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Synopsis
A one-dimensional scalar neural network with two stable steady states is analysed. It is shown that

there exists a unique monotone travelling wave front which joins the two stable states. Some
additional properties of the wave such as the direction of its velocity are discussed.

1. Introduction

There has been a great deal of recent interest in the behaviour and analysis of
nonlinear neural networks. These networks are believed to mimic the behaviour
of real masses of neurons. Most of the work on these systems concerns discrete
space and time models which are used to devise learning and computational rules
[1], and the mathematical analysis of the discrete systems has been limited to
steady-state in behaviour of symmetric systems. In this paper, we are interested in
the asymptotic behaviour of a network which is continuously distributed in space
and varies continuously in time. Previous results on networks of this type have
dealt with bifurcation from trivial equilibria [2] and consequently with small
amplitude solutions. We analyse a fully nonlinear system far from any small
amplitude branches of solutions. Our goal is to understand the propagation of
excitation through an autonomous isolated piece of tissue. We assume that the
network can operate stably at a high rate of activity and a low rate. We then study
the transition between these two states as a travelling wave.

There are several motivations for analysing such a network. The model is a
good first approximation for the spread of excitation through a more general
network where the inhibition is slow {see [3] for a discussion of the relationship
between a scalar reaction-diffusion equation and the full model for a spiral wave
propagation). There is good evidence that the scotomas associated with migraine
headaches travel across the cortex at a uniform velocity. The scotoma consists of
a radially progressing wave which leaves in its wake a strongly inhibited region
that persists for many minutes after the wave has passed [4]. The onset of
Jacksonian scizures is marked by a spread of rhythmicity across regions of the
motor cortex: the main mechanism underlying the spread is excitatory synaptic
interactions within the cortex. Recently, Smith and Bullock [5] proposed a model
for the spread of activity across the skin of a sea urchin. This model consists of a
two-dimensional array of neurons with excitatory conncctions and two stable
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mades of activity—high and low. Our model can be regarded as a one-dimensional
analogue of this phenomenon.

In Section 2, we derive the model equations and set up the problem as an
integrodifferential equation., In Sections 3 and 4, the main existence and
uniqueness results are proved. In the last section, we consider an cxactly solvable
model and also provide some numerical simulations of the travelling wave.

2. Derivation of the model

We consider a single-layer neural network distributed over the real linc. Let
u(x, ) denotc the mean membrane potential of a patch of tissue at position x and
time r. We assume the connections between neurons arc cxcitatory and that the
strengths of connections between a neuron at x and one at x' fall off with distance
at a rate given by k(Jx — x'|). The output of a neuron is a spike train, the firing
rate, F(x, t), of which is a nonlinear function of the mean membrane potential:
F(x, )= S(u(x, ). A single spike arriving at a neuron at time ¢’ results at time
{>¢" in a small change in the membrane potential of the receiving neuron, the
post-synaptic potential (PSP} A(z—¢'). All inputs to a given ccll from the other
cells and prior times are integrated to yield the total membrane potential:

u(x, 1) = j dt’ f " B V(e — x DS (', 1)), 2.1)

This model assumes that there are no inputs to a cell other than the recurrent
excitatory connections. If we consider the particular case where the postsynaptic
potential % has an instantaneous rise-time and an exponential fall-off, then
h{t) = e '(t > 0), and differentiation of (2.1} yields

dulx, )] dt +ulx, 1) = Jm dx'k(lx — x')S(ulx’, '), (2.2)

but we shall not restrict attention to this case.

We are interested in travelling wave solutions of (2.1), i.e. solutions of the form
u(x, 1) =u(x — ct), and we now set out the nature of the solutions in which we are
interested and the conditions on the given functions A, k&, S. We want there (o
exist two stable rest states, which we take to be # =0 and u=1, and we are
interested in travelling waves which connect these states monotonically. Hence we
are interested in solutions u(z), z =x — ¢, where

i is monotonic,
0=2u=1
(=) =0, u(=)=1.
The function 8, defined on [0, 1], is such that
(a) § is continuously differentiable with §' >0,
(b) f(u)=—u-+S(u) has precisely three zeros, at u =0, a, 1, with 0<a <1,

and
{c) $'(0)<1, §" ()<L

w
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The assumption (a), essentially that S is an increasing function of u, is natural.
The assumption (b), along with the conditions on £ and k, allows u=0and =1
(and also u =a) to be solutions of (2.1). The assumption (c) corresponds to the
setting in which the states 0 and 1 are stable. (If, for example, we take (2.2) with &
the Dirac 8-functicn, we see that for a solution u that is small, we have, at least
formally,

Ju
— 4w =5 (0,
Pl (O)ue

so that stability corresponds to §'{(0) < 1.)

The assumption that there is just one other rest state (unstable) between 0 and
1 is a convenient rather than a crucial assumption. The analysis can still be made
to work without it, but the travelling wave connecting 0 and 1 may be replaced by
a “stack™ of travelling waves connecting 0 to a,, a, 10 a,,...,, to 1, where
a,, ds, ...,a,are stable rest states with 0 < ¢; <1. This is comparable to the result
in [6,7] for a single reaction-diffusion equation, and we intend to consider such
generalisations, and also the question of stability of the travelling waves, in a later
paper.

The function & is defined on (-9, =), such that

(a) k is absolutely continuous, with k' e L'( — o, ).

(b} k is even,

fc) k=0,

(d) [ k()di=1.

The assumption (a) is merely technical, and the assumptions (b) and (c) are
natural. The assumption (d) is an cxpression of the fact that k(¢) dies away as
|t| = . (Since it is only the product kkS which appears in {2.1), we have some
choice in the way in which we separately normalise A, k, 5.)

The function k, defined on [0, =}, is such that

{a) h=0,

(b) A is monotonic decreasing,

(c) [Ch{)dr=1.

(d) [3th{t)dt <o,

Our object is to prove the following theorem:

Tueorem 2.1. Under the above conditions on h, k, S, there exisis one and
(modulo translation) only one monotonic travelling wave solution to (2.1), with
u(—=) =0, u{w)=1.

(This is proved as Theorem 4.5 in Section 4.)

The method of proof is to use a homotopy argument to move from the general
problem to one where everything is known. If in (2.2) we suppose that the speed
¢ =0, so that du/3 =0 (and we shall sce that we can ensure this by insisting that

l {—u+ S(u)}du =10),

and if we take k(£) = 57", then (2.2} after differentiation yields
W+ f(u) =0,
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so that the problem in this particular case is that of looking at steady solutions of
Uy = U + [ (1) (2.3)

This problem, for the type of f under discussion, has been dealt with in |6, 7].

There does not appear to have been much prior work on such integral equation
models. Diekmann and Kaper [8] discuss travelling waves which connect one
stable equilibrium and one unstable. Both their results and their methods are
totally different from ours. Lui [9] analysed the discrete-time analogue of (2.2) as
a model for the sprcad of diseases. Again, his techniques are substantially .
different.

We remark also that there are some cases other than k() = ™" where the
problem reduces to that of a partial differcntial equation. If we take (2.2) where k
is such that its Fourier transform £ has the form

1 1
)= V14 PGy’

where P is a (necessarily even) polynomial

ke

P(s)= a8t +ast+. L,
then the transform of (2.2) gives

aifs, 1) 1 §_
ot 1+ P(s)

Thus

~

{1+ P(s)}(%';E + a) =3,

and, transforming back, we have
U, — @yl T Qollyygre T - . =85 — 1.

Finally, we are interested in travelling wave solutions of (2.1), so that we set
u = u{x —ct) and have

u(x — cf) =f dr' fm dx’ Bt — ' Ye(x — x)S@(x' — ct')). (2.4)

If we then change to variables

E=x—ca, &=x"—ct', s=1-V,
we have

w@= [ 1) [ k(e es—gnstuen) ae'as

A trivial change of notation yields

u(x) = Lmh(s) [; k(x +cs — y)S(u(y)) dy ds, (2.5)

and this is the form we shall normally consider.
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3. Some remarks on monotonicity and the wave speed

Tueorem 3.1. If we have a travelling wave solution of (2.1), with 0=n =1,
u(—w)y=0, u(+«)=1, and if h(s) = be™", for some b >0, and k, S saiisfy the
conditions in Section 2, then the wave speed ¢ has the same sign as

1
j {1 — S(u)} du
[}
Proof. From the assumptions on §, we know that § is differentiable almost

everywhere, with S'>0. Also, with hA(s)=Dbe ™, if we differentiate (2.4) with
respect to ¢, we obtain, with £=x —ct, n=x" — ¢,

e (® = b b | k(e mSGm)dn (3.1)
Thus
—b eS8 (u) ={—u + S@)}S’ ()’

b [ e S - SENS @(OW @) dn,

so that

L]

- p7 i f w'?S'(u) dé = jl {—u + S(u)}S"(u) du

" fm E, k(& —m)SQe(n)) = S@(ENS ((E)u'(§) dé dn.

If in the last integral we interchange the dummy variables ¢ and %, and then add,
we see that the integral is

%f f:"@ — RS (n)) — S@ENHS w(E)u'(€) — S"(w(n))u'(n)) dE dn.

Now set £ — x =1, and express the double integral in variables &, t. It becomes

17
2| fstte = 0) - Senks @@ (e) - 5 Gue - u'(e - o} deds
and if we integrate first with respect to £ we see that the result is 0. Thus
-b e fw w38 (u) dé = f {—u+ SIS () du.
—w 0

But '

|t S8 @) — 1) du = Hmu = S0 =

0
so that

-b7'¢ Jm w8 (u) dé = J'] {—u+ S} du.

The result is then immediate. O
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We would like to extend Theorem 3.1 to cases wherc A satisfies only the
conditions of Section 2, but this does not seem to be entirely straightforward. In
fact, we are able to so extend il only when we assume the travelling wave to be
monotonic and even then only by using the full power of Theorem 2.1. However,
there is an easy first result.

TucoreM 3.2, If we have a steady solution of (2.1), i.e. ¢ =0, under the same
conditions as in Theorem 3.1 except that now h satisfies only the conditions of
Seciion 2, then

fl e — S(u0)} e = 0.

Proof, 1f ¢ =0, then (2.5) shows that, since

f his)ds =1,

we have
u) = [ kS dy

which is {3.1) with ¢ = 0. The proof then follows the proof of Theorem 3.1. [l

THEOREM 3.3. If we have a monotonic travelling wave solution of (2.1), with
0=u=1, u(—w)=0, u(+x)=1, and if h, k, § satify the conditions in Section 2,
then the wave speed ¢ has the same sign as

f {u — S(u)} du.

Proof. We use Theorem 2.1, which we have not yet proved but whose proof
does not assume the present theorem. According to Theorem 2.1, for each
{h, k, S) there is a unique speed c. If

f {u—S@)}du =290, (3.2)

and & is an exponential, then by Theorem 3.1 we have ¢ =0, with & = uy(£), say.
But since (2.5) does not involve 4 if ¢ =0, the same pair (i, ¢) = (up, 0) will
satisfy (2.5) even when 4 is not an exponential. Thus (3.2) implies ¢ = 0 no matter
what A is.

If now we have S such that

f{u - S du>0,
o

and h is exponential, then by Theorem 3.1 we have ¢>0. If we change A
continuously, the proof of Theorem 2.1 shows that we change ¢ continuously. But
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we can never have ¢ =0, since this implies (3.2), which is now not true. Hence we
always have ¢ >0, and the theorem is proved. ]

Treorem 3.4, We can without loss of generality assume ¢ Z 1.

Proof. For if we set z=—x, t=—y, w(z)=1—-ux), ¢*= —c, then (2.5)
becomes, because of the evenness of k,

1—w(z)= Jmh(s) Jm k(z +c*s —)S(1 — w(t)) di ds,
50 that

w(z) = Lm his) fi k{z +c*s —O{L = S(1—w{n)} dt ds,

and it is readily checked that 1 — §(1 — w) satisfies the same conditions as S. Thus
the problem has been transformed into an equivalent problem with ¢ changed in
sign. [

Finaliy in this section it would be satistying to be able to assert that any
solution with 0=u =1, u(—2)=0, u(+»)=1 is necessarily monotone, as is
certainly the case for travelling wave sclutions of (2.3), but this seems to be
difficult {(and very likely untrue) under the general conditions on A, &, S in Section
2. In the particular case where h(s) = be >, k(1) = (2A)"'e™"*, we can, however,
prove monotonicity.

Throrem 3.5, If A{s)=be ™™, k{)=02N)'e™™*, b >0, A>0, then any
travelling wave solution satisfying 0=u =1, u(—0}=0, u(+=)=1 is necessarily
mOnoIone.

Proof. With h(s) = be ™, the problem reduces to (3.1), and after two further
differentiations we obtain

1 . 1
—b ey = — u”+P(~b*‘cu' +u) - PS(H)’

or
=A% leu + b ew! + Au = u — S(u).

Multiplying by —u' and integrating, we have

X
—b”’cf u’zdtfb”c/\"’f w?de+b ehiuu" — A

—oa

= L v+ S(v)} dv. (3.3)

{We note that (3.1) certainly implies that u’ is bounded, and indeed &’ — 0 at .
Thus u#"— 0 at —oo, at least through some sequence of values, and this allows us
to omit the integrated terms at —o in (3.3).)

Now suppose for contradiction that we do not have ' =0. Thus we certainly
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have two values x,x» such that «’(x,)=90, u#'(x;)=0, v’ <0 in {x,,x;). By
Theorem 3.4, we may suppose without loss of generality that ¢=0. Since
w—S(u)>0for 0<u<aand u — S(u)<0 for a <u <1, we see that

J'{U—S(v)}dv>0 for 0<u=gq,
0

and from (3.3) it follows that, if ' =0 when 0 <& = a, then the left-hand side of
(3.3) is mon-negative while the right-hand side is strictly negative, which is
impossible. Thus u(x,) > a, u(x,) >a.

Now evaluate (3.3} al x = x;, x = x5, and take the difference. We have

X2 X2 i
~b*1f w'? df_b_lC)IZJ u"zdt:j {—v+5)}dv,
X Xy 1y

where u; = u(x,), u, = u(x,). Again, the left-hand side is non-negative while the
right-hand side is strictly negative since u,>u,>a. This final contradiction
completes the proof of the theorem. O

4. The continuation argoment

In order to carry out the continuation argument mentioned in Section 2, we have
to study the linear operator that arises when we perturb a solution u of (2.5). The
linearisation operator [. is given by

Lo = [ 1) [ kot e-SaoNsOIdyds @D
0 )
and we discuss this operator in the Banach space Cy{—w, ®), consisting of
continuous functions ¢ with ${£ =) =0.

THeOREM 4.1. If h, k, S satisfy the conditions of Section 2, and if u(—=)=10,
u(-+=y="1, and u monotonic, then we can express L in the form

L=L;+ Ly,
where | L] <1 and L; is compact.

Proof. We write

)= [ ol [ "o [+ [ et psaonema as

where A is chosen so that, in (—, —A] and [A4, «), we have S'(u) =1 — §, say,
8>>0. Then if L, is the operator arising from the integrals over (—o, —A) and
{A, ), and [, the remainder, we clearly have ||L,| <1 and L, compact. (For a
bounded sequence {¢,}, the functions L,¢,, are uniformly bounded and equicon-
tinuous on compact sets, and are uniformly small at £e.) O

TueoreM 4.2. If in Theorem 4.1 the function u is a monotonic solution of (2.5)
satisfying u{—w)=0, u(+w)=1, then the operator L has an eigenvalue 1, with
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non-negative eigenfunction. There are no other eigenfunctions corresponding to the
eigenvalue 1,

Proof. Differentiating (2.5) under the integral, which is permissible under the
assumptions on &, we have

u'= fmh(s) ds Jm k'(x +os —y)S(u(y)) dy (4.2)

= Lmh(s) ds J:mm k(x +cs ~ )8 w{yhu'(y) dy, 4.3)

by integration by parts. Thus from (4.2) or (4.3) we see easily that u’ is bounded
and indeed continuocus; we show below that u'(£e)=0. Hence u' is a
non-negative eigenfunction of L. corresponding to the eigenvalue 1.

To complete the proof of the theorem, we could appeal to the theory of
positive operators, but for completeness we give an ad hoc proof. Suppose for
contradiction that there is a second eigenfunction ¢. Then for any constants A,u,
we have

A+ pp = Lmh(s) ds f:o k(x +cs — y)S (w{y)YAu'+ pdddy.

We assert first that u'(:t®) =0, ¢(+) =0, and it will be sufficient to give the
argument for ¢. I the resulf is not true, as x — —oo, say, we have a sequence {x,}
such that ¢(x,)—{ >0, where

[= lim sup ¢(x).

X——®

If ¢(x,)=1,, we have

I, = rh(s) ds r k(S (u(x, +os — O)plx, tes —)de. . (4.4)

From the integrability of A and &, we can ncglect the contributions from s = §
and |f| = T, say. Hence as n— ~ we are interested only in x,, + cs —{— —o0, s0
that 0=8"=1 - §, say, for some 6 >0, and ¢ =[+ ¢, for any given £ >0. This
clearly contradicts (4.4).

Since # is monotonic, we have 1’ = 0. But in fact u’ > 0. For from (4.3) we have

w'{x)= f:h(s) ds J:h(of) do f; k(x +cs —)S'(u(y)) dy

X JW k(y +co—0S"(u())u’(r) de.

Since u' is not identically zero, suppose for contradiction that &’ >0 in some
interval {(x,, x,), with #'(x,) = 0. Since k is not identically zero, we can choose y;
so that k{y, —£)#=0 at ¢ = x;, and so for 7 sufficiently close to x,. Then from s,o
close to zero, and y close to y;, and ¢ close to (and less than) x;, we get a strictly
positive contribution to the integral for wu'(x,). This gives the required
contradiction.
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Now consider u' + ud, and let us suppose without loss of generality that ¢ has
a negative minimum. (If ¢ does not have a negative minimum, use —¢ in place of
¢.) For =0, u'+ pud >0, and it has a negative minimum if p is sufficiently
large and positive, Thus there exists a value ue such that u' + uep =0 but
u' + ¢ has negative values if p > o As p | o, let x*(p) be a point where
u' + e <0, If x* remains finite as @ | po, then u' + pyéd has a minimum value
of zero attained at a finite point, and this is impossible. (For, as wc have already
seen, a non-negative eigenfunction is in fact strictly positive.) Thus, as u | i,
any points where u' + pu¢ <0 are large in modulus. Suppose that the negative
minimum is attained at x*(w). Then

(' + pd) () = f:h(s) s [ K+ es =S @ON@ F pb) v, (45)

If y is such that (u’ + u¢)y) <0, we can now assume that S'(u(y)) =1 — &, say,
8 >0, and

(" + p@) (PN =" + pd) ).

Thus the negative contribution from the right-hand side of (3.5) does not exceed
(1 - 8)(u' + pd)(x*), which contradicts (4.5). This final contradiction completes
the proof of the theorem. O

Tueoreym 4.3, The adjoint operator L* has a simple eigenvalue 1, with
non-negative eigenfunction, W, say.
Proof. The solution .of
L*f =4
is equivalent to the solution of
(LT+ LYW = ¢,

where ||Lf]| <1, L3 is compact. Thus it is equivalent to the solution of

(- Ly = L1y,
or, with
(I—LY)=§
of
¢=L50-LH7'E
But the operator on the right is compact, and its adjoint, (/ = L,)™'L,, has a
simple cigenvalue at 1. Hence the operator itself has a simple eigenvalue at 1, and

the theorem is proved except for showing that the corresponding eigenfunction g,
is of one sign, which we may take to be positive.

L3
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Define

!p_-l- — {lﬂl: ";]l 201
0, ¥ <0
Since

L) =S @) [ B ds [ ks s =y dy

it is clear that
LA™ 2= LAy = g,

and so, by considering separately the points where ¥ =y, and ¢* =0, we see
that almost everywhere

LAyt =,
Thus, recalling that u’ >0 and that (L — i’ =0, we have
O={(L—Du', v"y=u', (L* - Dy =0,

and we avoid a contradiction only if (L*—7)y™ =0. This completes the
theorem. 0O

TueoreM 4.4, If u, is a monotone solution of (2.5) satisfying u{—«)=0,
u(+o) =1 and corresponding to funciions hy, ko, Sy, and if the associated speed is
Co, then, given & >0, there exists 8(ug, ho, ko, So, Co, €) such that, if h, k, S satisfy
the conditions of Section 2 and also

f(s+1)|h—h0|ars<a, f ke — ko ds < 8,
o “no

J I(k — ko)'| ds << 8. |(S —Sp)'|<8, (4.6)

then there exists, modulo translation of u, a unique pair (i, ¢) in |u —uy| <e,
[c — ol << & which satisfies (2.5) and u' <0, u(—=)=0, u(+=)=1

Proof. We first establish that there is a solution pair (i, ¢), and indeed a
unique pair (&, c), if we make the additional demand that

J: i, dx = J_Z ol dx, (4.7

where ¢, i the eigenfunction introduced in Theorem 4.3. To do this, we write the
equation (2.5) in the form

u— T(u, c)=0, (4.8)
where

T, c)= f:h(s) ds f: kix +es — v)Su(y)) dy.

Since (4.8) is satisfied by (ug, ¢g), with T = T,, we can subtract and write {4.8) in
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the form

Lol

u—ty— L —ug)—(c —cy) | sho(s) ds r’ Folx -+ cos — v )Sp(uo( ¥)) dy
= T(u, c) — Ty(ug, ¢o) — L{u — utg)
—(c—c¢g) L i sho(s) ds Jio ko(x +cos — v)Solu( ¥y dy.  (4.9)

Now T'(u, c) is a continuously differentiable function of , ¢, and the Fréchet
derivatives are continuous in &, k&, 8, at least in a ncighbourhood of
(tig, ho, ko, So, Co), neighbourhood being defined in terms of the norms implied by
(4.6); indeed L is the Fréchetl derivative with respect to u at (tta, ho, ko, So, Co)s
and

L]

[ shtoyas | it us )ity dy «.10)

is the derivative with respect to c. Further, by an integration by parts, (4.10) can
be written in the form

[ shatsyas [ e +cos = y)Situoui(y) d,
0 —e

which is clearly strictly positive.

With this in mind, we consider (4.9) as a mapping from a pair (#, ¢) on the
right-hand side, where u is in the subspace defined by (4.7), to a unique pair (i, ¢)
on the left-hand side, with again i satisfying (4.7). To see that this mapping is
indced well-defined, we first multiply (4.9) by 4 and integrate. Since

(I = LY@ — ue), ) = (it — uo), (I — L¥)Pp =0,

this defines ¢ — ¢,. With ¢ — ¢, defined, we can then solve
(I-LD)@E—ugy=...

uniquely for & satisfying (4.7), by Theorem 4.2.

Thus the mapping in (4.9) is well-defined. Further it is a contraction mapping.
For if we have (&, ¢;) on the left corresponding to (i, ¢;) on the right, i = 1,2, we
obtain

(=LY @= ) G &) [ sholshds [ kiGx+ cus — y)Sua(y)) dy

= T{tts, ¢3) — T(ty, ¢} — L{uz — uy)

~(eamen) [ ohots)ds [ kit cos =Sl y))
= L{uy, c)(ta — ) + (€2 ¢1) fms‘h(s) ds jw k'(x 415 — y)S(ui(y)) dy

— Lty —uq) —(c2—¢1) J: shy(s) ds flm kolx + cos — yISoluo(y)) dy

+ o{[lutz — ug|) + oflcz — i),
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where L{u,, ¢;) is the Fréchet derivative of T with respeet to u at (uq, ¢;). In view
of the continuity of the Fréchet derivatives, we see that the right-hand side can be
reduced to

o(|luz — uy||) + o{le; — ¢4l),

and then the same argument as that which established that the mapping is
well-defined establishes that

e =l + (62— il = o(lluz = usl| + ez~ e},
so that the mapping is contractive. Further, the mapping maps a small ball
I —uoll <&, |c—col<E

into itself if & in (4.6) is sufficiently small, and so by the contraction mapping
theorem we have the existence of a solution pair (u, ¢), continuously dependent
on k, k, S, and unique if {4.7) is demanded.

We now show that, given any solution pair (i, c) in a neighbourhood of
(0, €o), we can arrange by a translation of u that (4.7) is satisfied (and so any
solution pair is unique modulo translation). For if («, ¢) is a solution of (4.8) with
[t — uyll, lc — g small, then also |u' — ug| is small, as we see by differentiating
(4.8). It immediately follows that u'(£) >0 and 0= u(#) =1 except possibly for |¢]
large. Also, if we suppose for contradiction, for example, that u{f} has a negative
minimum for some large negative #, then we can obtain a contradiction by
evaluating (4.8) at the negative minimum and noticing (as we did, for example, in
the proof of Theorem 4.2) that the major contribution from the integral is
positive.

Thus u’ >0. We want to show finally that we can find a translation u(x + x,)
such that

=

f_mu(x + Xo)yf dx = f; oy dx.

Then

oo

f ulx + xo)p dx = r {u(x + x0) — u(x ) dx + Jm {u(x) — wolx), dx

+ j u(]l!f] dx

= ng u'(x + Bxg)y dx

o6

[ )~ waloin e+ [ g (4.19)

where 0<< 8 <1, Since 1’ >0, there is no difficulty in choosing x, so that the first
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two terms in (4.11) cancel. Indeed, to a first approximation,

Xg= — {J:o {1 — ug), dx}/[;uélffl dx,

The proof of the theorem is thus completed. [

Tueorem 4.5. If h, k, S satisfy the conditions of Section 2, then there exisis a
unigue pair (4, c¢) (modulo translation of u) which satisfies (2.5) and u' >0,
u(—w)=0, u(tw)=1

Proof. We begin with 2(¢) = e, k(t)=3e ™", and § chosen so that

Jl (0 — S(u)) du = 0. (4.12)

In this case, as we saw in Section 2, the problem reduccs to the equation
w+(S(u) —u)=0. {4.13)

For any solution of this problem we necessarily have ¢=0, and it is an
elementary phase-plane exercise (which is carried out in [6, 7]) to check that there
is (modulo translation) a unique solution « to (4.13} with u(—®) =0, u(+=) =1,
and this solution is necessarily monotonic.

Now change h, k, S continuously. By Theorcm 4.4, there continues to exist
(modulo translation) a unique solution pair (u,c), at least for (u, h, £, .5, ¢)
sufficiently close to the initial pentad (iq, Ao, kg, So, o). AS we continue to change
h, k, S, the continuation process cannot terminate unless, as
(h, k, S)— (h*, k*, §*), say, we have ¢— +o or (in the limit) u fails to satisfy
u' >0, u(—»)=0, u(+»)=1

We pow rule out these possibilities. If ¢— +=, we may without loss of
generality suppose ¢ — +«, by Theorem 3.4. We have

) = S = [ 16y ds [ kGxokes - NSO Sty
= L h(s)ds Jim; k(x +cs —yWSu(y)) — S(uxNtdy + o(1), (4.14)

where o(1) denotes a term not exceeding any given & >0 by a choice of A(e)
sufficiently small and B(e) sufficiently large, this choice being uniform in
(h, k, S)— (h*, k*, S*). If ¢ — oo, then y > x in the range of integration in (4.14),
and so S{u(y)) > S{u(x)) and

w(x) — Su(x)) > o(1).

But u« —S{u) takes stricily negative values and this provides the necessary
contradiction.
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We may now suppose that, as (&, k, §)— (h*, k*, §*), we have (at least by a
subsequence) ¢ —»¢* and u — u* (uniformly on compact sets), and

u*= jmh*(s) ds jm k*(x + kg — y)S*(u*(y)) dy. (4.15)

Certainly we must have u* =0, and by differentiating (4.15) we see that either
u*' >0 or u*' =0. Also, we can, by translation, arrange the continyation process
so that the minimum value of #'(x) in the w-interval [a — uo, @ + 1] is taken at
x =0. (Here u, is a fixed number chosen so that $'(u) > 1 in [a — ug, a + uy), say

S'(u)>1+mn, forsome n>0.)

If u*' >0, then u* is a solution of (4.15) with u*(—o) # u*(+¢), and the three
possibilities are:

(1) ut(—o0) =0, u*(+w)y=1,
(ii) u*(—)=0, u*(+»)=aq,

(iii) u*(—w)=a, u*(+o)=1.

The first is what we want, and we can rule out (ii) and (iii) because u*'(x)
clearly does not have its minimum at x = 0, contradicting the manner in which we
defined our translations.

The remaining possibility is that ' =0, u* =a. Given any number B, we know,
since #—> u* on compact sets, that ultimately (as u — u*)

u(B)<a-+uy, w(-By>a—u,
Then

w' ()= J:ch(s) ds [;k(t)S'(u(cs —MNu'{cs — ) dt

A A
féf h(s) ds[ k(@S (u(es — ' (cs — 1) dt,
4] —A
where we choose A, as we may, so that both

A YopA 1

0 h(s)dszk(t)dr>1+n

and |c| A + A << B. Then, recalling that »'(0) is the minimum value of u’, we have
w'(0)>u'(0), a final contradiction which allows us to assert that, as
(h, k, S)— (h*, k*, §%), the solution pair (i, ¢} — (u*, c*), where (u#, ¢*} is again
a solution pair of the type required.

Thus the process of continuing solutions can be carried out for all (h, k, ). Nor
can there ever be two solutions corresponding to a particular sct (h, &, S). For if
there were, then we could continue back from such a set (h, k, §) to (hy, ky, S5).
Since there exists a unique solution for (hy, kg, Sp), somewhere in the backwards
continuation there must be a set (hy, k;, S;) at which the two solutions merge,
which contradicts Theorem 4.4 at (f;, k,, S} and completes the proof of the
theorem. [

We remark that it is only in Theorem 4.5 that we require the assumption that
—u + 85(u) has only one zero for u in (0,1), and we require it only to rule out
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solutions of type (i) or (iii) or u*=a. If —u +S(u) is allowed more internal
zetos, then, as in [6,7], there will arise the possibility of “stacks” of travelling
waves.

5. An exactly solvable model and numerical solutions

By choosing the function § to be the Heaviside step function, we can explicitly
compute a travelling wave for (2.2). (Wc note that, since § is then not
continuously differentiable, this example does not strictly fall under the hypoth-
eses of Theorem 2.1, although a theorem to cover it could be obtained as a
limiting case.) Let S(u)= H(u — 8) where 0< 0 < ;. The parameter ¢ represents
the threshold for excitation of the network. Since the wave is translation
invariant, we require that u(0) =0 as a normalisation. Because the threshold is
less than &, the wave travels to the right, if we take it to be monotonic decreasing,
with u(—)=1, u(+w)=0, so that ¢ >0, u(£)<8 for £>0 and u(£) > ¢ for
£ <0, Thus we must solve:

~ar@+u@=[ ke-epde = kw=6@ G

subject to the condition that u(0) = 0. Herc

13
6=~ [ k) (52)

Note that G(—) =1 and G(w) =0 by our normalisation of k. We can solve (5.1)
for u(¥):

u(é) = exp (§/c)(6 - % Jj exp (—s/c)G(s) ds). {(5.3)

We must choose ¢ 5o that as & — , the expressions remain bounded. Clearly, the
minimum requirement is that the term within the large parentheses tends to zero
as £ -—» o, ie.

o= % jm exp (—s/c)G(s) ds = f‘“ exp (—s)G(sc) ds. (5.4)

We immediately notice a few properties of the relationship between & and c. As
c—0, §— 1 and as c— «, §— 0. Furthermore d@/dc <0 since G is monotone
decreasing. Thus, for each 0< @ <3 there is a unique positive ¢ which solves

(5.4). Substitution of (5.4) into (5.3) yields:

u(f)%f: exp (£ — 5)/0)G(s) d.

An application of L’Hapital’s rule shows that u(£) satisfies the correct conditions
at £ (noting that G(«) =0 and G(—w)=1).
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Smooth: sig=.0%5, N=200, shp=10, thr=.25
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Figure 5.1 Spatial profiles at two different times for (2.2). We have chosen k(x)=10exp{—20x|)
and S(u) = 0-5(1 + tanh (10(u — 0-25))). There are 200 spatial points in our grid and we use Euler’s
method with a timestep of 0-1.

We have numerically solved (2.2) and compared it to the solutions to (5.1). In
Figure 5.1, the spatial profile of the soluticn to the smooth equation is depicted at
two different times. For comparison, in Figure 5.2 we show the same simulation
with the smooth function replaced by the Heaviside function. The parameters are
as given in the figure legends. While the present results concern scalar neural
networks in one spatial dimension, they can be used to obtain formally results for
much more general ncural networks. The key result is that a wavefront exists
which connects the two stable states. The formal asymptotic results of Tyson and
Keener show how once a front is constructed, many other solutions can be
constructed in systems of reaction-diffusion equations. The analogues of these

Heaviside: sig=.05, N=200 thr=.25
1 1 1 \ T 1

0.79 oo
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ux tl
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Figure 5.2. Same as Figure 5.1 with S(u) replaced by H{z ~ 0-25) and H the Heaviside function.
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results are easily constructed for neural networks now that wave fronts have been
proved. In a later paper, we shall describe some of these calculations.
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