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Abstract

A brief review of oscillatory activity in neurons and networks is given. Conditions required for neural oscillations are provided. Three

mathematical methods for studying the coupling between neural oscillators are described: (i) weak coupling, (ii) firing time maps, and (iii)

leaky integrate-and-fire methods. Several applications from macroscopic motor behavior to slice phenomena are provided.

D 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Oscillatory activity is ubiquitous in neural systems.

Rhythms play a major role in motor, sensory, and possibly

even cognitive functioning. A number of recent experiments

have pointed to the possible roles of neural oscillators in

visual perception, olfaction, and memory formation [1–3].

The mechanisms for the production of rhythmic firing vary

considerably from single pacemaker neurons, whose mem-

brane properties endow them with the ability to produce

rhythmic activity, to large cortical networks, where the in-

teractions of many excitatory and inhibitory neurons are

responsible for the rhythmic behavior.

Rhythmic behavior is seen at every level in the nervous

system. Some of the earliest experiments in physiology were

aimed at understanding the underlying mechanisms of

rhythmicity in nerve axons. The most obvious roles for

rhythmic activity occur in motor activities such as animal

gaits, respiratory rhythms, and feeding and mating patterns.

Oscillatory activity in pathologies like epilepsy and Parkin-

sonian tremors is well known and the subject of much

theoretical effort. Recently, there has been a great deal of

interest in the possible role of several different cortical

rhythms (such as coherent behavior in the gamma range

of 40–80 Hz) in cognitive function such as attention.

Several theories have been proposed which suggest that

binding of different parts of a perceived object could be

accomplished by using oscillatory codes [2,4].

There are many ways in which one can define rhyth-

micity, particularly when the systems are not always per-

fectly regular. We will take the point of view that a neural

network is oscillatory if the recorded variables (e.g., the

membrane potentials, currents, or calcium concentrations)

are periodic with a well-defined period, T. Another import-

ant property is stability to perturbations. That is, if the

oscillation is briefly perturbed, for example, by a short-

lasting small stimulus, then the rhythm will return to its

original magnitude and period with a possible phase-shift.

This phase-shift is quite important and can be systematically

used to model oscillators about which few details are

known. The absence of a phase effect due to a perturbation

is often a hint that the perturbed network is not the source of

the rhythm but rather is simply following the output of some

‘‘upstream oscillator.’’

Another important concept in oscillatory neural networks

is the pattern of timings or phases of the individual ele-

ments. That is, if one records from two different cells, then

the time-difference between the two action potentials (or

burst onsets, etc.) divided by the period defines the relative

phase. The phase is easily defined between two elements if

they have identical waveforms. For different waveform

shapes, there is no single best way to determine relative

phase, but one method is to choose a single prominent

feature of the waveform and measure relative to that feature.

In a typical oscillatory network, there will be many cells

firing at different times but with the same period. Choosing
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one cell to fire at zero phase allows us to uniquely define the

relative phase of all the remaining cells. Synchrony is

defined as a relative phase of zero and antiphase is a

phase-difference of one-half a cycle. The relative phases

of the elements in an oscillatory network serve to define the

behavior of that network. In many cases, the system is able

to switch from one pattern of phases to another. For

example, a horse can switch from walking to trotting to

galloping and the relative phases of the legs are different for

each gait. In trotting, the legs on one side are synchronous

but in antiphase with those of the other side. In galloping,

there is a complicated phase relationship among the four

legs. If these gaits are controlled by a neural ‘‘central pattern

generator,’’ then such changes in phase will be reflected in

changes in neuronal firing.

We will introduce some of the underlying theoretical

methods and issues that arise in the study of neural oscil-

lations. We first describe the requirements for oscillations at

the single cell and network level. Next, we discuss a general

method for the analysis of networks of intrinsically oscil-

lating neurons. Finally, we provide different examples of the

theory at work.

2. Neural oscillations

The basic requirement for any type of oscillation is a

positive action followed by a delayed negative feedback.

Thus, oscillatory activity can occur in the membrane of a

neuron, in the interactions between regions of a neuron, and

in networks of neurons. In a typical fast-spiking neuron,

injected current raises the potential, opening sodium chan-

nels and causing the potential to rise quickly. A slower

outward potassium current develops and at the same time

the sodium channels begin to close (due to inactivation at

high potentials). These two processes conspire to bring the

potential down. At the lower potential, the potassium

channels close down and the sodium channels recover from

the block allowing the process to repeat itself. This leads to

repetitive firing of action potentials. Interactions between

the soma and dendrites can also produce rhythmic behavior

[5].

Network interactions between different neurons can also

induce oscillations. In the thalamus, large amplitude oscil-

latory bursts of action potentials are recorded during sleep.

This is due to interactions between the excitatory thalamo-

cortical relay cells (TC) and the cells of the thalamic

reticular nucleus (nRT) [6]. TC cells contain a low-threshold

calcium current, which is inactivated at rest. Hyperpolariz-

ing the cell de-inactivates this large inward current so that

when the hyperpolarization disappears, the cell fires a large

burst of action potentials. This burst excites the nRT

neurons causing them to fire a burst of action potentials

that hyperpolarizes the TC cell starting the cycle again.

While there are innumerable biophysical mechanisms for

the production of oscillatory behavior in single cells and

networks, they are described by a few mathematical princi-

ples [7]. One of our goals in computational neuroscience is

to classify the huge variety of models according to the

underlying mathematical mechanisms that lead to oscilla-

tions. We use methods of dynamical systems theory, which

describes how qualitatively new behavior arises as param-

eters in a model vary. The theory tells us that there are three

mathematically distinct ways in which an excitable mem-

brane can go from rest to rhythmic behavior: (i) saddle-node

bifurcation, (i) Hopf bifurcation, and (iii) homoclinic

bifurcation. Very few neural models exhibit the third type

of behavior so we will only describe the first two.

These classifications actually correspond to physiologic-

ally observed behaviors. The behavior of axons subjected to

depolarizing currents was categorized into two different

classes [8]:

� Class I
� All-or-none action potentials;
� Arbitrarily long period oscillations;
� Long delay to firing of an action potential after a

transient stimulus;
� Square root or linear FI curve. (The FI curve is the

firing rate as a function of the injected current.)
� Class II

� Graded action potential amplitudes, particularly at

higher temperatures;
� Limited range of frequencies;
� Short latencies to firing.

In Ref. [7], it was suggested that these two classes corre-

sponded, respectively, to the saddle-node bifurcation and the

Hopf bifurcation.

One can ask why this is important. One point is that there

are mathematical techniques which allow one to reduce

many-variable conductance-based models to simplified sys-

tems without losing too many of the observed behaviors.

Thus, if one understands these simple models, it is possible

to apply that knowledge to whole classes of model cells. For

example, the action-potential generation of many conduct-

ance-based models, which are Class I can be well-fit with

the quadratic integrate-and-fire model [9]:

dx

dt
¼ ax2 þ bI

where I is the current input into the neuron (synaptic,

applied, or even slow currents like the AHP) and a, b are

parameters, which depend on the details of the model. The

variable x characterizes the amplitude of the all the variables

in the model; in particular, the voltage is approximately

given by, V(t) =V0 + V1x, where V0, V1 are constants

depending on the model. A second reason why such a

classification is useful is that the behavior of these

oscillators when coupled together in networks strongly

depends on whether they are Class I or II.
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3. Coupling of neural oscillators

Neurons are generally coupled together into networks

either through chemical synapses or via electrotonic gap

junctions that depend on the potential difference between

two neurons. Consider a simplified situation of a pair of

nearly identical neural oscillators coupled synaptically. In

absence of coupling, the two neurons fire repetitively and

their current states can conveniently be described by the

time since the last action potential, which we denote q1,2.
Note that these variables lie between 0 and T, the intrinsic

period of the cells. In the uncoupled case, these two times

are independent; however, we expect that the coupling will

alter their respective times so that they fall into a precise

pattern. For example, typical patterns between two neurons

are (i) synchrony, in which the timing difference between

the two cells vanishes, and (ii) antiphase, in which the cells

fire a half of a cycle out of phase.

Some of the questions that we have asked over the last

two decades are (1) can we predict the pattern between two

oscillators given their coupling; (2) how do environmental

and other influences change this pattern; and (3) how does

the nature of the neural oscillation affect this pattern? We

next describe three approaches we have taken to answer

these questions. The first is very general and is not neces-

sarily restricted to neural oscillations. The second method

takes advantage of the pulse-like interactions of fast chem-

ical synapses, and the third considers a simplified Class I

neuron for which mathematical results can be easily

extracted.

3.1. Weak coupling

There are powerful mathematical techniques applicable

to systems in which the oscillators are weakly coupled. One

can take ‘‘weak’’ to mean that the shapes of the action

potentials are not changed by the coupling but their timing

is. The theory for weak coupling is outlined in Ref. [10].

For a system of two weakly coupled neurons, there exists

a function, H, such that the time from the last spike, qj,
satisfies:

dq1
dt

¼ 1þ g12Hðq1 � q2Þ

dq2
dt

¼ dþ g21Hðq2 � q1Þ ð1Þ

where d is a parameter which allows the neurons to have

slightly different periods (d = 0 is the case of identical

neurons) and g is the coupling strength between the two

neurons. The function H is periodic with period T and

completely characterizes the interaction; it is essentially the

average of the response of the postsynaptic neuron, R(t),

given the synaptic current from the presynaptic cell, S(t). In

typical models, the function R(t) depends very strongly on

the class of the neuron in the sense of Section 2. For

example, Class I neurons have a strictly positive response

function (e.g., 1 + cos q), while Class II neurons have a

negative response for stimuli occurring right after the action

potential and a positive response function for later stimuli

(e.g., � sin q). Conversely, the synaptic function, S(t), does

not depend on the nature of the oscillator but does depend

on standard properties like the reversal potential of the

synapse and its time constant. We should point out that for

gap junctions, the function S(t) is just the potential

difference between the pre- and postsynaptic cells so that

it does depend on the nature of the oscillator. Both R(t) and

S(t) depend on the frequency of the oscillation. This can

have a profound effect on the observed patterns between

neural oscillators such as the gait changes of a horse as it

speeds up.

Returning to Eq. (1), the timing difference, f = q2� q1
satisfies an equation obtained by subtracting the two equa-

tions for qj

df
dt

¼ dþ g12Hð�fÞ � g21HðfÞ � GðfÞ ð2Þ

Zeros of the function G(f) satisfying G0(f) < 0 represent

stable timing differences between the two oscillators. In

general, unless d = 0 and g12 = g21, the timing difference

between the oscillators will not be zero. That is, unless the

oscillators are identical and symmetrically coupled, they

will not synchronize with a zero timing difference.

An interesting observation of a synchrony to antiphase

transition is in an experiment cited in Ref. [11]. Subjects

were asked to tap their fingers in an antiphase pattern while

trying to keep up with a metronome. As the metronome

increased in frequency, all subjects abruptly switched to a

synchronous rhythm. These authors suggested that the

phase-difference (normalized timing difference) between

the oscillators satisfied an equation of the form:

df
dt

¼ �sinf� asin2f ¼ kðf; aÞ

The antiphase solution, f =p, is stable as long as a > 1/2.

These authors suggested that as the frequency of the

oscillators increased the value of the parameter a decreased,

thus destabilizing the antiphase state. It has been shown that

for Class I neurons coupled with inhibition, both the

synchronous and the antiphase solution are both stable for

slow oscillations [12–15]. However, as the oscillation

frequency increases, the antiphase solution becomes un-

stable leaving synchrony as the only solution. On the other

hand, with mutually excitatory coupling, synchrony is stable

at low frequencies and antiphase behavior is stable at high

frequencies; they are never simultaneously stable. From this

general theoretical result, we can explain the behavioral

experiments cited in Ref. [11] if we assume that the groups

of neurons driving the finger tapping are coupled in a

mutually inhibitory manner.

G.B. Ermentrout, C.C. Chow / Physiology & Behavior 77 (2002) 629–633 631



Networks of many such oscillators can be similarly

modeled with a variety of different types of coupling. The

analysis of these networks in general is given in Ref. [16].

Models of this form have been used to study waves in the

procerebral lobe of the slug Limax [17], hippocampal

synchrony [18], central pattern generators in lamprey [10],

visually evoked waves in turtle visual cortex [4], as well as

many other oscillatory phenomena. The study of these

general (and seemingly abstract) models has suggested

numerous physiological experiments (see any of the papers,

Refs. [4,10,17,18]).

3.2. Strong coupling and maps

The weak coupling assumption gives a great deal of

information about networks of neurons that are intrinsically

oscillating. However, in many situations, connections be-

tween groups of neurons are sufficiently strong to cause the

postsynaptic cells to fire when they are otherwise at rest.

This kind of behavior cannot occur when the coupling is

weak. As an example, synchronization between to two dis-

tinct areas in the hippocampus of the rat has been studied

[19,20]. The oscillation frequency is in the gamma range of

roughly 40 Hz. As the two areas are distant, there is a delay

(due to finite axonal conduction speeds) of up to 8 ms (more

than a quarter of a cycle). In spite of this delay, the two sides

synchronize. The experimental data showed that when there

was strong synchronization between pyramidal neurons, the

inhibitory interneurons fired ‘‘doublets,’’ that is, for each

excitatory spike, the corresponding interneuron produced a

pair of spikes. A large computational model for this pre-

paration reproduces the experimental results [20].

In order to understand how this synchronization is

mediated, we [21] devised a simple network model consist-

ing of two pairs of excitatory (E) and inhibitory (I) cells.

Cells within a pair were reciprocally connected without time

delay. Each E cell then synapsed onto the I cell of the other

pair with a time delay. The E cells were depolarized (by

metabotropic receptors) so that they fired rapidly. The I cells

fired because the E cells excited them. The local feedback

inhibition slowed the E cell firing down to about 40 Hz due

to the inhibitory time constant of 10–20 ms. The excitatory

time constants were short (of the order of 2 ms). An I cell

that had not fired during the cycle was induced to fire within

a few milliseconds if it received input from an E cell.

However, if it had fired recently, then an input from the E

cell still fired it but at a delay that depended on the time

difference between the input and the last time the I cell fired.

This timing-dependent delay to spiking is a consequence of

the refractoriness of the I cells. Mathematically, it is because

of property 3 of Class I neurons, which constitute the

majority of inhibitory cortical interneurons.

The strategy we employed [21] was to translate these

observations into a mathematically rigorous map of spike-

times for the cells. In particular, we assumed that the spike

times of a periodically spiking cell are influenced by spikes

from other cells within a given period. This is a good

approximation for synapses that decay quickly compared

to the spiking period. This allows us to generate a first

return map of the spike time difference y between the E

cells from one period to the next. The map has the form

ynew ¼ FðyÞ

where F(y) is a function that depends on the firing

properties of the cells and the delay between the two sides.

The dynamics of the spike time difference is obtained by

iterating the map (i.e., plug a y into the map to obtain a new

y and then repeat). The synchronous solution is given by

y = 0 and it is stable if and only if jF0(0) | < 1, which turned

out to imply that synchrony is stable only for delays larger

than about 4–5 ms. At very long delays, synchrony remains

stable; however, small differences in the two sides are

magnified. Hence, the mathematics suggests that this

mechanism of doublets will work in a limited range of

delays.

The methods described here are quite powerful and have

been used to explain why the slower beta rhythms (20 Hz)

are able to synchronize with significantly larger delays [22]

and how knockout mice, in which the local E to I coupling

has a longer time constant, fail to synchronize their rhythms

[23].

3.3. Integrate-and-fire neurons

Even with the effectiveness of weak coupling theory and

first return maps, there are still situations when both are not

applicable. This occurs when neurons are coupled strongly

and the synaptic interactions are slow enough that they

influence spiking beyond a single period. There are no sure-

fire systematic approaches for these general situations.

However, for Class I neurons, a viable approach is to use

a simplified Class I model such as the classic leaky in-

tegrate-and-fire neuron:

C
dV

dt
¼ I � gV

This model ignores all spiking currents, integrates the in-

puts, and when the voltage, V, reaches a fixed threshold,

resets to a new prescribed value. For this simple model,

reaching the threshold constitutes a spike or action potential.

The neuron fires repetitively if the external input (which

includes synapses) pushes the neuron above threshold. The

assumption is that the spiking currents are active for a short

time, and this does not strongly influence the coupling

characteristics. Numerical simulations show that coupled

integrate-and-fire neurons behave qualitatively similarly to

Class I conductance-based neurons. The integrate-and-fire

neuron is simple enough that a spike-time map that depends

on the entire spiking history of the neuron can be derived

[12]. Conditions for synchrony can then be found for the

map. These and other approaches [24–26] find that slow
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inhibition or fast excitation is beneficial for synchronizing

neurons, whereas fast inhibition or slow excitation favors

antiphase. For a fixed synaptic decay time, this implies that

changing network-firing frequency can change the phase

relationship of oscillations. Interestingly enough, using

similar methods, it is found that gap junctions also show

this frequency dependent synchrony [27]. This theoretical

prediction was subsequently verified in experiments on

locus coeruleus where neurons are coupled electrotonically

with gap junctions [28].

References

[1] Singer W. Synchronization of cortical activity and its putative role in

information processing and learning. Ann Rev Physiol 1993;55:

349–74.

[2] Gray CM. Synchronous oscillations in neuronal systems: mechanisms

and functions. J Comput Neurosci 1994;1:11–38.

[3] Stopfer M, Bhagavan S, Smith BH, Laurent G. Impaired odour dis-

crimination on desynchronization of odour-encoding neural assem-

blies. Nature 1997;390:70–4.

[4] Ermentrout GB, Kleinfeld D. Traveling electrical waves in cortex:

insights from phase dynamics and speculation on a computational

role. Neuron 2001;29:33–44.

[5] Pinsky PF, Rinzel J. Intrinsic and network rhythmogenesis in a re-

duced Traub model for CA3 neurons. J Comput Neurosci 1994;1:

39–60.

[6] Kim U, Bal T, McCormick DA. Spindle waves are propagating

synchronized oscillations in the ferret LGNd in vitro. J Neurophysiol

1995;74(3):1301–23.

[7] Rinzel J, Ermentrout B. Analysis of neural excitability and oscilla-

tions. In: Koch C, Segev I, editors. Methods in Neuronal Modeling:

from synapses to networks. 2nd ed. Cambridge, MA: MIT Press;

1998. Chap. 7.

[8] Hodgkin AL. The local changes associated with repetitive action in a

non-medulated axon. J Physiol (Lond) 1948;107:165–81.

[9] Ermentrout GB, Kopell N. Parabolic bursting in an excitable system

coupled with a slow oscillation. SIAM J Appl Math 1986;46:233–53.

[10] Cohen AH, Ermentrout GB, Kiemel T, Kopell N, Sigvardt KA, Wil-

liams TL. Modelling of intersegmental coordination in the lamprey

central pattern generator for locomotion. Trends Neurosci 1992;15:

434–8.

[11] Haken H, Kelso JA, Bunz H. A theoretical model of phase transitions

in human hand movements. Biol Cybern 1985;51:347–56.

[12] Van Vreeswijk C, Abbott L, Ermentrout B. When inhibition not

excitation synchronizes neural firing. J Comput Neurosci 1994;1:

313–21.

[13] Chow CC, White JA, Ritt J, Kopell N. Frequency control in syn-

chronized networks of inhibitory neurons. J Comput Neurosci 1998;5:

407–20.

[14] Chow CC. Phase-locking in weakly heterogeneous neuronal net-

works. Physica D 1998;118:343–70.

[15] White JA, Chow CC, Ritt J, Soto-Trevino C, Kopell N. Synchroniza-

tion and oscillatory dynamics in heterogeneous, mutually inhibited

neurons. J Comp Neurosci 1998;5:5–16.

[16] Ermentrout GB. Stable periodic solutions to discrete and continuum

arrays of weakly coupled nonlinear oscillators. SIAM J Appl Math

1992;52:1665–87.

[17] Ermentrout GB, Flores J, Gelperin A. Minimal model of oscillations

and waves in the Limax olfactory lobe with tests of the model’s

predictive power. J Neurophysiol 1998;79:2677–89.

[18] Skinner FK, Wu C, Zhang L. Phase-coupled oscillator models can

predict hippocampal inhibitory synaptic connections. Eur J Neurosci

2001;13:2183–94.

[19] Traub RD, Whittington MA, Stanford IM, Jefferys JG. A mechanism

for generation of long-range synchronous fast oscillations in the cor-

tex. Nature 1996;383:621–4.

[20] Traub RD, Jefferys JG, Whittington MA. Simulation of gamma

rhythms in networks of interneurons and pyramidal cells. J Comput

Neurosci 1997;4:141–50.

[21] Ermentrout GB, Kopell N. Fine structure of neural spiking and syn-

chronization in the presence of conduction delays. Proc Natl Acad Sci

USA 1998;95:1259–64.

[22] Kopell N, Ermentrout GB, Whittington MA, Traub RD. Gamma

rhythms and beta rhythms have different synchronization properties.

Proc Natl Acad Sci USA 2000;97:1867–72.

[23] Fuchs EC, Doheny H, Faulkner H, Caputi A, Traub RD, Bibbig A,

et al. Genetically altered AMPA-type glutamate receptor kinetics in

interneurons disrupt long-range synchrony of gamma oscillation. Proc

Natl Acad Sci USA 2001;98:3571–6.

[24] Hansel D, Mato G, Meunier G. Synchrony in excitatory neural net-

works. Neural Comp 1995;7:307–37.

[25] Gerstner W, van Hemmen JL, Cowan J. What matters in neuronal

locking? Neural Comp 1996;8:1653–76.

[26] Terman D, Kopell N, Bose A. Dynamics of two neurons coupled by

mutual slow inhibition. Physica D 1998;117:241–75.

[27] Chow CC, Kopell N. Dynamics of spiking neurons with electrical

coupling. Neural Comp 2000;12:1643–78.

[28] Alvarez-Maubecin V, Chow CC, van Bockstaele VJ, Williams JT.

Frequency-dependent synchrony in locus coeruleus: role of electro-

tonic coupling. Proc Natl Acad Sci USA 2002;99:4032–403.

G.B. Ermentrout, C.C. Chow / Physiology & Behavior 77 (2002) 629–633 633


	Introduction
	Neural oscillations
	Coupling of neural oscillators
	Weak coupling
	Strong coupling and maps
	Integrate-and-fire neurons

	References

