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Phase Boundaries as Electrically Induced Phosphenes∗

Jonathan D. Drover† and G. Bard Ermentrout‡

Abstract. A model is presented of experiments where electrical stimulation of the eye of human subjects
results in the perception of evenly spaced lines, or phosphenes. The model is a two-dimensional
grid of integrate-and-fire oscillators that captures the important experimental characteristics of line-
creation when a sinusoidal current injection is used. The spatio-temporal behavior of the lines, once
formed, is also reproduced. A reduced model consisting of an evolution/convolution equation on the
real line is analyzed, and it is shown that stationary solutions with arbitrarily located discontinuities
exist and are linearly stable. Traveling waves are numerically shown to exist when the coupling is
both sufficiently strong and biased, which accounts for the movement of the lines in the experiments.
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1. Introduction. A phosphene is the sensation of light produced from within the nervous
system rather than from an external source. Examples of phosphenes range from the stars
seen when one is hit on the head to the geometric patterns perceived during hallucinations.
Phosphenes can be induced by direct electrical stimulation of the visual pathway, including
the eyeball, leading to the preliminary design of prosthetic visual devices for patients with
severely limited vision [14].

Claussen [6] was the first to discover that sinusoidal electrical stimulation of the retina
produced a variety of complex visual sensations. In experiments two decades later, Carpen-
ter [4] studied these electrical phosphenes in much greater detail. If the eyeball is stimulated
by high frequency (100 Hz) alternating current and a dark bar is passed through visual space,
it leaves in its wake a series of thin contours which slowly move over time. These disappear
almost instantly when the electrical stimulation is turned off. The production and movement
of these contours is the subject of this paper.

While electrical stimulation of the eye is rather unnatural, it has recently been used to
study the effects of electromagnetic radiation on the human nervous system [1]. Furthermore,
Wilms et al. [23] have used direct electrical stimulation to estimate the spatial resolution of
the retina as mapped onto the visual cortex. Unusual and abnormal stimuli have long been
used as probes of the visual system, as they can often provide information about processing
that is not available with more natural stimuli. For example binocular rivalry experiments
(different images presented to the left and right eyes, leading to an alternation in the perceived
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Figure 1. The patterns reported by subjects in Carpenter’s experiments (redrawn after [4]).

image) led to insights into how visual forms are processed in the cortex [24]. Classic illusions
such as Mach bands (illusory light or dark areas at the ends of a luminence ramp) [20] led to
the theory of lateral inhibition in the retina.

In this paper, we present a new model for the formation of the so-called contour phosphenes
elicited through electrical stimulation of the eyeball. Our model is based on experiments
demonstrating 1:2 phase-locking of retinal cells to periodic stimuli [7], together with anatom-
ical and physiological evidence for electrical coupling between the cells in the retina. In
section 2, we introduce the experimental protocol, describe the phenomena, and introduce
our model. We start with a one-dimensional (1D) system to illustrate the basic mechanism,
and then turn to a two-dimensional (2D) model which reproduces both the formation of the
contours and their subsequent movements. To gain better mathematical insight into the ex-
istence of contours and their stability, in section 3, we introduce a simplified 1D continuum
model for which we can prove the existence of alternating domains much like those in the
experiments and simulations. We prove that these are stable and also explore the onset of
movement of the boundaries.

2. Electrically induced phosphenes. In this section, we model the spatio-temporal pat-
terns reported by subjects in an experiment described in [4]. We begin by presenting a brief
description of the experiment and the illusion.

A subject’s eyes are submerged in a saline bath, and alternating electrical current is passed
through the bath. The subject views a uniformly lit screen while receiving the stimulation. A
dark object is passed through the field of vision. Subjects report line phosphenes or contours
(illusions of light) in the wake of the trailing edge of the dark object. Carpenter shows that
there is one line created for every complete cycle of the driving stimulus coincident with the
moving edge, yielding the temporal and spatial periodicity. Thus a slowly advancing edge
will produce many more lines than a rapidly advancing one. The result, upon full passage
of the edge across the medium, is a set of evenly spaced line phosphenes. These lines slowly
evolve in time, moving in various directions and occasionally interacting with each other to
form loops (Figure 1). Later in this section, we will specify the rules of movement described
in Carpenter’s paper.
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2.1. A model for contour formation. According to Carpenter [4] and Brindley [3], the
genesis of these phosphenes is in the retina itself. This contrasts with the presumed cortical
origin of more complex phosphenes seen during flicker, occular pressure, or drug ingestion [21].
Thus, we will assume that all of the dynamics are occurring within the retina.

Carpenter suggests a hypothesis as to the nature of the illusions: The lines represent
nodes, separating areas of the retina that are responding in antiphase to each other. We take
this as our main hypothesis and create a biophysically plausible implementation using recent
physiological data on the retina. The basic idea is to induce bistability at each spatial location
in the retina so that the phosphenes become the boundaries between the two different stable
states. Given that the stimulus is periodic, one way to achieve a de facto bistability is to
assume that the relevant retinal cells are able to fire only on every other cycle of the stimulus.
That is, each cell is locked in a 1:2 (one spike per two stimulus cycles) manner to the 100 Hz
current. Thus, the bistability is between cells firing on the “odd” cycle of the 100 Hz current
and cells firing on the “even” cycle. There are many candidate cells in the retina: bipolar cells,
amacrine cells, horizontal cells, and ganglion cells (whose output goes to the central nervous
system). Our model does not depend on which type of cell is firing, only on the fact that
the cells generating the activity are coupled. As there are electrical (gap) junctions between
most of the cell types in the retina [17, 16, 15], we will not speculate as to which neurons are
involved in the phosphenes as perceived in human subjects.

In [7], Crevier and Meister studied human electroretinograms (ERGs) and salamander
retinal cell responses to periodic pulses of light. In the human studies, the authors found
that there is a period doubling (1:2 locking) of the ERG at between 30 to 70 Hz photic
stimuli. In order to explore the origin of this, these authors looked at the neurophysiology
of salamander retinas since their eyes have similar structure to those of humans. They found
that the photoreceptors (the first stage of vision) are able to maintain the 1:1 locking with
the stimulus, but that ganglion cells (last stage in the retina) can follow only in a 1:2 manner.
Thus, the inability to follow the stimulus in a 1:1 manner occurs between the photoreceptors
and the ganglion cells—this includes all the cell types mentioned above: bipolar, amacrine,
and horizontal.

For simplicity, we model each cell (or cluster of cells that behave identically) as an
integrate-and-fire neuron with adaptation [8]:

dx

dt
= −x− z + A sin

(
2πt

T

)
,(1)

dz

dt
= −z

τ
.(2)

The variables x and z are real. The parameter A is the amplitude of the driving stimulus,
and T is the period. We assume that both A and T are positive. The driving stimulus is the
analogue to the alternating current in the experiments. The reset criterion is given by

x(t−) = xspike → x(t+) = xreset; z(t+) = z(t−) + zjump.

For the remainder of this section, we assume the parameter values to be xspike = π, xreset =
−π, and zjump = 1.
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The purpose of the refractory variable, z, is to make the 1:2 phase-locking more robust.
In the absence of the explicit refractory variable, the oscillations approach threshold during
every cycle of the driving current, and 1:2 locking occurs only in a very narrow range of
parameters. In [9] parameter regimes for 1:2 locking are explicitly found; that is, the neuron
spikes exactly once for every two cycles of the current for a range of values of A. For the
remainder of this paper, we assume that A = 4.7. Because one phase-locked solution exists,
another must also exist; it is a translate of the first by one period of the stimulus. The result
is a form of bistability, where the attractors are a pair of periodic orbits. A cell, after some
transient behavior, will converge to one of these solutions, either the even cycle or the odd
cycle. By symmetry, the basins of attraction of the two solutions have equal measure.

We now turn to the mechanism that causes the medium to break into the desired regions.
We assume that, at the onset of the stimulus, the entire retinal area is simultaneously excited.
Thus all cells start in the same phase of the 1:2 locked solution. All that the subject observes
is a uniform background, since 100 Hz is well above the critical flicker fusion frequency of
about 30 Hz. The input of a dark bar across the visual field causes the retinal receptors
to depolarize. (The primary receptors in the retina act counterintuitively, since light hyper-
polarizes or inhibits them.) This signal is inverted by the bipolar cells to produce spatially
restricted inhibitory signal to the cells which are locked in the 1:2 rhythm with the electrical
signal. This inhibition is sufficient to keep the cells from firing. Once the bar passes through,
the cells are released from the inhibition and can start to fire again. Depending on the time
at which they are released, they will be drawn into either the “odd” or the “even” 1:2 locked
solution. All cells aligned in parallel with the bar of light will be released simultaneously,
so that all cells in the vertical direction will have the same phase. Thus, to understand the
initial creation of the phase-boundaries, we need consider only a 1D line of cells through which
sweeps an inhibitory pulse.

We model this inhibition using a step function

bar(i, t) =

{
−d if i/v + T0 < t < i/v + T0 + W,
0 otherwise,

(3)

where i is the index of the node, T0 is the time when the sweep begins, W is the amount
of time that a node is inhibited, and v is the velocity of the sweep. The parameter d is the
strength of the inhibition.

We first consider a horizontal line of cells with the inhibitory sweep. The variable xi at
location i satisfies

dxi
dt

= −xi − zi + A sin(ωt) + bar(i, t) ≡ Fi(xi, zi, t).(4)

The creation of the lines occurs in the wake of the traveling inhibition. Prior to the sweep,
the visual field is uniform, and all cells are phase-locked to the driving stimulus. The trav-
eling inhibition causes the nodes to deviate from the phase-locked solution. The inhibition
is sufficiently long so that, upon the completion of a sweep, approximately half of the nodes
are left in the basin of attraction corresponding to the opposite phase solution. Because the
inhibition travels with a constant velocity, once the inhibition has passed, the medium has
alternating regions firing in the odd and even cycles. The locations where there is a phase
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Figure 2. Three simulations of a line of oscillators inhibited by a sweep of the bar function. In each panel
the horizontal axis is the spatial index, and the vertical axis is time, increasing from top to bottom. Grayscale
represents the value of the refractory variable, zi. The velocity of the sweep is above each panel and measures
the speed of the movement of the bar in index units per time. In all three panels W = 30 and d = −2.

boundary correspond to the phosphenes in Carpenter’s experiment. The phase-locked solu-
tions have identical basins of attraction, and so the result is the appearance of evenly spaced
phase boundaries. In Figure 2, the behavior of the line of oscillators is shown during and
after a sweep. In Carpenter’s experiments, one line was seen for every cycle of the stimulus
coinciding with the trailing edge of the bar. Thus, the slower the bar moves, the more lines.
In this figure, T = 10. For v = 1, there are ten cycles of the stimulus, and there should be
10 lines. Similarly, for v = 2 and v = 4, there should be 5 and 2–3 lines, respectively. These
simulations confirm that our model behaves appropriately. Furthermore, the thickness of the
contours is independent of the velocity of the bar. This suggests that the contours are not
different states of the system, but rather, they are the boundaries between two stable states.
We next model the movement of these boundaries.

2.2. Movement of the lines: Two dimensions. The previous section provided a simple
but robust mechanism for partitioning a 1D “retina” into regularly spaced domains of alter-
nating phase. Suppose, for the moment, that our situation is exactly as in section 2.1, where
all the cells are uncoupled and independent, but now arranged in a 2D grid. A stimulus in
the form of a long vertical bar is moved horizontally across the 2D array of cells. All cells in
any column will behave exactly the same since the bar is vertical. After the bar passes, it will
leave a series of vertical stripes representing the alternating domains of in- and out-of-phase
oscillations much like those shown at the leading edge of the stimulus in Figure 1. However,
in the experiments, the lines do not remain fixed. Rather, they move and appear to interact
with each other. In this section, we suggest that the reason for the movement is that there
are interactions between the neighboring cells which underlie the phosphene patterns.

Carpenter makes the following observations about the phosphenes:

1. Lines never cross through one another. Rather, they combine to form loops.
2. A line never breaks apart unless it meets another line.
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Figure 3. Line behavior when two lines meet. The top panel depicts the case where the lines meet near
their centers. The bottom panel is the case where the lines meet near the edges. In either case, the lines do not
pass through one another, but instead leave patterns similar to those shown.

3. Neighboring lines show a tendency to move in a similar manner. That is, if a given
line is bulging to the right, then it is likely that a neighboring line will bulge in the
same direction.

Figure 3 illustrates the first two rules.
In the model as posed so far, each cell is independent from the others, and there are

no interactions. Furthermore, the model is completely homogeneous. However, there are
many interactions between retinal neurons—graded chemical synapses, electrical junctions,
threshold chemical synapses, etc. Thus, we can expect that, at least locally, the behavior of
one neuron will influence that of another one. The detailed means of coupling is less important
than its effect. We will assume that coupling is such that two coupled neurons will tend to
synchronize their activities. As there is much evidence for electrical (gap) junctions in the
retina [17, 15] and since such coupling can synchronize neuronal oscillations [13, 19], we will
illustrate the phenomena with gap junction coupling. We note that gap junction coupling is
generally modeled as a linear function of the difference between the potentials of two cells:
discrete diffusion.

Coupling provides a mechanism for the first two of Carpenter’s observations. (See Figure
4.) Within a domain, all cells are nearly equal and firing at the same cycle, so that in the
interior the coupling has a negligible effect. However, a point near the boundary will try to
synchronize with cells which are firing on opposite phases of the stimulus. With perfectly
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Figure 4. Line movement mechanism. The figure depicts three moments in time, advancing from left to
right. In the leftmost, the boundary is shown separating regions that are out of phase with one another. In
the center of the figure, the region marked 1 is more strongly coupled to the cells in region B than to those in
region A. The opposite is true for those cells in region 2. The right of the figure shows the result once the cells
in region 1 have synchronized with those in region B and the cells in region 2 have synchronized with region A.
This is how line movement occurs in our model.

symmetric coupling, the battle is a “tie.” However, if the coupling has any kind of asymmetry
(which is generally the case), then the boundary point will be recruited into the region with
the stronger effective coupling, thus moving the boundary point; one region will take over
the other, and the lines will move away from the absorbing area. In the uncoupled case,
the pattern is stable so that the coupling has to be sufficiently strong to begin the process
of recruiting territory. In order to explain rule 3, we have to make a somewhat stronger
assumption about the coupling heterogeneity. If the heterogeneity is at a “microscopic” scale,
that is, essentially random from cell to cell, then we cannot expect any kind of trend in motion
such as seen in Figure 4. Thus, we suppose that the coupling strength varies on a coarser
scale. If the coupling has a favored direction at some point x, then nearly the same direction
will be favored for a point y near x. We have no evidence of such trends in coupling, but,
neither is there any compelling evidence against this. This notion could be tested by looking
for any kind of asymmetry of spontaneous wave propagation in isolated retinas [12].

2.2.1. Line movement and biased coupling strength. We assume that coupling within
the retina, particularly the gap junctions between horizontal cells, is not of uniform strength.
We accomplish the movement of the lines by coupling a given node to its neighbors with
different strengths. Since the effect of the coupling is to synchronize, a cell will approach the
phase of the neighbor to which it is most strongly coupled (see Figure 6 below). It is through
this mechanism that cells on a boundary synchronize with neighbors, moving the boundary
itself (Figure 4).

The coupling has to have a number of characteristics, inspired by the movement “rules”
stated in the previous subsection. Rules 2 and 3 make it essential that the coupling cause
synchrony to be a locally stable solution. The most obvious form of coupling would be to add
a term proportional to the difference between the x components of the two cells, e.g., x2 −x1.
This form of coupling works very well for a pair of coupled cells and, if sufficiently strong,
induces synchrony [19]. However, we have found (simulations not shown) that linear coupling
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Figure 5. Behavior of a forced array of Hodgkin–Huxley neurons (top row) with isotropic and biased linear
diffusional coupling. Bottom row: Integrate-and-fire model with sinusoidal coupling, with and without bias.

of the integrate-and-fire model in spatially organized arrays of cells does not lead to smooth
patterns in which one phase takes over the other. Rather, the medium breaks up into very fine-
grained spatial patterns. Thus, we do not use linear coupling between the cells, but instead
coupling which depends on the sine of the difference. To justify this somewhat unusual form of
coupling, we compare a 1D integrate-and-fire network with sinusoidal coupling to a 1D network
of periodically forced Hodgkin–Huxley neurons. Each cell satisfies the four variable Hodgkin–
Huxley equations and is forced at 100 Hz by a sinusoidal stimulus with amplitude sufficient to
lead to 1:2 locking. Cells are coupled to nearest neighbors with identical coupling to the left
and right cells or with a bias in one direction. Figure 5 shows a simulation when the coupling
is strong enough to destroy the two-phase pattern. When the medium is isotropic, a wave is
generated, and it is always in the same direction (top left). By biasing the coupling strength,
we can make the wave travel in the opposite direction (top right). The same phenomenon is
illustrated with the integrate-and-fire model with sinusoidal (as opposed to linear) coupling.
Since this is the type of behavior we are looking for, we use sinusoidal coupling instead of
linear coupling for the integrate-and-fire model.

With these considerations, we return to the full 2D model and use coupling of the form

cfd sin(xd − xi,j),(5)

where d = {up, down, left, right} (e.g., fup = fi,j−1). See Figure 6. The coefficients fd are
positive and discussed in detail in the next subsection. We restrict ourselves to the case of
nearest neighbor coupling, although in the next section longer range coupling is allowed. The
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Figure 6. Coupling diagram.

parameter c is always positive and determines the linear strength of the coupling, and it is
the same for each node. The evolution of the cells in the coupled network is governed by the
equation

dxi,j
dt

= Fi,j(xi,j , zi,j , t) + c
∑
d

fd sin(xd − xi,j),(6)

where Fi,j(x, z, t) is the local dynamics from (4) along with the dynamics for the refractory
variable governed by (2) and the sum is over the four nearest neighbors. The 1D bar in (4) is
replaced by the corresponding rightward moving vertical bar in the 2D system.

2.2.2. The coupling coefficients fd. To motivate our choice of coupling, we briefly dis-
cuss the mechanism for movement of the phosphenes. Suppose that we have one oscillating
cell, A, with four neighbors, Nj , j = 1, . . . , 4 (Figure 6). Suppose that N1 and N2 are firing
synchronously (with one another), and N3 and N4 are firing at the opposite phase. The phase
to which A synchronizes depends on the relative strengths of the coupling. For example,
suppose that fup + fleft � fright + fdown. Then, oscillating cell A will synchronize with N1

and N2. If the relative difference between coupling strengths is not so high, there will be an
intermediate phase for A, which will in turn alter other nearby cells. Eventually, cell A will
be on the interior of a region and will synchronize with the others there. The phosphenes are
represented by the boundaries of regions which have different phases where they temporarily
assume a parameter dependent (relative sizes of fd), and neighbor dependent, phase and are
then absorbed into the interior of a region. Once this process is complete, the line (boundary)
will have moved.

Because the direction of the movement depends on the relative coupling strengths, we
wish to structure the coefficients, fd, spatially. Suppose we have a single line of oscillators. If
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for every oscillator fright > fleft, we expect each to synchronize with its neighbor to the right,
thus moving the lines left.

From rule 3, neighboring lines tend to move in the same direction, so there should be
spatial intervals in which coupling in a particular direction is favored. Thus, rather than
choosing the coupling strengths independently at each spatial point, we allow them to vary
in a continuous fashion. For example, if fup > fdown at location x, then the same inequality
will hold for nearby oscillators. The particular choice of coupling parameters is not crucial;
however, continuity is needed to satisfy rule 3. The specific coupling matrix is described in
the next section.

Bias in the coupling strength plays an important role in the movement of the phosphenes.
Figure 5 shows that, without bias, the phosphenes move in one direction. In particular, for the
Hodgkin–Huxley model, one cycle (say the even) always takes over the other if the coupling is
sufficiently strong. The reason for this (similarly for the integrate-and-fire model) is as follows.
Consider a pair of uncoupled cells which are firing on alternate cycles. Turn on the coupling
at a time t. If the coupling is strong enough, the cell that fires first after t will cause the other
cell to fire, and thus the second cell will be pushed into firing in the same cycle as the first
cell. In a network in which half the cells are set in the even and the other half in the odd
cycle, the moment the coupling is turned on will determine the direction of the wave. This
is an exquisite sensitivity to initial conditions as well as any small heterogeneities. Thus, by
making the medium anisotropic, we allow waves that robustly travel in a preferred direction.

2.3. Simulation. Simulations were done using a fourth order Runge–Kutta integrator
with constant time step, Δt = 0.01. The reset is accomplished by setting xi,j(tk) = −π and
zi,j(tk) = zi,j(tk) + 1 whenever xi,j(tk) > π. No interpolation is done, resulting in resets that
always occur at a multiple of the time step.

All simulations are done on a 100 × 50 grid. The coupling strength array, fi,j , was deter-
mined as follows:

1. Randomly choose three indices in the horizontal domain (h1, h2, h3), and three more
in the vertical domain (v1, v2, v3). Assume that h1 < h2 < h3 and v1 < v2 < v3. The
choice of three set indices is motivated by figures in [4]. This implementation can be
extended to incorporate any number of set nodes, up to the number of nodes present
in the grid.

2. Define two arrays, H and V (for horizontal and vertical), with the appropriate number
of elements. For our purposes H has 100 elements (the width of the grid) and V has
50 elements (the height of the grid).

3. Assign to the array elements H(1), H(h1), H(h2), H(h3), and H(100) random values
between 0 and 1.

4. The grid is now divided into rectangles. Divide each of these rectangles into two right
triangles. In the simulations presented here, the diagonal goes from the top left to the
lower right.

5. Using the three corners of the triangles, compute the value at the indices inside each
triangle according to the plane the corner values define (see Figure 7).

We assume (as noted above) that there are heterogeneities in the retina, but at a coarse scale
that covers many cells so that coupling strengths have some spatial correlations. While the
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Figure 7. A diagram that shows how the biased coupling is determined for the simulations. The value of
the function is chosen randomly at the vertices A, B, C, D. The rectangle is divided into two triangles. The
value of the coupling function for points in these triangles is determined using a linear interpolation of the three
vertices that form the triangle. For example, if a node lies in the region marked II, the value of the relative
coupling strength at that node is determined by the plane that crosses the determined points at B, C, and D.

evidence for such large-scale heterogeneities is unclear (Marla Feller, personal communication,
and [12]), by carefully looking at spontaneous propagating waves in isolated retinas, it may
be possible to test this hypothesis.

Simulations were carried out using FORTRAN code, with calls to LAPACK and BLAS to
do the vector operations in the Runge–Kutta integrator. The graphical output was produced
using the PGPlot package. Because we use an integrate-and-fire model, we plot the recovery
variable, zi,j , as this is continuous.

Figure 8 shows output from a sample run of the simulation. In panel A, the bar (outlined
in a thin dashed line) is about to complete the pass to the right. Lines (or regions) have formed
on the left edge and have begun to move. In panels B and C, the lines are clearly defined and
moving. In panel D, synchronous regions “poke holes” through a region in antiphase, forming
two loops. Panels E and F show two of the loops annihilating themselves as the region that
defines them collapses. Compare this with Figure 1.

3. A bistable evolution/convolution network. The analysis of the formation of domains,
their transient stability, and the onset and direction of movement is a difficult task, given that
each “cell” is governed by a nonlinear periodically driven 2D differential equation. Hence, it is
useful to introduce a heuristic model which has similar qualitative features. In this section, we
consider such a simplified model for the spatial network for which we can prove the existence
of local phase-domains. The simple model also provides insight into the movement of the
boundaries between domains and how the transition between stationary and moving patterns
is effected. We will concentrate on a 1D network since this is conceptually easier to understand.
However, the theorem in [2] is independent of the spatial dimension and applies, in particular,
to 2D domains. The result proved below is an extension of [2], so that, with little effort, a 2D
version of it is likely to hold.
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Figure 8. Simulation of the integrate-and-fire model on a 100 × 50 oscillator grid. Each panel shows the
field after a set increment of time. The variable plotted is z, the refractory variable. Parameter values (for (6))
are v = 1.3, A = 4.7, T = 10, τ = 20, d = −2, W = 30, c = 7. Clicking on the above image displays the
accompanying animation of simulated phosphenes (64646 01.mpg [2.93MB]).

3.1. Derivation. The integrate-and-fire model with adaptation is an excitable system.
With sufficiently strong periodic drive, each cell can be driven to fire at every other cycle.
Conceptually, in the absence of coupling we can represent the dynamics of each cell by a
scalar variable depicting its phase relative to the firing time of the stimulus. The period of the
stimulus is T , but since each cell is firing only at every other cycle, the period of an individual
cell is 2T . Thus, the individual dynamics of each cell can be written in terms of the scalar
variable as

ut = H(u).(7)

Zeros of H(u) correspond to times with respect to the stimulus at which the cell fires. The
function H(u) should be T -periodic, so that if u = ū is a fixed point, H(ū) = 0, then there

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64646_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64646_01.mpg
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will be a second fixed point, u = ū + T , corresponding to u firing on the opposite cycles of
the stimulus. Thus, on the interval [0, 2T ), there is bistability corresponding to firing on the
even and odd cycles of the periodic stimulus. Furthermore, we want ū to be the only stable
fixed point in the interval [0, T ). An exact scalar equation of the form (7) can be derived
from the integrate-and-fire with adaptation model if we assume that the unforced system is
an intrinsic oscillator and the forcing has roughly twice the same frequency [10]. However,
in the present situation, the forcing is strong and the unforced model is excitable. Thus (7)
should be viewed as a simplified version of the forced excitatory cell.

Now, consider two neighboring cells which are coupled by gap junctions, that is, coupling
depending only on the difference between, say, the voltages of the cells, and which vanishes
when the cells are in identical states. Since u ∈ [0, 2T ), the coupling function must be 2T -
periodic. Furthermore, if both cells are in the same state, then the coupling should not
contribute anything to the dynamics since the coupling is diffusion-like. This leads us to the
following simplified equation for a pair of coupled cells:

u′1 = H(u1) + cD(u2 − u1),(8)

u′2 = H(u2) + cD(u1 − u2),

where H is T -periodic and D is 2T -periodic. Before turning to the analysis of the continuum
model, let us consider a simple example illustrating the general phenomena. Suppose that
T = 2 and choose H(u) = sinπu + a cosπu and D(u) = sin(πu/2) + q(1 − cos(πu/2)). Note
that we have included cosine terms in the equations for H,D since we cannot assume any kind
of intrinsic symmetry in the functions, as this can destroy the genericity of the results [18].
For small a, u1 ≈ 1 and u2 ≈ −1 ≡ 3 is a fixed point when c = 0. Thus u1 fires on even
cycles of the stimulus and u2 fires on odd cycles. For c small enough this stable fixed point
persists. However, for c > c∗, this state is lost via a saddle-node bifurcation (not shown, but
see Figure 10 for a higher-dimensional analogue), and the system synchronizes at u1 = u2 ≈ 1
or u1 = u2 ≈ −1. That is, one domain takes over the other.

If we now imagine an array of cells arranged on a line with local coupling which can extend
beyond nearest neighbors, then we obtain the following generalization of (8):

u′j = H(uj) + c
∑
k

Jj−kD(uk − uj),(9)

where Jk is a nonnegative weight for the strength of coupling. Since the strength of electri-
cal junctions falls off with distance [13], we assume the same about Jk. Proceeding to the
continuum limit, we obtain

∂u

∂t
(x, t) = H(u(x, t)) + c

∫
R

J(x− y)D(u(y, t) − u(x, t))dy,(10)

which we analyze in the next section.

3.2. Behavior of the continuum model. In this and the succeeding sections, we ana-
lyze (10), where u : R × (0,∞) → R. The parameter c is real and positive. The function
H is continuously differentiable and periodic with period T . The function D is continuously
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differentiable and periodic with period 2T . We assume, without loss of generality, that T = 2.
Additionally, the functions satisfy

H(−1) = H(0) = 0,

H ′(−1) < 0,

H ′(0) > 0,

D(0) = 0,

D′(0) > 0.

The conditions on H and D guarantee that each is bounded and well defined on the entire
real line. Thus, solutions to the initial value problem with u(x, 0) evolving according to (10)
will not blow up in finite time. Also, since the right-hand side of (10) is always defined, the
first time derivative of u exists for all t > 0, and so the solutions will be continuous in t. In
other words

lim
Δt→0

u(x, t + Δt) − u(x, t) = 0

for every x ∈ R.
In [2], the authors prove the existence and stability of stationary solutions to

ut = −u− λf(u) + J ∗ u,(11)

where λ > 0, J ∗ u is the spatial convolution of J with u, and the function f is bistable.
Specifically, they prove that, under conditions on the parameters, there exist stable steady
state solutions that are discontinuous. In this section we prove the existence of similar solutions
to (10). We remark that the proofs of existence and stability do not depend at all on the
fact the the model is on a 1D domain. Indeed, all proofs hold in arbitrary domains and, in
particular, the planar domain of the simulations. We focus on the 1D case, as the proof is
easier to explain.

3.3. Existence of stationary solutions. We wish to prove the existence of stationary
solutions that are discontinuous at arbitrary points on the real line. We begin by choosing
a set, M . Denote the complement by M c. Also, choose β > 0 such that H ′(u) < 0 for all
u ∈ (1 − β, 1 + β). We wish to prove the existence of a solution, U(x), satisfying

0 = H(U(x)) + c

∫
R

J(x− y)D(U(y) − U(x))dy(12)

with

U(x) ∈ (1 − β, 1 + β) when x ∈ M,

U(x) ∈ (−1 − β,−1 + β) when x ∈ M c.

We assume that the function H satisfies the following conditions:
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• H is a periodic function with period 2,
• H is continuously differentiable,
• H(1) = 0 and H ′(1) < 0,
• H(0) = 0 and H ′(0) > 0,

and that the function D satisfies

• D is continuously differentiable,
• D(0) = 0 and D′(0) > 0,
• D is periodic with period 4 (twice the period of H).

These conditions are consistent with the analogy to the full integrate-and-fire model.
Specifically, the 2-periodicity of H reflects the symmetry of the medium. In the full model,
each of the pair of stimulus-induced basins of attraction were identical. Since the function
H describes the intrinsic properties for a given point on the line, it is appropriate to assume
higher periodicity than for D. The condition that H be continuously differentiable is for
convenience in the proof that follows. The conditions on the function D reflect the proper-
ties of the coupling. The full model was developed under the assumption that the coupling
encourages synchrony between neighboring cells. Since D depends on the difference in u, the
D′(0) > 0 condition follows easily (as this is equivalent to positive diffusion). Also, cells that
are synchronized have no effect on one another, which leads to the condition that D(0) = 0.
Finally, the choice of fixed points of H is arbitrary and for convenience.

Let β > 0 be a number such that H ′(u) < 0 for u ∈ (1 − β, 1 + β), and set δ =
−maxu∈(1−β,1+β) H

′(u) > 0. Set K = maxu∈R |D′(u)|. Choose a measurable set M and
denote the complement as M c. Assume that c is small enough so that the following conditions
hold:

H(1 + β) + cDMMc sup
x∈M

∫
Mc

J(x− y)dy ≤ 0,

H(1 − β) + cDMMc sup
x∈M

∫
Mc

J(x− y)dy ≥ 0,

H(−1 + β) + cDMMc sup
x∈Mc

∫
M

J(x− y)dy ≤ 0,

H(−1 − β) + cDMMc sup
x∈Mc

∫
M

J(x− y)dy ≥ 0,

(13)

where

DMMc = max
s∈(2−2β,2+2β)

D(s),

DMMc = min
s∈(2−2β,2+2β)

D(s).

These conditions quantify the competition between the intrinsic properties at a location
and the coupling influence on that location. They are derived by choosing a band of width β
around the stable equilibria of u′ = H(u) and comparing the strength of attraction with the
maximum possible strength of the coupling toward the opposite equalibrium. These conditions
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guarantee that the coupling strength, c, is not strong enough to force a uniform profile across
the entire line for any set M , where

u(x, 0) ∈
{

(−1 − β,−1 + β) for x ∈ M,
(1 − β, 1 + β) for x ∈ M c.

We can now state the following theorem.
Theorem 1 (existence). Define δ and K as above, and assume that H and D satisfy the

conditions described above. Also assume that (13) holds. If −δ + 2cK < 0, then there exists
a solution, U(x), satisfying

0 = H(U(x)) + c

∫
R

J(x− y)D(U(y) − U(x))dy(14)

such that

U(x) ∈ (1 − β, 1 + β) when x ∈ M,

U(x) ∈ (−1 − β,−1 + β) when x ∈ M c.
(15)

Proof. Let

B =

{
U(x)

∣∣∣∣ U(x) ∈ (1 − β, 1 + β) when x ∈ M
U(x) ∈ (−1 − β,−1 + β) when x ∈ M c

}

and define the map

TU(x) = U(x) + ε

[
H(U(x)) + c

∫
R

J(x− y)D(U(y) − U(x))dy

]
.(16)

For ε sufficiently small, the conditions (13) guarantee that T : B → B. Our method of proof
is to show that T is a contraction mapping. This allows us to conclude that there is a solution
of the type (15) that satisfies (14).

To simplify expressions, define the function

A(U, x) =

∫
R

J(x− y)D(U(y) − U(x))dy.

Let U, V ∈ B. We write

‖TU − TV ‖∞ = ‖U − V + ε(H(U) −H(V ) + A(U, x) −A(V, x))‖∞.

The quantity A(U, x) −A(V, x) can be written

∫
R

J(x− y)[D(U(y) − U(x)) −D(V (y) − V (x))]dy.

Because D is continuously differentiable and K is a finite number, we have that

|D(g − h)| < K|g − h|
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for g, h ∈ R. We have the inequality

‖A(U, x) −A(V, x)‖∞ ≤
∥∥∥∥cK

∫
R

J(x− y)(U(y) − U(x) − V (y) + V (x))dy

∥∥∥∥
∞

=

∥∥∥∥−cK(U(x) − V (x))

∫
R

J(x− y) + cK

∫
R

J(x− y)(U(y) − V (y))dy

∥∥∥∥
∞

≤ cK

∫
R

J(x− y)dy‖U(x) − V (x)‖∞ + cK

∫
R

J(x− y)dy‖U(x) − V (x)‖∞

=

(
2cK

∫
R

J(x− y)dy

)
‖U(x) − V (x)‖∞.

We may write

‖TU − TV ‖ ≤ ‖U(x) − V (x) + ε(H(U(x)) −H(V (x)))‖ + 2εcK‖U(x) − V (x)‖.(17)

Since H ′(U) > −δ for u ∈ (1 − β, 1 + β) we have that

H(U(x)) −H(V (x)) ≤ −δ(U(x) − V (x)) ≤ 0

for x such that U(x) > V (x) and

0 ≤ H(U(x)) −H(V (x)) ≤ −δ(U(x) − V (x))

for x such that U(x) < V (x). Since the value of H(U(x))−H(V (x)) has the opposite sign as
U(x) − V (x) it follows that

‖U(x) − V (x) + ε(H(U(x)) −H(V (x)))‖∞ ≤ ‖U(x) − V (x) − εδ(U(x) − V (x))‖∞.(18)

We may choose ε small enough so that εδ < 1. Substituting (18) into the right-hand side
of (17) gives

‖TU − TV ‖∞ ≤ (1 − εδ)‖U(x) − V (x)‖∞ + 2εcK‖U(x) − V (x)‖∞,

‖TU − TV ‖∞ ≤ (1 − ε(δ − 2cK))‖U(x) − V (x)‖∞.

Thus, if δ > 2cK, then T is a contraction mapping, and hence there is a steady state solution
to (10).

The quantity −δ + 2cK is a comparison of the strength of the attraction to the stable
fixed points of the function H to the strength of the coupling. If δ is sufficiently large, then
the attraction to the stable roots of H is strong enough to counter the coupling. On the
other hand, for strong enough coupling, the network will assume a more uniform profile and
the solutions will not remain in bands of width β around the fixed points for the uncoupled
system.

It is important to note that Theorem 1 provides sufficient conditions for the existence of
these solutions; however, they are not, in general, necessary. The Lipschitz condition used to
bound the effect of the coupling can be somewhat generous, given that the solutions lie in the
β bands.

We remark that the existence proof is virtually identical to that in [2]; our diffusion
function is somewhat different, but once we impose the Lipschitz condition, the proof proceeds
identically.
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3.4. Stability. We now prove stability of the above patterns with the same hypotheses as
needed for their existence.

Theorem 2 (linear stability). Assume that for a set M , a number β, and a parameter c the
conditions in Theorem 1 are satisfied. The resulting stationary solution is linearly stable.

Proof. Let U(x) be the steady state solution to (10). Linearizing around the steady state,
we obtain

∂tw(x, t) = H ′(U(x))w(x, t) + c

∫
R

J(x− y)D′(U(y) − U(x))[w(y, t) − w(x, t)]dy.(19)

We rewrite (19) as

∂tw(x, t) = f(x)w(x, t) + c

∫
R

J(x− y)D′(U(y) − U(x))w(y, t) dy,

where

f(x) = H ′(U(x)) + c

∫
R

J(x− y)D′(U(x) − U(y)) dy.

We know that H ′(U(x)) < −δ for all x, and D is Lipschitz with constant K. Thus, f(x) <
−δ+ cK ≡ −b for all x, and if c is small enough, then −b < 0. Taking absolute values, we see
that |w(x, t)| is less than v(x, t), where v(x, t) is nonnegative and satisfies

vt = −f(x)v(x, t) + cK

∫
R

J(x− y)v(y, t) dy.

Here we have used again the fact that D is Lipschitz and also that J(x−y) is nonnegative. The
right-hand linear operator clearly preserves nonnegativity. Consider the following equation:

zt = −bz(x, t) + cK

∫
R

J(x− y)z(y, t) dy.(20)

Solutions to this problem can be found with Fourier transforms. Since J(x) ≥ 0 and is
symmetric and integrable, the Fourier transform, Ĵ , exists, is real, and is less than or equal
to Ĵ(0) = 1. Solutions to (20) have the form z(x, t) = exp(λt + i
x), where 
 is real and

λ = −b + cKĴ(
).

Thus, if b > cK, then all solutions to (20) decay to zero. We claim that if z(x, 0) = v(x, 0) > 0,
then z(x, t) > v(x, t) for all positive t. (We note that if z(x0, 0) = v(x0, 0) = 0 for some value
of x0, then both zt and vt will be positive due to the positive convolution term, so that both
z(x0, t) and v(x0, t) will be positive for any positive t. Thus, we assume that the initial data
are strictly positive.) If we can prove that z > v, then, since z decays to zero, so does v(x, t)
and thus so do all solutions to (19). Since f(x) < −b for all x, it is clear that at t = 0,
vt(x, 0) < zt(x, 0) so that up to some time τ , v(x, t) < z(x, t). Suppose at t = τ there is an
x0 with v(x0, τ) = z(x0, τ). At that point of intersection, we must have zt(x0, τ) < vt(x0, τ).
But, since z(x, τ) ≥ v(x, τ) for all x,∫

R

J(x− y)z(y, τ) dy ≥
∫

R

J(x− y)v(y, τ) dy
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and −bz(x0, τ) > f(x0)v(x0, τ), so from the evolution equations, zt(x0, τ) > vt(x0, τ), a
contradiction. Recalling that b = δ−cK, we see that a sufficient condition for stability is that
−δ + 2cK < 0.

As we noted at the end of the existence proof, the quantity −δ + 2cK measures the
competition between the attraction to the two different stable states (odd/even cycles of the
stimulus) and the coupling which attempts to make the network uniform. We can use this
result to motivate a more general result that is much more akin to the simulations in section 2.
The parameter δ is related to the attractivity of the uncoupled states. Suppose that instead
of the scalar function H we return to the general uncoupled periodically driven system:

du

dt
= F (u, t),

where F is a general vector function which is T -periodic in its second argument. Suppose that
u0(t) is a stable 2T -periodic function representing a 1:2 locked solution. Since it is stable, all
the Floquet exponents have negative real parts. Let −δ denote the real part of the exponent
closest to zero real part. Then, we conjecture that there are regions locked to the even and
odd cycles which persist as long as δ > cK, where c is the coupling strength and K is a
coupling function dependent value.

3.5. Traveling waves. In the previous sections, we proved the existence and linear sta-
bility of stationary solutions with discontinuities, as long as the coupling between cells is
sufficiently weak. The experiments and our model show movement of the lines which indi-
cates that the coupling strength must be fairly large. We can view the theory laid out in the
last two subsections as being the mechanism for setting up the domains and assuring that they
are stable. In this section we explore what happens in the simple model when the coupling
increases.

Once again, reconsider (10), which we repeat here:

ut(x, t) = H(u(x, t) + c

∫
R

J(x− y)D(u(y, t) − u(x, t))dy.

We will relax our assumption that J(x) is symmetric. We first prove the following proposition.
Proposition 1. Suppose that H(ū) = 0, D(0) = 0, D′(0) > 0, J(x) ≥ 0, c > 0, and∫

R
J(y) dy = 1. Then u(x, t) = ū is a linearly stable solution to (10).
Proof. Clearly, ū is a solution to this equation. Linearizing about ū, we see that the

linearized equation satisfies

vt = −δv − cD′(0) + cD′(0)

∫
R

J(x− y)v(y, t) dy.

Here −δ = H ′(ū). Solutions to this equation have the form

v(x, t) = eλteikx.

The eigenvalue λ satisfies

λ = −δ + cD′(0)[Ĵ(k) − 1],



548 JONATHAN D. DROVER AND G. BARD ERMENTROUT

1

1.5

2

2.5

3

5 10 15 20 25 30 35 40 45 50

3

3.5

4

4.5

5

5 10 15 20 25 30 35 40 45 50

t=246t=20 25 30

cell # cell #

va
lu

e

no bias bias

Figure 9. Traveling wave simulation for (10) with H(u) = sinπu, D(u) = sinπu/2 + 0.25(1 − cosπu/2),
and J(x) = exp(−|x + p|) on a grid of N = 50 cells. Coupling strength c = 6. Left: p = 0, no bias, shows the
profiles in which the state 3 (equivalent to −1 on the periodic domain [0, 4)) takes over. Right: bias p = 0.25
leads to a wave traveling in the opposite direction.

where Ĵ(k) is the Fourier transform of J(x). Since J(x) ≥ 0, �Ĵ(k) ≤ Ĵ(0) = 1, so that

�λ < 0

for all k as long as cD′(0) > 0 and δ > 0. Hence the constant state is stable.

Our assumptions on H presume that there are two stable constant solutions; thus, we
expect that if the coupling is sufficiently strong, there will be a wave front switching from
one state to the other. Indeed, if D(u) = u was linear, then the existence, uniqueness, and
stability of wave fronts would follow from a theorem of Chen [5]. Figure 9 shows an example
simulation in which the −1 state takes over the +1 state when the coupling is large enough.
This movement is due to a mechanism akin to that seen in Figure 5 for the nonbiased case.
The interaction J(x) is symmetric, but the function D(u) is not a purely odd function. We
can reverse the tendency for the +1 state to take over by allowing for asymmetric coupling.
The right-hand side of Figure 9 shows a wave in which −1 takes over by making the coupling
stronger from the right.

To gain some insight into the transition from stationary states to traveling waves, we
use AUTO to explore the existence and stability of the stationary state as a function of the
coupling strength. We consider N = 20 cells with nearest neighbor coupling:

u′j = H(u) + c[(1 + s)D(uj−1 − uj) + (1 − s)D(uj+1 − uj)], j = 1, . . . , 20.(21)

We set u0 = u1 and u21 = u20 as the boundary conditions and choose functions H(u) =
sinπu − 0.1 cosπu and D(u) = sinπu/2 + 0.25(1 − cosπu/2). We have added the cosine
terms to make sure that the results do not depend on the oddness of the functions H,D.
The parameter c is the overall coupling strength, and s is the measure of asymmetry. We
choose s = 0.1 so that the left cell has a greater effect than the right cell. When c = 0,
there are 2N stable fixed points corresponding to each cell taking a value of either of the two
stable roots to H(u) = 0 on the interval [0, 4). (Since the cosine term for H is small, these
roots are close to 1 and 3 = −1.) Figure 10A shows the how the steady states evolve for
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Figure 10. (A) Bifurcation diagram for (21) for five different equilibrium states as the coupling, c, increases.
Equilibria when c = 0 are shown to the right corresponding to cells in the “1” or “3” states. (B) Evolution
of traveling waves for coupling larger than the critical value. Time increases downward, and cell index is
horizontal. Coupling is stronger from the left so that the left state takes over the right. Left figure is for c = 1.3
such that the initial state has half the cells in the “1” state and the other half in the “3” state. Right panel is
the same, but only the first five cells are in the “1” state.

five different configurations. In each of the cases the first m cells are in the state near 1, and
the remaining are in the state near 3. In all cases, as the coupling increases there is little
quantitative change in the equilibria, but at a critical value of the coupling, the fixed point
is lost at a saddle-node. If the distribution of cells is very unbalanced (say, only one cell in
state 1 and the rest in state 3), then the amount of coupling required to destroy the steady
state is small compared to the more balanced case. An analogue of this is seen in Figure
8C,D, where the thin region between two similar domains is quickly absorbed. Figure 10B
shows the evolution of the stationary state when the coupling is larger than the saddle-node
value. The left figure shows that in the balanced case, as expected from the coupling bias,
the “1” state takes over the “3” state. Even when there is a 3:1 advantage of “3” state, the
bias is able to overcome this, and a traveling wave results. When only the leftmost cell is in
the “1” state and the other cells are in the “3” state, then the wave travels to the left—the
bias is unable to overcome the huge unbalance.

4. Discussion. We have derived a simple model for complex visual effects due to the
direct stimulation of the eyeball. The model is based on the simple idea that if there is
phase-locking between a stimulus which fires twice for every response of the cell, then there
is a natural bistability in the medium: firing on the odd or even cycles of the stimuli. We
have suggested that visual stimuli are able to push the phase-locked retinal cells into different
basins of attraction and that the boundaries between the bistable domains account for the
thin line illusions. This notion allows us to make several predictions. First, the thickness
of the boundaries should be independent of any stimulus properties—the “boundary layer”
is, rather, a function of the intrinsic coupling between retinal cells involved in the illusion.
Stronger coupling should lead to thicker boundaries. Second, more complex patterns should
be easy to create. For example, a visual stimulus consisting of an expanding annulus should
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result in a series of concentric circular patterns which will gradually disperse. Third, the
illusion should disappear instantly when the electrical stimulus is cut off, since the cells will
no longer fire and there will thus be no phase boundary. We have not completely explored how
differently shaped electrical stimuli will affect the patterns. However, one important prediction
that we can make is that if the electrical stimulation is at a sufficiently low frequency, there
will be no illusion, since the retinal cells will be able to fire in a 1:1 manner and so no phase-
boundaries can develop. This would allow us to distinguish our model from the model of
Willis, which we discuss briefly below.

In addition to a biologically “realistic” model, we abstracted the mechanism to a scalar
bistable medium with nonlocal but “weak” coupling. We proved a theorem about the exis-
tence and stability of patterned states, and then explored how asymmetric coupling which is
sufficiently strong can lead to traveling waves that connect the stable states of the bistable
medium, similar to those in [11].

There has been one other attempt to model these curious phosphenes [22]. The Willis
model captured the idea of bistability but did not model the slow movement of the phosphenes
over time. Willis’ model is based on a piecewise linear firing rate model, which proposes
that the interactions between two classes of cells (receptors and horizontal cells) switch sign
(excitation becomes inhibition and vice versa) during the two phases of electrical excitation.
Unless the nonlinearities of the Willis model are exactly balanced, one of the two states
should have a larger basin of attraction than the other. Thus, with any coupling at all, in
the Willis model, we would expect the phosphenes to have a strong tendency to move in
a preferred direction. This is not reported in the experiments. Our model is considerably
simpler and makes fewer assumptions about the cells and their connectivity. The two models
could be experimentally distinguished by recording from ganglion or horizonal cells during
the phosphenes. While this is unlikely, given that the subjects are humans, our model is more
compatible with both the physiological data in salamanders and the psychophysical data in
humans [7]. Furthermore, the Willis model would predict that the phosphenes persist at lower
frequencies, say, 50 Hz, since the bistability is based on a different mechanism from ours. This
is easy to test in humans.

While the illusions we have modeled are unusual and a consequence of unnatural stimuli,
such experiments can often be used to shed light on basic biological structure and function.
For example, by probing the retina with periodic stimuli, we can determine the frequency
response of the neurons. The width of the phosphenes tells us something about the degree of
intrinsic connectivity between retinal cells. Finally, there is a good deal of recent interest in
direct stimulation of the nervous system as a means of providing visual prosthesis [14]. Thus,
models such as the present one can provide a simple framework for exploring how direct
electrical stimuli are visually interpreted.
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