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Abstract. A population of oscillatory Hodgkin–Huxley (HH) model neurons is shown numer-
ically to exhibit a behavior in which the introduction of excitatory synaptic coupling synchronizes
and dramatically slows firing. This effect contrasts with the standard theory that recurrent synaptic
excitation promotes states of rapid, sustained activity, independent of intrinsic neuronal dynamics.
The observed behavior is not due to simple depolarization block nor to standard elliptic bursting,
although it is related to these phenomena. We analyze this effect using a reduced model for a sin-
gle, self-coupled HH oscillator. The mechanism explained here involves an extreme form of delayed
bifurcation in which the development of a vortex structure through interaction of fast and slow
subsystems pins trajectories near a surface that consists of unstable equilibria of a certain reduced
system, in a canard-like manner. Using this vortex structure, a new passage time calculation is used
to approximate the interspike time interval. We also consider how changes in the synaptic opening
rate can modulate oscillation frequency and can lead to a related scenario through which bursting
may occur for the HH equations as the synaptic opening rate is reduced.
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1. Introduction. Recurrent excitatory networks of neurons are purported to
underlie persistent activity in the nervous system. Such networks have been used as
models for wave propagation and short-term memory [2, 17]. Long-lasting excitatory
synaptic connectivity is generally sufficient to enable such densely coupled neurons
to fire repetitively at high rates after some transient input, even when the individual
neurons do not intrinsically oscillate. The ability of an excitatory network to maintain
a persistent state depends on several interacting factors. In many types of cortical
neuron models, excitatory coupling leads to asynchronous firing when the synaptic
time course lasts long enough [10]. Shortening the time constant leads to two effects;
first, the neurons can synchronize, and second, thus synchronized, the network cannot
reignite due to the refractory period of the neurons. Studies of persistent activity have
not generally focused on differences from this standard scenario that arise due to the
intrinsic dynamics of individual neurons.

In this paper we report on a new mechanism through which persistent activity
is drastically slowed by excitatory coupling in a network of Hodgkin–Huxley (HH)
neurons. In fact, even if the neurons are intrinsically active (say, through current
injection), the excitatory coupling dramatically slows them down. We will show that
the mechanism for this slowing down is a consequence of an interesting mathematical

∗Received by the editors July 9, 2003; accepted for publication (in revised form) March 18, 2004;
published electronically September 24, 2004.

http://www.siam.org/journals/siap/65-1/43123.html
†Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260 (jddst25@pitt.edu,

rubin@math.pitt.edu, bard@math.pitt.edu). This work was partially supported by the National
Science Foundation.

‡Department of Mathematics, University of Texas, Arlington, TX 76019 (su@uta.edu).

69



70 J. DROVER, J. RUBIN, J. SU, AND B. ERMENTROUT

structure (a canard) in which a trajectory passes close to a curve of points that are
critical points for the intrinsic neuronal dynamics without coupling and that switch
from attracting to repelling with respect to these dynamics as synaptic excitation
decays [3, 22]. While delayed bifurcation resulting from slow passage infinitesimally
close to such a critical curve has been studied previously [3, 15, 16, 4], we shall see
that the extreme slowing that we observe involves a novel “vortex” structure and does
not fit into the standard class of slow passage problems that have been considered.
Indeed, the dynamics controlling the slow passage here, namely, the synaptic decay, do
not need to be particularly slow for the extreme delay in activity to occur. Moreover,
the slowing phenomenon occurs over a broad parameter range, which distinguishes it
from typical canard scenarios.

Our results relate to those of Guckenheimer et al. [8, 9], who found prolonged
interspike intervals in a model of the lateral pyloric (LP) cell of the lobster stomato-
gastric ganglion (see Figure 5 in [8]) and analyzed a normal form of the subcritical
Hopf-homoclinic bifurcation that gives rise to this phenomenon in the LP model. To
compare our work to theirs, we note that the system we study has a unique, unstable
critical point, at which the synaptic variable is zero. This critical point can be made to
undergo a subcritical Hopf bifurcation as certain parameters are varied, although we
do not do this. It is also quite possible that we are working in a parameter regime that
is near a homoclinic bifurcation curve, although we do not consider this aspect of the
dynamics directly. What Guckenheimer et al. analyze, however, is not a slow passage
problem. Indeed, a crucial difference arising in the present work is that the decay of
the synaptic variable sweeps a critical point of a reduced subsystem through a Hopf
bifurcation, whereas their analysis treats periodic orbits with the full system held at a
fixed distance from bifurcation. The slow passage that we consider leads to a delayed
escape from a repelling branch of critical points for the subsystem; the normal form
asymptotic analysis in [9] does not involve delayed bifurcation, multiple timescales,
or reduced subsystems, although a slow variable does bring trajectories closer to the
Hopf bifurcation on successive oscillation cycles in the LP model. Further, we give
a directly computable estimate for the change in the synaptic variable during the
passage through the vortex structure that traps it, which translates directly into an
estimate of passage time, and we analyze the contribution of the synaptic decay rate
to the delay. The work in [9] does give an estimate for oscillation period, but this
is stated in terms of normal form variables and includes some abstract constants.
We note that a prolonged silent phase in the HH equations was also observed in the
thorough numerical study of Doi and Kumagai [5]. There, the slowing down was at-
tributed simply to a decrease in the instability of the unstable equilibrium of a certain
fast subsystem; no further analysis was given, and the vortex phenomenon was not
uncovered.

In section 2 of this paper, we begin by demonstrating the extreme delay effect,
first in a large network of HH neurons, then in a reduced model, and finally in a
single self-coupled neuron. Since we show that the HH networks oscillate in near
synchrony, the self-coupled neuron represents a reasonable approximation of the full
network behavior. In the self-coupled neuron, we show how the slowed firing rate
depends on the coupling strength, the time constant of the synapses, and the reversal
potential of the synapses. In section 3, we review the phase plane for the reduced HH
model for a single self-coupled neuron and illustrate the slowing mechanism there. In
section 4, we introduce a polynomial approximation of the model that encapsulates the
behavior of the reduced HH neuron in the silent phase. We analyze this model in some
detail, first showing that the usual approach to delayed bifurcations [3, 15, 16] does
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Fig. 1.1. Behavior of networks of excitatorily coupled neurons depends on the intrinsic dynam-
ics. (a) Persistent activity in a network of 50 cells with Traub’s pyramidal cell dynamics. Neurons
are indexed horizontally and time increases downward along the vertical axis. Grey scale depicts the
membrane potential. (b) A similar network using the dynamics due to Hodgkin and Huxley. The
first 50 milliseconds show the behavior of the uncoupled network; coupling is then turned on showing
rapid synchronization and a 10-fold increase in the oscillation period. (c) Voltage traces from cells
0 and 32 (out of 50) from the simulation in (b).

not capture the slowing down that we observe and then deriving a novel approach to
analyze the delay, including its dependence on the synaptic decay rate. This approach
focuses on the effect of a vortex structure in which the interaction of fast and slow
subsystems pins trajectories in a certain neighborhood of the critical curve mentioned
above. More specifically, we use this structure to derive an appropriate way-in–way-
out function [3, 15, 16] that can be used to compute a good estimate of the change
in the synaptic variable as a trajectory passes through the vortex. In section 5, we
show how this vortex mechanism carries over to the HH system, and we explore the
role of the active phase in the slow oscillations. In particular, we see how the slowing
mechanism can contribute to a form of bursting, or alternation of sustained silent
periods with periods of spiking, in the HH equations. Finally, in section 6, we give
a further discussion of how this work relates to some earlier results and of the open
questions that remain.

2. Numerical simulations of networks. If a network of excitatory cells is
coupled together, often the network activity is asynchronous and has a much higher
frequency than the individual cell [11, 12]. This is illustrated in Figure 1.1(a) for 50
cells coupled together in an all-to-all manner using a biophysical model for the fast
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currents in a hippocampal neuron and synapses with a decay constant of 5 milliseconds
[23]. Note that simulations shown in this figure, as well as all other simulations in this
paper, were done using XPPAUT [7]. In the model simulated, individual cells do not
fire on their own; the applied current is below threshold. However, coupled together,
they produce a rhythm that is nearly 400 Hz. This is an example of strong persistent
activity in an excitatory network. Contrast this behavior with another biophysical
model based on the HH equations [13], with the same initial conditions and all-to-all
coupling. The upper part of Figure 1.1(b) shows asynchronous output of the network
when there is no coupling; the frequency is around 100 Hz. Here the neurons receive
drive so that they fire spontaneously. After the first 50 milliseconds, the coupling
is turned on and the network rapidly synchronizes and fires at a frequency of only
about 10 Hz. Stronger coupling or longer decay rates lead to even lower frequencies.
Both networks contain only three currents: a transient sodium current, a potassium
current, and a leak. The individual voltage traces of two cells in Network B are
shown in Figure 1.1(c). They are nearly synchronous, with out-of-phase subthreshold
oscillations.

The difference in synchronization properties between these two example networks
is fairly well understood, at least in the weak coupling limit. It is known that excita-
tory coupling can synchronize or desynchronize coupled neurons depending on many
factors, such as the synaptic time constant. A very important factor is the nature of
the individual neuron. In models for which the onset of repetitive firing is through
a saddle node on a limit cycle (e.g., Figure 1.1(a)), excitatory coupling desynchro-
nizes [6], while in models for which the onset is through a Hopf bifurcation (e.g.,
Figure 1.1(b)), excitatory coupling synchronizes [11]. As it turns out, the extreme
slowing observed in the HH network also contributes to the synchronization through a
form of fast threshold modulation [20]. We will return to this point in the discussion.

Our goal in much of the rest of this paper is to understand how the frequency
of the synchronized oscillations is reduced to the extremely low rates observed in the
HH simulations. To understand this, we first reduce the four-variable model to a two-
variable system in the manner of Rinzel [18]. This will make the analysis simpler in the
subsequent sections. The same network of 50 cells for the reduced system exhibits the
same behavior as the full model (not shown); however, the cells synchronize perfectly,
unlike in the four-variable cell model. Since synchrony (or near synchrony) appears
to be a stable state of the network, we can understand the slowing down of the full
network by studying a single self-coupled reduced HH cell:

C
dV

dt
= −gL(V − VL) − gKn4(V − VK) − gNam

3h(V − VNa)

+ I0 − gsyns(V − Vsyn),

dh

dt
=

h∞(V ) − h

τh(V )
,

m = m∞(V ),(2.1)

n = max(.801 − 1.03h, 0),

ds

dt
= α(V )(1 − s) − s/τsyn.

The specific values of the gating functions and parameters in (2.1) are given in Ap-
pendix A. Note that the synapse has dynamics gated by the potential, V , and the
reversal potential of the synapse is Vsyn. Figure 2.1(a) shows the period of the self-
coupled cell as a function of the strength of coupling, gsyn, for several different synaptic
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Fig. 2.1. Properties of the self-coupled reduced HH model. (a) The variation of the period as
a function of the maximal synaptic conductance for different synaptic decay times. (b) Dependence
of the period on the reversal potential of the synapse; gsyn = 4 ms

cm2 and τsyn = 10s. The resting
potential of the neuron is about −65 mV. The discontinuities in the curve occur because the trajectory
cannot release until after an integral number of subthreshold oscillations (see Figure 1.1(c)). (c) V −s
phase plane during a slow oscillation (trajectory shown with circles and thick solid line) superimposed
on the bifurcation diagram (thin solid and dashed lines) for which s is treated as a parameter. The
arrow depicts the value of s at which there is a Hopf bifurcation. To compute the bifurcation diagram,
we replaced the piecewise linear definition of n in (2.1) with a smooth approximation.

decay rates, τsyn. This dramatic slowing down is not due to simple depolarization; the
period is a monotonically decreasing function of the applied current, I0. Furthermore,
for gsyn fixed and s held constant as a parameter, the period is roughly constant as s
increases. The mechanism for slowing down depends on the transient nature of s(t)
and its interplay with the intrinsic dynamics of the reduced HH model. Furthermore,
synaptic excitation is required for this; Figure 2.1(b) shows the period as a function
of the reversal potential of the synapse Vsyn.

We can give a rather crude explanation for the behavior by treating the synapse
as a slow variable. Thus, in (2.1), we treat s as a parameter in the voltage dynamics.
For sufficiently large values of s and for gsyn large, the membrane dynamics have a
stable fixed point corresponding to depolarization block of the sodium current. (The
resting potential is so large that the sodium channels are inactivated by the synapse.)
As s is decreased, there is a Hopf bifurcation leading to large amplitude periodic
solutions. Figure 2.1(c) shows the V − s phase plane with the bifurcation diagram
superimposed. The trajectory winds around in a clockwise motion. Essentially, the
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slow oscillation is a one-spike elliptic burster [19, 24, 14]. That is, for large values of
s, the resting state is stable and the neuron cannot fire. Thus, the synaptic gating
variable decays. As this variable gets smaller, the trajectory passes through the Hopf
bifurcation (shown by the arrow) and the resting state becomes unstable. However,
as can be seen in the figure and is known to occur in elliptic bursting, the trajectory
continues along the curve of unstable fixed points, to s-values well below the Hopf
point, before jumping away.

While this explanation seems somewhat satisfactory, it cannot account for the
drastic slowing down and extreme decay (to nearly 0) of s that we observe. Moreover,
the time constant of the decay in the figure (τsyn = 10 msec) is not particularly slow;
in this range it is about twice the decay rate of the inactivation variable, h. The
mechanism for the extended period is actually quite subtle, and it turns out to be
better to treat the recovery variable, h, as the slow variable and to study the dynamics
in the V −h plane. Moreover, we shall see that standard treatment of elliptic bursting
and associated delay does not predict the extent to which the period increases with
τsyn here, as seen in Figure 2.1(a).

3. The V − h plane. We rewrite the equations for the reduced HH model:

C
dV

dt
= f(V, h) − gsyns(V − Vsyn),(3.1)

dh

dt
= αh(V )(1 − h) − βh(V )h,(3.2)

where

f(V, h) = I0 − gNah(V − VNa)m
3
∞(V ) − gK(V − VK)n4(h) − gL(V − VL).

The equation for the synapse is

ds

dt
= α(V )(1 − s) − s/τsyn.(3.3)

While h and s have similar time courses, h evolves much more slowly than V ,
so we refer to (3.1) as the fast equation and (3.2) as the slow equation, and we refer
to this pair of equations as (PS), for projected system. For each fixed value of s,
the solution to the equation dV/dt = 0 forms a triple-branched curve in (V, h)-phase
space, which constitutes the fast nullcline (Figure 3.1). We will also refer to the slow
nullcline, given by dh/dt = 0 (Figure 3.1(b)). Note that as s evolves, the fast nullcline
of system (3.1)–(3.2) evolves correspondingly, while the slow nullcline is independent
of s. Alternatively, for the full system (3.1)–(3.3), there exist two-dimensional fast
and slow nullsurfaces in (V, h, s)-phase space.

Solutions to the system (3.1)–(3.3) are strongly attracted to the left and right
branches of the fast nullsurface, except during fast jumps between branches (see Fig-
ure 3.1(a)). We refer to a time period when a solution is near the left (right) branch
as a silent phase (active phase). For our analysis, we will make use of projections of
solutions to (V, h)-phase space, but it is important to note that s continues to evolve
along with V and h.

3.1. Attraction to the intersection of nullclines and extended delay.
The left panel of Figure 3.1 shows a numerically generated trajectory of (3.1)–(3.3),
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Fig. 3.1. An orbit of (3.1)–(3.3) together with relevant nullclines. In the left panel, it is apparent
that the orbit spends a long time in the silent phase near the left knees of the V -nullclines. In the
right panel, it is clear that the orbit hugs the h-nullcline until s decays very near to zero, and then
there is a small oscillation followed by a jump up to the active phase. τsyn = 20s in this figure.

superimposed on V -nullclines of (PS) that were numerically generated for several
different values of s. A projection of this trajectory into (V, h)-phase space appears
in the right panel, along with the V - and h-nullclines for an arbitrary fixed s near 0.
In Figure 3.1, we see that after jumping down to the left surface of the fast nullcline,
the orbit travels very close to this surface, although this is not apparent in the right
panel of Figure 3.1 because we have only plotted the fast nullcline for a single, very
small value of s. The orbit also appears to hug the slow nullcline as the synaptic
variable s slowly decays; in other words, the orbit is very close to the intersection
of the fast and slow nullclines for each fixed s. After a long delay, the orbit spirals
away from the intersection of the nullclines as if this intersection point, treated as a
critical point of (PS), had suddenly become unstable through a Hopf bifurcation at
some small s. This is not the case; although there is a Hopf bifurcation and a loss of
stability as s decays, the orbit remains near the nullcline until s reaches values well
below the bifurcation point.

The intersection of the nullclines may be viewed as a critical point of (PS) with
s fixed as a parameter. The stability of the critical point changes when s ≈ 0.222 for
the default parameter set, while the escape seen in Figure 3.1 occurs when s ≈ 0.003.
This means that the orbit is attracted toward the intersection (or not repelled) while
that intersection represents an unstable fixed point of (PS). The objectives for this
and the following section are to explain why this delayed exit occurs and to derive an
analytical expression that gives a good estimate of the duration of this delay.

3.2. Ingredients for the delay. The problem presented here is that orbits
appear to be attracted to a curve of unstable critical points. However, each critical
point is only unstable for fixed s. For the full system (3.1)–(3.3), s decays during
the silent phase, and so there are no true critical points with s > 0. Thus, we
cannot immediately assume that the intersection will repel the orbit once it is unstable
with respect to (PS). Linear stability analysis for critical points of (PS) may not be
appropriate for the system (3.1)–(3.3). Somehow, one needs to take into account the
dynamics of s to explain the delay in escape from the silent phase. Previous authors
have contended with this issue in slow passage problems [3, 15, 16, 1, 4] and in elliptic
bursting in particular [19, 24, 14, 21]. Unless 1/τsyn � dh/dt, however, (3.1)–(3.3)
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do not fit the standard slow passage assumptions.
Also, the h-coordinate of the fast nullcline increases as s decreases, and the slow

nullcline has negative slope with respect to the variable V (in the (V, h)-plane). Thus,
the intersection of the nullclines is moving up and to the left in the phase plane as
s decreases. Trajectories also move in this direction, as they approach the nega-
tively sloped slow nullcline. Thus, trajectories may approach the intersection of the
nullclines, even if the linearization about the intersection of the nullclines with fixed
s yields eigenvalues with positive real parts. Below, we will discuss an additional
trapping mechanism that holds trajectories near this intersection.

Finally, for a value of s near the Hopf bifurcation, the nullclines are in the fold
canard configuration [3]. Although this lasts for only a short period, it may provide
a mechanism for a canard to arise in the full system. In this paper we will not use a
singular slow-fast decomposition, and we will not use the tools of nonstandard analysis
[3]. Nevertheless, the canard configuration appears to be an imperative structural
feature in any system that demonstrates this extended delay, for reasons that we shall
see below.

4. A simple system. To do any analysis directly, a model simpler than (3.1)–
(3.3) is useful to characterize the relevant dynamics in the silent phase, although the
conclusions of the analysis are expected to hold for more general systems. For the sake
of analysis, the system ideally will have nullclines that are represented by polynomials.
Based on the observations from the previous subsection, our model must incorporate
the following characteristics:

• The slow nullcline has a negative slope with respect to the fast variable,
provided the trajectory approaches the slow nullcline from the left after it
enters the silent phase (see Figure 3.1). If the approach is from the right,
then the slope of the curve must be positive.

• The intersection of the fast and slow nullclines is a stable critical point (when
parameterized by s) of the intrinsic equations for large values of s, and then
changes stability via a Hopf bifurcation induced by a transversal crossing of
a conjugate pair of eigenvalues through the imaginary axis, away from the
origin, as s decays. For a value of s near the Hopf bifurcation, the nullclines
must be in the regular fold canard configuration, discussed in [3].

• The vector field of the system is analytic [15, 16] and autonomous during the
silent phase.

4.1. The model. The model used for all analysis during the silent phase is

dx

dt
= −f(x) + y − I(s)x,(4.1)

dy

dt
= −ε

(
y +

1

4
x5

)
,(4.2)

ds

dt
= − s

τsyn
,(4.3)

where 0 < ε � 1; note that we consider only x < 0. For simulations in this paper,
the function f in (4.1) is

f(x) =
1

4
x3 − 2x
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and the synaptic current function I is

I(s) =
3

2
s.

Note that this model does not oscillate, but trajectories do jump up from the silent
phase. This is sufficient for consideration of behavior during the silent phase. It is
not necessary to consider the active phase (when spikes occur) to explain the slow
release; however, we will return to the study of the role of the active phase for the
HH equations, and bursting in particular, later in the paper.

4.2. Some notation. For the remainder of the paper, the following notation
will be used. Nf (x, s) is the y-coordinate of the fast nullcline (dxdt = 0) for a given x

and s. Similarly, Ns(x) is the y-coordinate of the slow nullcline (dydt = 0) for a given
value of x. Note that ∂Nf/∂s < 0 for x < 0, that Ns(x) does not depend on s, and
that these two curves intersect for each fixed s. Let (x̃(s), ỹ(s)) denote the curve of
intersection points.

For the system given in (4.1), (4.2), the functions Nf (x, s) and Ns(x) are given
by

Nf (x, s) = f(x) + I(s)x,

Ns(x) = −1

4
x5.

The intersection of these curves is easily found for each value of s.

4.3. The usual approach. Though the trajectory is visibly separated from
the intersection of the fast and slow nullclines in the right panel of Figure 3.1, it is
still possible that the release value of s can be approximated using the variational
equation around (x̃(s), ỹ(s)). Indeed, this approach has been taken previously to
analyze delayed escape in slow passage through a Hopf bifurcation through use of a
way-in–way-out function [3, 15, 16]. This function relates the attraction of the orbit
before the Hopf bifurcation to the repelling of the orbit after the change of stability has
taken place. We shall see that in our case, this approach is not necessarily appropriate.

We now demonstrate the poor performance of the standard way-in–way-out, com-
puted using the equation of first variation along the curve (x̃(s), ỹ(s)). Let J be the
Jacobian matrix of the system defined by (4.1)–(4.2) along (x̃(s), ỹ(s)). We have that

J(s) =

(
−3

4 x̃
2(s) + 2 − I(s), 1
−ε 5

4 x̃
4(s), −ε

)
.(4.4)

The equation of first variation is

d

ds

(
x
y

)
= −τsyn

s
J(s)

(
x
y

)
.(4.5)

The solution to (4.5), taken from a starting point (x0, y0, senter), is

(
x
y

)
= exp

(∫ s

senter

−τsyn
ω

J(ω)dω

)(
x0

y0

)
.(4.6)
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Given an senter, we may solve the equation

∣∣∣∣
∣∣∣∣exp

(∫ s

senter

−τsyn
ω

J(ω)dω

)(
x0

y0

)∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣
(
x0

y0

)∣∣∣∣
∣∣∣∣
2

(4.7)

for s = sexit. The value sexit is an approximation of the value of s such that

∣∣∣∣
∣∣∣∣
(
x
y

)∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣
(
x0

y0

)∣∣∣∣
∣∣∣∣
2

,

where x, y are functions of s since they solve (4.5).
In typical slow passage problems [3, 15, 16, 4], this sexit provides a good approxi-

mation for the release value of s. The results for the system under consideration here
are not good, especially for the lower values of τsyn tested. This poor performance
does not contradict the standard theory; this approach breaks down precisely when
the passage rate determined by the decay of s in (4.3) is not sufficiently slow in com-
parison with the rate of change in (4.2). The value of the approximated value of sexit
over a range of τsyn is shown in Figure 4.1. The standard way-in–way-out analysis
overestimates sexit. Since s decays in the silent phase, this means that this approach
underestimates the amount of time spent in the silent phase.

Notice further that the sexit curve generated here is rather flat. This is expected
because the linearization of the system when s is used as a parameter does not depend
on τsyn. The slight curvature of the sexit curve that is visible in Figure 4.1 is due to
the fact that different values of senter satisfy the entrance criterion (see caption) for
different τsyn. Simulations (solid line in Figure 4.1) suggest that the true value of sexit
varies as the logarithm of τsyn. Correspondingly, the passage time from senter to sexit
grows linearly with τsyn, and spike frequency decreases as 1/τsyn as τsyn increases.

It is now apparent this is not a standard way-in–way-out problem about the curve
of critical points of a slow-fast system. In the following sections, we will propose a
mechanism for the increased delay, perform the corresponding analysis, and demon-
strate that this approach gives a much better estimate of the observed delay than
that given by the usual analysis done in this section, up to values of τsyn for which
1/τsyn � ε. For values of τsyn greater than this, the usual approach is sufficient, and
as τsyn → ∞ the two approaches are identical.

4.4. The trapping mechanism. As s → 0, the fast nullcline moves upward in
the y-coordinate, since x < 0 and thus ∂Nf/∂s < 0. In simulations, it appears as if
orbits of (4.1)–(4.3) (or of (3.1)–(3.3)) track very close to the intersection curve of the
fast and slow nullclines. To understand what organizes the flow near this curve, it is
useful to define the following set:

A(s) =

{
(x0, y0)

∣∣∣∣dydt (x0, y0) <
dNf

ds
(x0, s)

ds

dt

}
.(4.8)

This set consists simply of the points in the (x, y)-plane such that a trajectory that
passes through the point (x0, y0) ∈ A travels more slowly in the vertical direction
(y-direction) than does the point on the fast nullcline with the same x-coordinate.

Because Nf (x, s) increases as s decreases for fixed x < 0, we have that
dNf

ds (x0, s)
ds
dt >

0, which guarantees that A(s) is nonempty for each s. As x → −∞, dy
dt → ∞ as

well (see (4.2)), so for each fixed y, there exists x sufficiently negative such that
dy
dt >

dNf

ds
ds
dt ; similarly, for each fixed x < 0, there exists y sufficiently negative such
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Fig. 4.1. Values of sexit computed numerically versus those computed from the usual way-in–
way-out function, as τsyn varies. The approximation obtained by solving (4.7) (dotted line) appears
to be fairly invariant with respect to τsyn, but simulations of (4.1)–(4.3) strongly suggest that this is
not the case (solid line). Here, ε = .01 and the entrance criterion used in (4.7) is ||x||2 = 0.1.
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Fig. 4.2. The curves Nf and Ns along with the boundary of the set A(s) for s = .0326. The
set A(s) also includes a region to the right of Ns(x), but only the shaded region is relevant.

that this inequality holds. Thus, A(s) is bounded to the left and below, and the
boundary ∂A(s) is a curve, which we denote y∂A(s)(x), in the (x, y) plane. For the
simple system (4.1)–(4.2), we can express the boundary curve ∂A(s) as the graph of
a function:

y∂A(s)(x) = −1

4
x5 +

3xs

2ετsyn
.(4.9)

Notice that y∂A(0)(x) = Ns(x), and that as τsyn → ∞, y∂A(s)(x) → Ns(x).
Figure 4.2 shows the curve ∂A(s) for s = .0326, along with Nf (x, s) and Ns(x).

For the value of s in Figure 4.2, if the trajectory lies to the right of the curve ∂A(s),
then Nf (x, s) will be moving upward faster than the trajectory. Likewise, if the
trajectory lies to the left of the curve, then the nullcline will be moving upward slower
than the trajectory.

The intersection of the curves ∂A(s) and Nf (x, s) turns out to be extremely
important for the delay phenomenon under study. The curve defined by these inter-
section points for a range of s values forms an attractor for values of s for which,
from the perspective of the analysis done in section 4.3, the intersection of Nf and Ns
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Fig. 4.3. A sample trajectory as viewed by an observer riding the intersection of ∂A(s) and
Nf (x, s). Trajectories to the left of ∂A(s) pass to y-values above the observer, trajectories to the
right fall behind. The left and right movement is dependent on whether the trajectory is above or
below the curve Nf (x, s).

corresponds to a repelling set. Suppose that a trajectory lies below Nf (x, s) and to
the right of ∂A(s). Thus, the trajectory and Nf (x, s) are separating, but dx

dt < 0, and
so eventually the trajectory crosses ∂A(s) and then begins to catch up to Nf (x, s).
This may result in a net contraction toward ∂A(s)∩Nf (x, s). The y-coordinate of the
trajectory will eventually increase through Nf (x, s), such that dx

dt > 0 results. This
causes the trajectory to again cross the curve ∂A(s), and another contraction toward
∂A(s)∩Nf (x, s) may occur as Nf (x, s) catches up to the trajectory. Thus, the inter-
section curve of ∂A(s) and Nf (x, s), while not itself invariant under the flow, creates
a moving vortex, or core about which the flow spirals. The flow diagram around this
core, projected to the (V, h)-phase plane, is shown in Figure 4.3.

This moving vortex structure generates a trapping mechanism within the flow.
Simulations show that trajectories follow the vortex curve very closely during the
silent phase. Using a change of variables, we next explore the stability of the vortex
curve and its impact on delayed escape from the silent phase.

4.5. Equations of the moving vortex. To focus on the moving vortex, we
will shift the system so that the intersection, say, (x̂(s), ŷ(s)), of ∂A(s) and Nf (x, s)
occurs at the origin for all s. For the simplified model, note that one can obtain explicit
expressions for this intersection point. A linear change of variables, z1 = x− x̂(s) and
z2 = y − ŷ(s), yields the following system:

dz1

dt
=

dx

dt
− dx̂

ds

ds

dt
,(4.10)

dz2

dt
=

dy

dt
− dŷ

ds

ds

dt
,(4.11)

which can also be written

dz1

dt
= f1(z1, z2, s),(4.12)

dz2

dt
= f2(z1, z2, s),(4.13)



CANARD MECHANISM FOR LOW-FREQUENCY NEURONAL FIRING 81

400 650 900 1150 1400
0.15

0.2

0.25

0.3

0.35

τsyn

s c
h
a
n
g
e

Fig. 4.4. Change of stability. The solid line represents the value of s where the sign of the real
part of the complex conjugate pair of eigenvalues changes along the curve (x̂(s), ŷ(s)). The dotted
line shows the value of s when the curve of critical points for (4.1)–(4.2) changes stability. This
value is not dependent on τsyn.

where s is governed by (4.3).
If s is fixed as a parameter, then we may compute the linearization of system

(4.12)–(4.13) about the vortex point (z1, z2) = (0, 0). Although (0, 0) is not a critical
point for system (4.12)–(4.13), the sign of the real part of the complex conjugate
pair of eigenvalues of the linearized system will still yield information about to what
extent the neighborhood around the point acts as an attractor, as discussed above.
Also, because the parameter τsyn was incorporated into the linear component of the
system during the change of variables, the value of s where the eigenvalues’ real part
changes sign is not invariant with respect to τsyn, as it is using the regular approach
discussed in section 4.3. The value of s where the eigenvalues’ real part changes sign
is shown in Figure 4.4. This is encouraging because it demonstrates a lower value
for the change of stability in addition to a dependence on τsyn, both of which are
apparent in simulations but lacking in the analysis in section 4.3.

4.6. Release value for s. Because the real part of the eigenvalues crosses
through zero for a smaller value of s in the linearization of system (4.12)–(4.13) about
(0, 0) than observed in the linearization of (4.1)–(4.2), we expect that the lineariza-
tion of system (4.12)–(4.13) will provide an improved estimate of the exit value for
s, relative to the analysis in section 4.3, at least until τsyn becomes extremely large.
In addition to the geometric argument given in section 4.4, an analytical justification
for this expectation is given in Appendix B.

Now that we have transformed to the frame of the moving vortex, the analysis
itself proceeds as in section 4.3. We rewrite (4.12)–(4.13) in vector form as

d�z

ds
= −τsyn

s
�f(�z, s).(4.14)

The equation of first variation on the vortex curve (z1, z2) = (0, 0) is

d�z

ds
= −τsyn

s
�f�z(0, 0, s)�z.(4.15)
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Fig. 4.5. Improved estimate of sexit. As a function of τsyn, the exit value sexit is derived from
solution of (4.17) (dashed line) and numerical solution of the full translated model (4.12)–(4.13)
(solid line). The entrance criterion for this figure was ||z||2 = 0.03, and again ε = 0.01.

The solution to (4.15) is given by

�z(s) = exp

(
−τsyn

∫ s

s0

1

w
�f�z(0, 0, w)dw

)
�z(s0).(4.16)

To approximate the value of s where release begins to occur, we choose a value senter
satisfying an entrance criterion, ||z||2 = η. We solve the equation

||�z(s)||2 =

∥∥∥∥exp

(
−τsyn

∫ s

senter

1

w
�f�z(0, 0, w)dw

)
�z(senter)

∥∥∥∥
2

= η.(4.17)

The results of this estimation for a range of τsyn are shown, along with results from
full numerical simulations, in Figure 4.5. The approximation is much better than the
one obtained in section 4.3 for low to moderately high values of τsyn.

Remark 4.1. In principle, there exists some curve, say, (xopt(s), yopt(s)), such
that linearization about this curve yields an optimal estimate of sexit. Numerical
simulation suggests that system (4.12)–(4.13) has a fixed point for each s, and this
is the natural candidate about which to linearize this translated system. (In terms
of Appendix B, linearization about this curve would yield a truly linear system in
(8.8).) However, it is not clear how to access this curve numerically, and the geo-
metric arguments and numerical computations done here, along with the analytical
calculation in Appendix B, show that the moving vortex curve is a good approxima-
tion to (xopt(s), yopt(s)) to use for estimation of sexit.

Remark 4.2. Unfortunately, for very large values of τsyn, the approximation
loses accuracy and gives a similar, but slightly less accurate, performance to the
standard approach. Recall that the moving vortex point is defined as the intersection
of ∂A(s) with the fast nullcline Nf (x, s) for each s. The boundary ∂A(s) is given by
dy
dt =

∂Nf

∂s
ds
dt = −∂Nf

∂s
s

τsyn
. As τsyn increases, ∂A(s) therefore approaches the slow

nullcline, and correspondingly the moving vortex point approaches the intersection
of the fast and slow nullclines, which is exactly the moving critical point used in
the standard analysis. This explains why the moving vortex analysis is similar to the
standard analysis for sufficiently large τsyn. However, the transformation (4.10)–(4.11)
brings τsyn into (4.12)–(4.13), so the two approaches remain nonidentical.
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Fig. 4.6. The approximation curve and the actual curve using the value η = 0.025 (left panel) or
η = 0.035 (right panel) as the entrance criterion. The results are not as good as those in Figure 4.5.

Remark 4.3. It is important to note that the results of our approach do depend on
the value of η chosen for the entrance criterion. Because we take the equation of first
variation of (4.12)–(4.13) about the vortex curve (z1, z2) = (0, 0), rather than about
the translated version of the optimal curve (xopt, yopt) discussed in Remark 4.1, we
cannot choose η arbitrarily small. The behavior in a very small neighborhood of the
origin, and the time to exit this neighborhood, do not perfectly capture the behavior
near the optimal curve. Also, η cannot be chosen too large. Large η will result in
failure of the approximation provided by the equation of first variation, and nonlinear
terms may dominate. There must be an ideal entrance value, in the sense that the
results obtained provide the most accurate approximations. Figure 4.6 shows the
results derived from less appropriate values of η than that used in Figure 4.5. Note,
however, that these results are still better than the standard approach (Figure 4.1)
over the lower range of τsyn values considered.

5. The HH equations.

5.1. Mechanism for slow oscillations. In section 4, a simplified model was
used to elucidate a mechanism, involving trapping of trajectories near a vortex curve,
by which slow synaptic decay results in an oscillation with a very long period. Because
our simplified model satisfies the conditions listed at the start of section 4, this model
is an appropriate subject for analysis, and we expect that the argument and findings
from sections 4.4–4.6 carry over directly to the reduced HH model (3.1)–(3.3).

Indeed, numerical study strongly suggests that the mechanism for slow oscillations
in the HH equations is identical to that of the simple model. Again, there is a vortex
curve which is stable longer (for smaller s) than is the fixed-point curve created by
the intersection of the fast and slow nullsurfaces. Figure 5.1 shows the analogue to
Figure 4.2 for the reduced HH equations.

5.2. The active phase. Up to this point, our analysis has concerned only what
occurs during the silent phase of oscillations. By changing the recovery capability of
the synapse, either we can make the slow behavior discussed above more pronounced or
we can eliminate the silent phase completely. The latter results in high-frequency oscil-
lations, and for appropriate values of τsyn this can induce bursting. Before discussing
bursting, however, we take a closer look at how the recovery of the synapse depends
on parameters in the model, assuming that a prolonged silent phase has occurred.
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Fig. 5.1. The set A(s) for the HH equations (3.1)–(3.3) for fixed s. The shaded region is the
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more slowly in the direction of increasing h than is the fast V -nullcline.

Under the flow of the reduced HH system (3.1)–(3.3), the synapse recovers (s in-
creases) during the active phase, which begins when the cell jumps up from the vicinity
of a left knee of the fast V -nullsurface and terminates when the cell jumps down from
a right knee of this nullsurface. If we let F (V, h, s) denote f(V, h)− gsyns(V − Vsyn),
then the knees are the two solutions of F (V, h, s) = ∂F (V, h, s)/∂V = 0, parametrized
by s. More precisely, we can solve F (V, h, s) = 0 for V = V (h, s), and then solve
∂F (V (h, s), h, s)/∂V = 0 for h = h(s), such that V = V (h(s), s).

We can implicitly differentiate the equation

f(V (h(s), s), h(s)) − gsyns(V (h(s), s) − Vsyn) = 0

with respect to s to obtain

∂f

∂V

[
∂V

∂h

dh

ds
+

∂V

∂s

]
+

∂f

∂h

dh

ds

− gsyns

(
∂V

∂h

dh

ds
+

∂V

∂s

)
− gsyn(V (h(s), s) − Vsyn) = 0.(5.1)

Substitution of ∂F (V (h(s), s), h(s), s)/∂V = 0 into (5.1) yields ∂f
∂h

dh
ds = gsyn

× (V (h(s), s) − Vsyn). Rewriting this as a formula for dh/ds and substituting the
currents in f from Appendix A, as well as Vsyn = 0, yields

dh

ds
=

gsynV

−gNam3(V )(V − Vna) − 4gKn3(h)(V − Vk)
dn
dh

,(5.2)

where V = V (h(s), s) and h = h(s). If we insert parameter values from Appendix A,
as well as the range of V values found in the silent phase (say, h = hL(s)) or the
active phase (say, h = hR(s)), into (5.2), we find that both dhL/ds and dhR/ds are
quite small, at most about .02. Thus, we will assume that there is a fixed value hL of
h at the jump up from the silent phase to the active phase and a fixed value hR of h
at the jump down from the active phase to the silent phase.

Now, in the active phase, we have

dh

ds
=

αh(V )(1 − h) − βh(V )h

α(V )(1 − s) − s/τsyn
.(5.3)
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Make the further approximations that α(V ) ≈ α and dh/dt ≈ −βh, for α, β constant,
in the active phase, and let τ = α + 1/τsyn. Then direct integration of (5.3) from
(h, s) = (hL, 0) to (h, s) = (hR, smax) yields

smax =
α

τ
(1 −Hτ/β),(5.4)

where H = hR/hL. Equation (5.4) gives an estimate of how the level to which the
synaptic variable s recovers in the active phase depends on the parameters of the
HH equations, particularly α (the approximate value of α(V ) in (3.3)), the synap-
tic decay rate τsyn, and the active phase decay rate of h from (3.2), approximated
by β.

In Figure 5.2, we compare this approximation of smax to the value obtained from
numerical simulation of (3.1)–(3.3) and to an alternative, naive approximation to
smax, namely, α/(α+ τ−1

syn). This corresponds to the value of s that would be reached
if synapses responded instantaneously to voltage. We show how smax depends on α
for several values of τsyn, and also how smax depends on τsyn for α = 2, corresponding
to the default value of α0 for the simulations in the other sections of this paper (see
Appendix A). Note that there is some ambiguity in how to select the approximate
decay rate β for h, since this rate typically remains near a constant value throughout
much of the active phase but then decreases near the right knee, as the decay of h
slows. We neglect the slowing near the right knee, which accounts for some of the
error in Figure 5.2.

It is interesting to note that for fixed α, the value of smax is roughly independent
of τsyn, such that the active phase contributes little to the slowing that occurs as
τsyn is increased, as discussed in the previous sections. As α increases, smax increases
correspondingly. This leads to a larger senter in (4.17), which in turn yields a smaller
sexit. Hence, the duration of the silent phase increases with α. We explore a further
implication of this dependence in section 5.3.

5.3. Bursting. Consider Figure 5.3(a). This figure shows the bifurcation struc-
ture for (3.1)–(3.2) as s varies for gsyn = 2, while Figure 5.3(b) shows the voltage trace
of a two-spike burst solution to (3.1)–(3.3). This solution was obtained by greatly re-
ducing the function α(V ), thereby reducing the turn-on of the synapse during the
active (spiking) phase. Any number of spikes can be seen in a burst by scaling the
recovery function appropriately.

As we have seen, during the time that a cell spends in the silent phase, its synaptic
variable decays beyond the point where the fixed point (intersection of fast and slow
nullclines) of the system (3.1)–(3.2) becomes unstable (s lies below the Hopf point at
s ≈ 0.22 in Figure 5.3(a)). During the active phase, the synaptic variable s increases
as specified in (3.3). If s does not recover enough to reach a value for which the fixed
point of (3.1)–(3.2) is stable (s > 0.22 in our example), then after it jumps down to the
silent phase, it will not be attracted toward the slow nullcline or the vortex structure.
Instead, the orbit tends toward the fast nullcline and the phase plane looks like a
standard (oscillatory) relaxation oscillator. This results in a subsequent rapid jump
to the active phase when the left knee of the fast nullcline is reached, corresponding
to a rapid second spike, as seen, for example, at the start of the simulation in the
right panel of Figure 5.3. Alternatively, if s does increase beyond the bifurcation
point, then the silent phase becomes prolonged again; however, if it is still close to
the bifurcation point, the silent phase duration is still reduced relative to that seen
for large s, based on (4.17). Figure 5.3 shows the recovery of the synaptic variable, s,
during the two-spike burst shown in the right panel of Figure 5.3.
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Fig. 5.2. The dependence of synaptic recovery level, smax, on the rate of synaptic rise (α)
and decay (τsyn). In each panel, the dashed line corresponds to the naive approximation smax ≈
α/(α+ τ−1

syn), the solid line corresponds to (5.4), and the thick dotted line corresponds to the actual
value of smax attained in numerical simulations of (3.1)–(3.3). (a) τsyn = 20, (b) τsyn = 100,
(c) τsyn = 500, (d) α = 2.

6. Discussion. It is generally assumed that synaptic connections between ex-
citatory neurons have the effect of strengthening and accelerating neuronal firing.
Indeed, part of the accepted theory of computation in cortical circuitry is that if
input is strong enough to make some excitatory cells fire, then recurrent excitation
among excitatory cells amplifies this activity, whereas if inhibitory input comes in be-
fore the excitatory cells can become active, then this inhibition shuts them down. In
this paper, we explore a scenario in which recurrent excitation instead causes a drastic
slowing of firing. We find this effect, over a broad range of parameter values, in a
network of standard, biophysically derived HH model neurons, coupled with slowly
decaying synaptic excitation. This highlights the important point that the effects of
synaptic inputs in neuronal networks depend on the intrinsic dynamics of the cells in
the network, together with the timescale of the synaptic inputs. It remains to explore
the functional consequences of this result, particularly in a network of interconnected
excitatory cells and inhibitory interneurons.

Since we find that synaptic excitation is strongly synchronizing in this model
network (up to small differences in subthreshold oscillations), we study the mechanism
behind this synaptic slowing in a self-coupled neuron. The synchronization seen here
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Fig. 5.3. Bursting in the HH model. (a) Bifurcation diagram for the HH equations with s
as the bifurcation parameter (as shown in Figure 2.1(c)). The curve at V ≈ −60 corresponds to
the critical point of system (3.1)–(3.2) formed by the intersection of the fast and slow nullclines.
This becomes unstable via a subcritical Hopf bifurcation as s decreases. Here, F.R. and S.R. refer
to the first and second return to the silent phase, respectively, of the dashed trajectory shown.
(b) Two-spike burst solution. During the first spike of a two-spike burst, the s value does not
recover enough to exit the regime where the critical point is unstable. The second recovery brings
s into the stable regime, which yields a prolonged silent phase. (c) Synaptic variable, s(t) during
this burst. The dashed horizontal line is the value of s where the critical point (parametrized by
s) changes stability. Because this stability is necessary to obtain a cycle with an arbitrarily long
period, the oscillator experiences a prolonged silent phase only once s has exceeded this threshold.
Parameter values for this plot are τsyn = 20 and α0 = 0.15.

in part results from the phase response properties of HH neurons [11]. Further, the
extreme slowing in the silent phase enhances the synchronization tendency. We have
seen that this slowing involves a prolonged residence near the left knee curve of a
fast nullsurface. In a population of many cells in a near-synchronized state, a strong
spatial compression occurs during this residence. As soon as one cell jumps up to
the active phase, fast threshold modulation (FTM) [20] will pull the other cells up as
well. This compression and FTM easily overwhelm any desynchronization that may
occur in the other stages of an oscillation.

We use a simplified model to elucidate the moving vortex canard mechanism by
which slowly decaying synaptic excitation prolongs the silent phase between spikes,
and this mechanism carries over to the HH model. The scenario that we study truly
meets the criteria for a canard, since the fast (V ) and slow (h) nullclines of the HH
model, with s taken as a parameter, are in a regular fold canard configuration for
an s-value near that at which the intersection of the nullclines loses stability via a
Hopf bifurcation [3]; see also [22]. Moreover, the solutions to the full system spend
a significant period of time traveling along the middle branch of the V -nullsurface
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(although they remain extremely close to the curve of knees; see Figure 3.1). Unlike
typical canards, however, the delayed solutions that we study are easy to find, occur-
ring over a broad range of synaptic decay rates. We do not discuss the precise size
of the region in phase space from which trajectories are drawn to the vortex region,
for fixed parameter values. This may relate to attraction to a stable manifold of the
s = 0 critical point of the HH model in the vicinity of a homoclinic bifurcation, as
discussed in [9], but we have not explored this issue.

According to previous analytical results, one should be able to estimate the change
in the slow variable s that will occur during the silent phase by using a way-in–way-
out function [3, 15, 16]. This function incorporates information from the projected
system derived by treating s as a parameter. Specifically, it involves the eigenvalues of
the linearization of the projected system about an appropriate curve of critical points
(parametrized by s). The eigenvalues correspond to rates of decay and growth toward
this critical point curve. This approach was used previously in neuronal networks to
study elliptic bursting, in which there is a delayed escape from a curve of critical points
that are unstable with respect to a fast subsystem [19, 24, 14, 21]. However, the novel
vortex phenomenon that we have identified causes this approach to underestimate the
change in s in the silent phase, and correspondingly the time spent there, for a large
range of synaptic decay rates.

The vortex structure develops through a breakdown in the distinction between
fast and slow dynamics in the vicinity of the critical point curve for the projected
system. The corresponding flow pins trajectories near a vortex curve, which itself lies
close to the curve of critical points, for a prolonged period, as the synaptic strength
gradually decays. We use the vortex curve to approximate a release threshold for
the synaptic variable s, relative to a specified criterion for entrance into the trapping
regime. This approach makes use of a set A, determined by the dynamics of the
system, that is central to the vortex effect. In particular, A relates to the relative
rates of change of the nonsynaptic slow variable and the position of the fast nullcline.
Note that the position of the fast nullcline depends on the size of the synaptic variable
s. Further, while there are three possible timescales corresponding to the rates of
change of the three dependent variables (V, h, s) in the problem, the rate of change of
the nonsynaptic slow variable (characterized by ε) and the synaptic decay rate 1/τsyn
are comparable over much of the range of τsyn that we consider. A full mathematical
analysis of the vortex mechanism, and in particular the types of vector fields and
range of timescales for which computations based on the vortex curve will always give
small errors, remains open for consideration.

While we introduce the vortex mechanism and perform relevant calculations in
the context of a simplified model related qualitatively to the silent phase features of
the HH system, we illustrate numerically that the same ingredients are also present
in the reduced HH equations (e.g., Figure 5.1). Numerical simulations of the full HH
model show a similar prolongation of the silent phase, with a strong dependence on
the synaptic decay rate τsyn; indeed, such simulations led us to note and seek an
explanation for the delay mechanism in the first place. In the reduced HH equations,
we connect the active phase of oscillations to the silent phase by considering how
the synaptic recovery rate α affects the level to which s recovers. This affects the
level of s at which trajectories enter the trapping region (quantified by our choice of
η), in turn affecting our estimation of s at release from the silent phase (see (4.17));
however, as discussed in section 5.2, the level of s at release feeds back little effect on
the level to which s recovers in the active phase. By exploiting our understanding of
the interaction of intrinsic and synaptic dynamics, we also describe how the fast-slow
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structure allows for bursting in the HH equations. While this can be considered as
elliptic bursting, the burst frequency can be quite slow, as the prolonged silent phase
again occurs in the intervals between bursts of spikes.

7. Appendix A. The gating functions for h in (3.2) are

αh(V ) = .07 exp(−(V + 65)/20),

βh(V ) = 1/(1 + exp(−(V + 35)/10)).

The m and n gating variables are slaved to V and h, respectively, by

m =
αm(V )

αm(V ) + βm(V )
,

n = max(.801 − 1.03h, 0),

where

αm(V ) =
0.1(V + 40)

1 − exp(−(V + 40)/10)
,

βm(V ) = 4 exp(−(V + 65)/18).

The synaptic recovery function, α(V ), is given by

α(V ) =
α0

1 + exp(−V/Vshp)
.

Parameter values for all simulations are VNa = 50, VK = −77, VL = −54.4, gNa = 120,
gK = 36, gL = 0.3, C = 1, Io = 13, Vshp = 5, gsyn = 2, and Vsyn = 0. Also, α0 = 2
in all sections except section 5.2, where it is varied, and section 5.3, where bursting
is discussed. The units for the voltages are mV , the conductances (g∗) have units
mS/cm2, and the current (Io) has units µA/cm2.

8. Appendix B. Consider the model system (4.1)–(4.3), which we express as

dx

dt
= y −Nf (x, s),

dy

dt
= −ε(y −Ns(x)),

ds

dt
= − s

τsyn
.

(8.1)

Note that we can express (8.1) as a pair of equations:

− s

τsyn

dx

ds
= y −Nf (x, s),

s

ετsyn

dy

ds
= y −Ns(x).

(8.2)
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To find the vortex point (x̂(s), ŷ(s)) about which to linearize, we solve

ŷ = Nf (x̂, s)(8.3)

and

dy(x̂, ŷ)/ds = ∂Nf (x̂, s)/∂s.(8.4)

Together with (8.4), the second equation of (8.2) gives

ετsyn(ŷ −Ns(x̂))/s = ∂Nf (x̂, s)/∂s.(8.5)

Implicit differentiation of (8.3) along the solution (x̂(s), ŷ(s)) gives

∂Nf (x̂, s)/∂s = dŷ/ds− (∂Nf (x̂, s)/∂x)(dx̂/ds).(8.6)

Together, (8.5) and (8.6) yield

dŷ

ds
=

ετsyn
s

(ŷ −Ns(x̂)) +
∂Nf (x̂, s)

∂x

dx̂

ds
.(8.7)

Substitute (x̂(s)+u(s), ŷ(s)+ v(s)) into (8.2) and linearize about (x̂, ŷ) to obtain

− s

τ

du

ds
=

s

τ

dx̂

ds
+ ŷ + v −Nf (x̂, s) − u(∂Nf (x̂, s)/∂x),

s

ετ

dv

ds
= − s

ετ

dŷ

ds
+ ŷ + v −Ns(x̂) − u(dNs(x̂)/dx).

(8.8)

In the first equation of (8.8), ŷ = Nf (x̂, s). From (8.7), we have

s

ετ

dŷ

ds
= ŷ −Ns(x̂) +

s

ετ

∂Nf (x̂, s)

∂x

dx̂

ds
.

Thus, (8.8) becomes

− s

τ

du

ds
=

s

τ

dx̂

ds
+ v − u(∂Nf (x̂, s)/∂x),

s

ετ

dv

ds
= v − u(dNs(x̂)/dx) − s

ετ
(∂Nf (x̂, s)/∂x)(dx̂/ds).

(8.9)

Note that while this is a linearized equation, the right-hand side is not linear in (u, v)
because the vortex point is not a critical point of (8.2).

At this point, we make a key assumption. Since the trajectory lies in the vicinity
of the knee during the time over which the vortex calculation is done, we henceforth
assume that ∂Nf (x̂, s)/∂x = 0. In some sense, this amounts to assuming that the
system is in a vortex canard configuration, since it specifies that the boundary ∂A(s)
should intersect Nf (x, s) at the knee of Nf (x, s). Clearly this assumption is not
precisely satisfied; however, a straightforward generalization of the calculation below
shows that any error resulting from the violation of this assumption will be of the
same order of magnitude as (∂Nf (x̂, s)/∂x)(dx̂/ds).

Next, we express (u(s), v(s)) = (u1(s), v1(s)) + (ũ(s), ṽ(s)), where (u1, v1) is a
zero of the right-hand side of (8.9) with ∂Nf/∂x = 0; that is, (u1, v1) solves

0 =
s

τ

dx̂

ds
+ v,

0 = v − u(dNs(x̂)/dx).
(8.10)
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Note that (u1(s), v1(s)) = O(1/τsyn), while (u′
1(s), v

′
1(s)) = O(1/τsyn) as well since

the determinant of coefficients (dNs(x̂)/dx) �= 0. Substitution of this decomposition
of (u(s), v(s)) into (8.9) yields

− s

τ

dũ

ds
=

s

τ

du1

ds
+

s

τ

dx̂

ds
+ v1 + ṽ

=
s

τ

du1

ds
+ ṽ

= O(1/τ2
syn) + ṽ,

s

ετ

dṽ

ds
= − s

ετ

dv1

ds
+ v1 − u1(dNs(x̂)/dx) + ṽ − ũ(dNs(x̂)/dx)

= − s

ετ

dv1

ds
+ ṽ − ũ(dNs(x̂)/dx)

= O(1/τsyn) + ṽ − ũ(dNs(x̂)/dx),

where we have assumed in the final line that ετsyn = O(1). Thus, when ετsyn = O(1),
the error in using the equation of variations in the vortex approach is of O(1/τsyn).

Contrast this with the usual approach, Here one solves 0 = y − Nf (x, s) and
0 = y −Ns(x) to obtain (x̃(s), ỹ(s)). As previously (see (8.2)), we have

− s

τ

dx

ds
= y −Nf (x, s),

s

ετ

dy

ds
= y −Ns(x),

and we now linearize about (x̃(s) + u(s), ỹ(s) + v(s)) to obtain, after cancellations,

− s

τ

du

ds
=

s

τ

dx̃

ds
+ v − u(∂Nf (x̃, s)/∂x),

s

ετ

dv

ds
= − s

ετ

dỹ

ds
+ v − udNs(x̃)/dx.

We can apply the same decomposition of (u(s), v(s)) = (u1(s), v1(s))+(ũ(s), ṽ(s))
as above. However, if we again assume that ετsyn = O(1), then we will have (u1, v1) =
O(1) from the dỹ/ds term, and an O(1) error can result from calculation with the
equation of variations.
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