the exci-
tatory kernel, Wg(x' — x); i.e., activation has a shorter
range than inhibition. @ is the domain of the mantle; for
most shells this is a finite interval, but may be circular in
the case of mollusks such as limpets and planar in cowries.

The particular connectivity functions we have em-
ployed in our simulations are:

W;=0 for|x| >0, j=EI

W; = gqj2* — (1 — cos(mx/0;)?] (8]
for |x] <=9, j=FE, 1

where g, is chosen so that

f Wix)de=a, j=E,I 9]
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Table 1 Im a

Neural influence function parameters \ 7

a; = amplitude of the excitatory influence function.

a, = amplitude of the inhibitory influence function. Re f b

o = range of the excitatory influence function. -1 1

o, = range of the inhibitory influence function.

pe = sharpness of the excitatory influence cutoff, or the “flat- (a)

ness” of the influence function.

p. = sharpness of the inhibitory influence cutoff.
Firing threshold functions

vy = steepness of the excitatory cutoff (nonlinearity). ) I - cnoun NS

v; = steepness of the inhibitory cutoff. 1Al

8 = location of the excitatory threshold; i.e., the midpoint of

the sigmoidal curve (threshold). (b) 0

8, = location of the inhibitory threshold. \
Refractory parameters S 1 R

v = production rate of refractory substance.

& = decay rate of refractory substance.

a ¢
C

The shape of the connectivity functions is controlled by
p: for p very small the W, are sharply peaked, for p large, B A
the W, become nearly rectangular. In our simulations p b
is in the range of 4-8. The range for lateral inhibition is A
made greater than the excitation by choosing ¢; > o, and (C) C B
since the local excitation strength is generally greater than
the inhibition, we choose ay > «;. Figure Al

The responses of the secretory cells to neural stimula-
tion are assumed to be sigmoidal functions of their inputs:

S[P()] = SElEi(x)] — Silli(x)] [10]
For simulation purposes, we have employed the follow-
ing function for both Sz and S,

S() = j=E1 [11]

1+ ggte=t”’

The parameter »; controls the sharpness of the nonlin-
earity, and 6; the location of the threshold.

Thus the raw parameter list consists of the 12 quan-
tities:

[aE) Qg, O, 01y pE> pb VE, V1 GE» 61) Y 5]

This list can be reduced to nine because some parameters
enter only as products, and some may be rescaled. Table
1 summarizes the model parameters.

B. Analysis and Simulation of the Model

A linear stability analysis of the model equations gives
some idea of the patterns the model will generate. There-
fore, we proceed as follows.

The pair of equations [4, 5] are equivalent to the single
second order equation

P2 =S[Pi1i] + 8Py — YP, — 8S[P] [12]

a, the unit circle and the stability triangle on the coefficient (a,
b) plane; b, dispersion relation A(k) for spatial instability; c,
trajectories for each type of bifurcation.

where we have suppressed the dependence on x for no-
tational simplicity.
Let P, be a homogeneous equilibrium, z.e.,

P,=SIP]+6P, ~ (P, + 8SIP)  [13]
or
_ 1-3
Po= SRl [14)

If we shift the sigmoid S so that Sz(0) = §,0) = 0, then
we can linearize about P, = 0 to obtain the linear differ-
ence equation:

Poo+ LPiyy + 0P, = [yP, + 0L (P)]=0 [15]

where L.(.) is the linear (convolution) operator

LJul(x) = §'g(P) f Welx' — x)u(x") dx’

= S'(P) J; Wilx' — xu(x’) dx’,  [16]

where §',(P,) are derivatives of S,.
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Figure A2
a, the shapes of S(x) and L(k); b, the dispersion relation.

On a periodic domain of length L (e.g., the limpet), the
eigenfunctions for L, are exp(2winx /L), n=1,2,...;0n
a finite linear domain these are approximate eigenfunc-
tions, since the domain size, L, is much greater than the
range of the connectivity functions W.

The characteristic equation for the spatially homoge-
neous system is obtained by substituting P,(x) =
Nexp(2=xikx/L) into the linearized equation:

AN+ (L*(k) + &N — [y + 8L*(k)]
= A+ alk)\ + b(k) =0 [17]
Here
L¥(k) = S'o(PYWelk) — S'YUPYWi (k) [18]

where the W, are (close to) the Fourier cosine transforms
of the W

W,(k) = j; cos(2mkx/LYW;(x) dx [19]

The spatially homogeneous solution is stable if and only
if the roots of the characteristic equation lie within the
unit circle on the complex plane: [A] <1 for every k =0,
1, 2, .... This condition can be plotted on the coefficient
plane (a, b), as shown in Figure Ala, where stability
requires that a and b lie within the shaded triangle.

Spatial instability requires that (i) the homogeneous
solution be stable: |A|(k = 0) < 1, and (ii) there exists a

finite range of unstable modes: [A[(£) > 1 for 0 <k, <
k < k, < 00. That is, the dispersion relation A(k) should
look qualitatively as shown in Figure Alb.

Such an instability can arise in three qualitatively dif-
ferent ways: as one of the model parameters is varied the
unstable eigenvalue can pass out of the unit circle through
+1, —1 or at a complex value (Figure Alc). Which one
of these instabilities occurs depends on which parameter
is varied and on the shape of the connectivity kernels, W,

The neural connectivity function, W(x) we have em-
ployed is the usual “short-range excitation/long-range in-
hibition” type shown in Figures 9 and 10. The linear
operator L*(k) is essentially the Fourier transform of W{(x).
By the properties of the Fourier transform, L*(k) has the
shape shown in Figure A2a. Because only positive values
of k are physically relevant, the dispersion relation looks
qualitatively as sketched in Figure A2b.

The three paths to spatial instability shown in Figure
Alc correspond to violating the following three inequali-
ties:

(a) Bifurcation through +1 will occur if L*(k) >
(1 — %)/8 (path a in Figure Alc). This is a so-called
“equilibrium” bifurcation because in the spatially homo-
geneous case (k =0) such a bifurcation creates a new
equilibrium point (¢f. May & OSTER, 1976; GUCKENHEI-
MER et al., 1976). When £ > O this creates a stationary
spatial pattern of regularly spaced stripes as shown in
Figure A3a.

(b) Bifurcation through —1 will occur if L*(k) <
—(1 + v/(1 + 8)) (path b in Figure Alc). From Figure
A2b we see that this can occur only at k =0, so that
homogeneous instability results. (This can only happen in
this model for the kernel shown providing 6, > §,, since
we have assumed that az > «,) The pattern resulting
from this bifurcation consists of fine horizontal stripes, as
shown in Figure A2b.

(¢) Bifurcation through A =¢* (§ # 0, w) occurs if
L*&k)>1++v/(1 — é) (path ¢ in Figure Alc). This
generates periodic spatio-temporal patterns, as shown in
Figure A3c (e.g., stripes and checks).

Note that (1 — v)/6 <1+ /(1 — &) if and only if
8 > 1 — V. Thus +1 bifurcations occur first when 8 <
1 — \V/; otherwise the bifurcation is via a complex ei-
genvalue.

When v =0, so that the refractory substance cannot
build up, the model can take a particularly simple form.
If we make p large, and o, g, equal, and » large, then
the model is approximated by the rule:

P(x)=1if8; < f P(x + x') dx’ < 6,

= 0 otherwise [20]

This is essentially a continuous space analog of Wol-
fram’s Class-3 cellular automata rule (WOLFRAM, 1984).
This type of rule leads to “chaos” and the “tent” patterns.

The linear analysis was employed to guide the numer-
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both sides by t and replace the differences by derivatives
to obtain:

aP
E=S[P]-R—P (24]
oR
3 =@ - 1R +~P [25]

Now let us examine the phase plane of this system at
a fixed x = x,. The operator S is sigmoidal in P, and so
the right-hand side is a cubic-shaped curve (a sigmoid
minus a linear term). The (P, R) phase plane is shown
in Figure A4; it is qualitatively similar to the FitzHugh-
Nagumo model for excitable media. That is, each volume
element is excitable, and the volume elements are spatially
coupled by the activation-inhibition operator W.

If only nearest neighbor cells interact inhibitorily, then
W can be expanded in a Taylor series about x, and only
lowest order terms retained. Then a familiar diffusion-
reaction model emerges:

P a2pP

—=D—+

oz o’ F(P, R) [26]
dR

E =4P+ (6 - DR [27]

where D is a diffusion coefficient that can be expressed
in terms of the expansion coefficients of the integrand.

If activation-inhibition is to be retained in the model,
then fourth order terms must be retained (odd order terms
dropping out by symmetry), and we obtain the biharmonic
diffusion-reaction system:

aP 2P 9% | 2P

o Do a—[a_J TRER 28
dR
m =yP+ (6 - DR [29]

Here the negative sign in D, corresponds to short-range
activation, and the negative sign in D, corresponds to long-
range inhibition.

A model quite similar to this was arrived at by J. Keen-
er (personal communication) by defining a net neural fir-
ing rate, f(x, t) according to the equation

)
a—{= (@aP — bf) + f Wix' — x)f(x") dx’ [30]
Q
where W(x — x') is the activation-inhibition kernel shown
in Figure 9. Coupling to the secretion is obtained by de-
fining the secretion rate to be a bistable function:
apP

o - FBh [31]

where F(P, f) is an S-shaped curve whose intercept is
regulated by f. By expanding the convolution to fourth
order, this model can also be reduced to a biharmonic
diffusion-reaction model:

L SR S
5~ Dige T Dgngat @ -o) [32]
apr
— = (&) (33]

ot

Somewhat different approaches were employed by
WADDINGTON & CoOwE (1969), MEINHARDT (1984), and
WoLFRAM (1984). They modeled the shell patterns by an
automata wherein the activation-inhibition effect was rep-
resented by nearest neighbor interactions via diffusion.
Meinhardt’s model employed two substances with differ-
ent diffusion constants (D; > D ,). He obtained some of
the same patterns we obtain here by assuming that each
cell of the automata could periodically fire and become
refractory for a while. In a more recent simulation, Mein-
hardt and Klingler (to appear) included longer range in-
teractions by allowing morphogens to diffuse beyond near-
est neighbors. These simulations resemble ours and it
appears that most patterns can be created by either mech-
anism. However, it is not clear how the diffusion-reaction
model handles the problem of pattern alignment between
episodes of shell secretion, whereas this is intrinsic to the
neural model. Wolfram’s simulations mimic to a remark-
able extent the “tent” patterns observed on many cone
shells. However, his rules were rather arbitrary, and have
no obvious physiological interpretation. The neural net
model, in the limit of short-range interactions and sharp
threshold functions, reduces to the automata model, and
can also reproduce the tent patterns.

All of these models have a similar structure: a locally
excitable activator-inhibitor system that is coupled spa-
tially to nearby points. In order to obtain spatial patterns,
the activation-inhibition is essential. Moreover, it appears
that many of the patterns depend on the long-range (ie.,
beyond nearest neighbor) interactions characteristic of
neural nets. Also, the episodic nature of the secretion pro-
cess dictated our choice of a discretized model in time; this
feature also appears essential to the formation of certain
pattern types. In a subsequent publication we shall inves-
tigate a broader class of neural models, including kernels
with long-range activation and two-dimensional mantles,
such as are found in cowries.

i}

-y -
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Figure A3

a, spatial pattern arising from +1 bifurcation; b, spatial pattern arising from —1 bifurcation; ¢, spatial pattern

arising from complex bifurcation.

ical simulations. The model equations were converted to
a single second order difference equation and the integrals
approximated by

1 N
f Wi(x' — x)P(x") dx' = ~ > W WP [21]
7=0

Generally, N was taken to be 64, although when un-
usual patterns were encountered N was set to 128 or 256
to check that they were not numerical artifacts. Initial
conditions were random, or small regions of the domain
were excited. Typically, long transients generated com-
plicated patterns which gradually simplified as the tran-
sients damped out.

Table 2
Fig. 6z 8, g o, O o, b% 5 v
1ta 0.0 0 6 8 01 02 00 00 1
116 5.5 022 15 032 0.1 015 00 00 8
11c 4.5 0 15 05 0.1 012 005 06 8
146 1 100 50 40 005 02 08 04 2
156 45 0.32 15 05 01 015 01 08 8
16 0 0 88 66 01 02 04 06 1
17 3 4 80 40 01 02 O 0 8
176 55 55 10 4 01 02 03 02 8

C. Alternative Formulations

The behavior of the model equations can be illuminated
by examining their continuous time limit. If we subtract
P and R from both sides of [4] and [5], respectively, we
obtain

PI+I_PI=S[PI]_RI—PI [22]
Ry — R =0 — DR, + ~P, [23]

By an appropriate choice of time scale, t, we can divide

P=0

Figure A4
Phase plane for the differential equations [A24] and [A25].



