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REFLECTED WAVES IN AN INHOMOGENEOUS EXCITABLE 

MEDIUM* 


G. BARD ERMENTROUT~ AND JOHN RINZEL~ 

Abstract. Propagation can be encumbered in an excitable cable in which intrinsic properties 
change abruptly. A sudden increase in diameter or a decrease in conductivity or excitability can lead 
to propagation block or delay in propagation with or without reflection. We study such transient 
phenomena from a geometric point of view. A simple two-cell caricature, with one cell enlarged to  
mimic diameter increase, is developed and analyzed. Our analysis indicates that reflected waves may 
result from the existence of an unstable periodic orbit. As the inhomogeneity parameter is varied, 
this unstable cycle is nearer to  and then farther from the initial state that mimics an incoming wave. 
This fact leads to  a variety of complicated reflected waves. Correspondingly, we find numerically 
complex sequences of reflected-transmitted waves in biophysically more realistic cable analogues. 
The unstable periodic orbit in the cable appears t o  be related to  a one-dimensional spiral wave 
described by Kopell and Howard [Stud. Appl. Math., 64 (1981), pp. 1-56]. Finally, we argue that 
reflection phenomena occur more robustly when excitability is due to  saddle-type threshold behavior 
(type I excitability in the sense of Rinzel and Ermentrout [in Methods in Neuronal Modeling: From 
Synapses to Networks, C. Koch and I. Segev, eds., MIT Press, Cambridge, MA, 19891). 

Key words. echo waves, excitable media, cable equations 
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1. Introduction. Cardiac arrhythmic phenomena such as conduction block, re- 
flected waves, and reentry have been studied experimentally using isolated segments 
of Purkinje fibers and strips of ventricular myocardium. Because of the resistive cou- 
pling between cells, one can view these strips as effectively one-dimensional cables of 
excitable tissue. By using the sucrose gap method one introduces a conduction delay; 
these delays can be varied by adjusting the shunt resistance, R,, in parallel with the 
gap [I,  141. If the resistance R, is sufficiently high, conduction block can be obtained. 
That is, a wave initiated at  one end is prevented from reaching the other end. Keener 
[15] has mathematically analyzed conditions under which conduction block can ob- 
tain in spatially discrete excitable media. Another phenomena, seen experimentally 
for slightly smaller values of R,, is reflection. If the conduction delay is sufficient 
for the proximal segment to become repolarized, then when the downstream tissue 
finally initiates an impulse, the proximal segment, now recovered, becomes reexcited 
and produces a wave that travels back toward the original stimulus location. 

Similar wave behaviors have been demonstrated using ventricular strips treated 
with increased extracellular potassium in the central segment [23]. We call such a 
reflected wave an echo wave. A geometric analysis of this phenomenon is the subject 
of the present paper. 

Evidence for reflected nerve impulses has also been seen experimentally. An 
antidromically propagating action potential exhibits conduction delay as it encoun- 
ters the large change in diameter from the axon to the soma [16]. Ramon, Joyner, and 
Moore [19] saw partial reflection in a squid axon which had experimentally produced 
inhomogeneities in conductivity. There have been numerous computer simulations of 
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delayed conduction in models which change the axon diameter or alter local temper- 
ature and channel densities. Howe, Calvin, and Loeser [ll]obtained fully reflected 
waves in a chronic nerve injury preparation in rabbit, which has been used as a model 
for studying the mechanisms of pain. In a computational model, Goldstein and Rall 
[lo] showed that an action potential reaching a sudden large change in diameter will 
fail to propagate, but for a small range of diameter changes, they found complete 
reflection. Changes in diameter can also be viewed as equivalent to branching of the 
axon [lo]. Recently, Zhou and Bell [26] have numerically simulated reflected waves 
in the Morris-Lecar model as part of a study on the effects on inhomogeneities on 
propagation. 

Finally, Chagnac-Amitai and Connors [4] have looked at propagation of activity 
pulses in a cortical slice preparation treated with bicuculline to suppress fast synaptic 
inhibition. While the coupling in this tissue is not diffusive as in the previous examples 
above, it has qualitatively similar properties: it is local and primarily excitatory. With 
full suppression of inhibitory synapses, wave propagation was robust, without failures 
or reflections. However, some of their experiments with partial suppression reveal 
consistent reflected waves or situations in which in some region the activity lingers 
and is significantly delayed before finally propagating onward. This delay appears to 
allow the tissue that was previously excited time to recover enough to fire again and 
thus produce the reflected wave. 

We suggest that block and a single reflected wave are part of a large variety of 
behaviors that can occur at a change in diameter or conductance of an excitable axon 
(or in any excitable system, for that matter). We call these waves n:m echo, where the 
proximal segment produces n spikes (including the incoming spike that is initiated by 
the stimulus) and the distal produces m spikes. Thus, conduction block is 1:0, normal 
transmission is 1:1, and a single reflected wave is 2:l. In addition to these, we will 
show numerical examples of 2:2, 3:2, and 4:3. We also show that modes that are not 
of the form n:n or n + l : n  do not appear. In order to motivate these ideas, we begin 
in § 2 with some examples of echo waves: first in a cable, then in a pair of excitable 
cells, and finally in a simple two variable caricature with dynamics on the torus. The 
numerical results for a cable suggest that there is an unstable periodic solution that 
is important for the existence of echo waves. Thus, 5 3 contains an analysis of the 
caricature and describes in more detail our conjectured mechanism for the production 
of echo and n:m echo. This section contains the bulk of our paper's mathematics. In 
particular, we prove that in some circumstances, there is an unstable periodic orbit 
which we believe plays a pivotal role in the existence of echo waves. 

In 5 4 we compute the unstable periodic solutions that underlie the echo behavior 
in our biophysical cell models for the cases of two-cell and six-cell chains. We con- 
clude in § 5 with a discussion and some possible consequences of this behavior for the 
production of ectopic pacemakers in nerve axons and cardiac tissue. 

2. Blocking, transmission, and intermediate behavior. In Rinzel and Er- 
mentrout [22], we describe some basic properties of excitable cells. In particular, 
we show that there are two different basic mechanisms for excitability: type I1 and 
type I. In type I1 excitability, found in the familiar Hodgkin-Huxley equations [12], 
there is a single globally stable equilibrium point, and the threshold is due to the 
slow dynamics of the recovery variable. It is not a "sharp" threshold in that as the 
initial condition varies, so does the spike amplitude. (This smooth change in ampli- 
tude can be extremely sharp and and will often be noticed only for extremely detailed 
initial data explorations.) Type I excitability, which is the mechanism underlying the 
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Goldstein-Rall [lo] equations (for which echo has been convincingly demonstrated) 
as well as the Morris-Lecar equations [18] and the Wilson-Cowan equations in the 
"active transient" regime [24], is characterized by the existence of three equilibria: 
an unstable node/vortex (U), an asymptotically stable rest point (R), and a saddle 
point with a one-dimensional stable manifold serving as the threshold separatrix (T). 
(In n-dimensional systems, this manifold is an n - 1dimensional invariant set.) The 
threshold for type I excitability is sharp in that the spike amplitude is not continu- 
ously graded with the initial condition. Rather, there is a precise threshold (T's stable 
manifold), and the latency to firing can be arbitrarily long. We will use the Morris- 
Lecar model for excitability in a regime in which it is of type I. In the discussion 
section, we briefly consider type I1 membranes. 

2.1. Continuous cable. Consider an excitable cable in which the diameter 
varies between d = dl on the left and d = d2 2 dl on the right. In Figure 2.1, we 
depict the solution to such a cable using the Morris-Lecar membrane model (which is 
a Hodgkin-Huxley-like two component system and whose equations can be found in 
the appendix.) In Figure 2.l(a), the difference in the diameters is small so that the 
impulse which is initiated at the left, propagates through the entire cable. In Figure 
2.l(b), the diameter change is too great and propagation is blocked. We can assign 
indices to these two solutions, calling normal propagation 1:l and blocked propaga- 
tion 1:O. The first digit refers to the number of times that the thin cable is excited, 
and the second refers to the number of times that the thick cable is excited. It is a 
straightforward numerical task to determine what the ranges of diameter are for block 
and transmission. For the present model with thin diameter, dl = 1,block occurs for 
thick diameter dz > d* % 1.483 and normal transmission occurs for d2 < 6 % 1.4102. 
Thus, there is a range of diameters in which neither block nor 1:l transmission occurs. 
Figure 2.l(c) shows a solution for d2 = 1.45 in which a reflected wave is produced. 
We call such a wave "echo" and give it an index of 2:l. 

It is clear from the simulations above that as the diameter, d2, continuously varies, 
there are apparent jumps in the behavior from 1:l to 2:l to 1:O. An obvious question 
is, how does this index change as the diameter varies? In Figure 2.2, we sketch an 
exaggerated summary of the numerical experiments that we have performed on the 
cable as the diameter changes. As the diameter increases (toward the blocked case), a 
sequence of the form 1:1, 2:2, 3:3, and so on occurs until a critical diameter, d2 = dp, 
is reached. As one decreases the diameter from the blocked case (d2 2 d*) toward 
the normal transmission, a sequence of the form 1:0, 2:1, 3:2, and so on occurs until 
the critical diameter is approached from above. The intervals of each of these indices 
get smaller and smaller as the number of firings increases. The limiting value of the 
diameter, d,, forms the boundary between equal firings of the left and right cable 
halves and unequal firings. For d < dp both halves of the cable produce an identical 
number of spikes; for d > dp the left half produces precisely one more spike. Thus, 
it appears that at the critical diameter, there is a periodic solution to the cable in 
which spikes are alternately emitted from the center of the cable. We expect that this 
periodic solution exists for a wide range of diameters, however, it is only at the critical 
value of the diameter that a travelling pulse initiated at the left end "lands" precisely 
on the cycle. That is, the periodic solution is unstable, and thus only initial conditions 
that are on the cycle's stable manifold will lead to sustained rhythm. The conjectured 
unstable periodic orbit is itself interesting as it appears to produce alternating left 
and right moving waves originating from the point of the inhomogeneity. By adjusting 
the diameter, we are able to perturb this unstable periodic so that the transient wave 
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FIG.2.1. Numerical solution of a Morris-Lecar cable (see Appendix) which has a n  abrupt diam- 
eter increase. Top border shows diameter change. A x  = 1, At = 0.1, d l  = 1, length of cable is  50. 
Grey scale indicates voltage. ( a )  dz = 1.3: normal transmission; (b) d z  = 1.6: blocked transmission; 
(c) d Z  = 1.45: reflected wave. ( W e  obtain similar behavior with finer spatial discretizations; for 
computational speed, we have purposely kept A x  large. All simulations were done using the method 
of lines and a second-order Euler scheme. Initial conditions for the Morris-Lecar simulations are 
the resting state ( v  = -0.28, w = 0.005), except for the stimulated region or cell.) 
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F I G .  2 .2 .  Sequence of reflected waves as the diameter, d 2 ,  of thick segment varies. Reflected 
waves occur f o r d ,  < d2 < d * ;  block occurs for d2 > d*.  d, denotes the diameter at which there are 
infinitely m a n y  reflected waves for the particular stimulus of a n  incoming wave. 

produced by stimulating the thin end of the cable comes close t o  the unstable periodic. 
Depending on how close we get, we can produce arbitrarily many reflected waves. In 
Figure 2.3, we show some of the "exotic" examples of reflected waves. 

Our goals in the ensuing sections are to  introduce a simplified version of the cable 
and to use this version to prove that there is such a periodic solution and that it has 
the property of separating the equal and unequal pulse states. We then show how 

FIG.2.3. "Exotzc" reflected waves. ( a )  d2 = 1.410205, 2:2 waves; (b) dz = 1.410207. 4:3 waves 
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changing the diameter moves this periodic orbit so as to cause block, transmission, 
and the echo solutions from a single pulse-initiating stimulus. 

2.2. Two-cell model. To get a handle on the cable's behavior, we drastically 
idealize it as a two compartment model with asymmetric coupling. This simplification 
is representative of either a cable with a changed diameter or one with a region of 
reduced conductance. 

Consider a pair of identical Morris-Lecar oscillators that are diffusively coupled: 

Here dl  = 1, and d2 2 1 is the relative size of the larger cell. g, is the effective 
coupling conductance and will be fixed, letting d2 vary. Parameters are chosen so that 
in absence of coupling each "cell" has three equilibria: a stable rest state, a saddle 
point, and an unstable node. The phase plane is shown in Figure 2.4. Recall that this 
is different from the phase plane for the Fitzhugh-Nagumo equations which have only 
a single equilibrium value. Differences between the Morris-Lecar system and other 
excitable systems are described in Rinzel and Ermentrout [22]. The important feature 
of the present model is the ability of the cell to stay near threshold for an arbitrarily 
long time before firing. This is due to the presence of the saddle point; initial data 
close to it will remain nearly constant before traversing the phase plane and emitting 
a spike. Suppose that both cells are at rest and the first cell is stimulated sufficiently 
to elicit a spike. If d2 is too large, then the second cell will not fire and the analogue 
of block occurs. If d2 is close to 1 (and g, is large enough), then the second cell will 
fire. It is easy to imagine that,  like the cable, the values at which block and normal 
transmission occur are not synonymous. Rather there is a gap in which complex 
n:m firing patterns may occur. Thus, to create the analogy of a pulse incoming from 
x = -cm,we fix the initial condition of the first cell to be above threshold and the 
second to be at rest, and let d2 vary. In Figure 2.5, we show solutions to the coupled 
system for g, = 0.16 and d2 = 2,1.9436, and 1.9433 producing 2:1, 3:2, and 2:2 echo, 
respectively. Keeping in mind that d2 is proportional to the diameter of the second 

v-nullcline 

F I G .  2.4. Phase plane for Morris-Lecar system, showing threshold for excitability and three 
equilibria. 
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(c)

0.3 


C e l l  1-

FIG. 2 .5 .  Voltage t ime courses for echo and other transient solutions t o  the two-cell Morris- 
Lecar model, ( 2 . 1 ) .  ( a )  2 : l  solution, echo ( d 2  = 2 ) ;  ( b )3:2 solution (dz  = 1.9436); ( c )  2:2 solution 
(d2 = 1.9433) .  
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cell, we obtain exactly the same sequence of firings as we found in the cable. The 
intuition is clearer with the two-cell model. The second cell is excited by the first cell 
but remains close to its threshold long enough for the first cell to recover from firing. 
When the second cell finally fires, it is able to cause the first cell to fire again, and 
the two-cell analogue of echo occurs. Preliminary results on this two-cell model were 
first described in [20]. 

In the present model for excitability (type I excitability) there is an attracting 
invariant circle corresponding to the unstable manifold of the saddle point (cf. Figure 
2.4). Now suppose that cell 1 fires and cell 2 does not fire for some value of d2, 
but for a smaller value of d2 both cells fire. One can say that cell 2 went from a 
winding number of 0 to a winding number of 1 in that in the former case it does not 
traverse the phase plane but in the latter it does. If we suppose that this invariant 
circle persists, then there are two ways that this transition can occur. The time of 
firing of the second cell can be arbitrarily delayed, or the impulse of the second cell 
can continuously grow in amplitude. If the invariant circle persists and is strongly 
attracting, this latter case cannot occur. If the firing is arbitrarily delayed, then there 
will be time for the first cell to recover so that it will produce a second spike, i.e., echo. 
Thus, we believe that there are two important parts to the picture. First, there must 
be a range for the inhomogeneity parameter values such that a transition from block 
to transmission occurs. Second, the excitability must be such that the trajectory of 
the excited cell makes a well-defined loop around the phase space. 

2.3. Two-cell phase model. In order to put this rather heuristic argument on 
firmer mathematical ground, we introduce an even simpler model for an excitable 
medium. In Figure 2.4 there is a stable circle consisting of the two branches of the 
unstable manifold of the saddle. On this circle are two equilibria, one stable (the rest 
state) and one unstable (the threshold saddle point). Thus we consider a model for 
excitability in which the phase space is the circle: 

(2.3) dQ/dt = f (Q), 

where f (0) has a pair of roots, R the stable rest state and T the saddle point threshold. 
To mimic coupling of two such cells, we introduce a periodic coupling function that 
depends on the phase difference between the two cells: 

The function c(4) has the property that c(0) = 0, cl(0) > 0, and c has precisely one 
local maximum and one local minimum in the interval [O, 27r). This implies that there 
is another root, 5, such that ~ ' ( 5 )  < 0. The two parameters y and S are positive. 
When S = 1, the coupling is symmetric. For S > 1the model is equivalent to a small 
proximal cell (cell 1) connected to a large distal cell (cell 2). 

Phase models for excitability have been used succesfully in explaining a variety 
of nonlinear phenomena such as autonoumous bursting [2] and travelling waves in 
excitable media 125, 91. When the invariant circle is strongly attracting, they are a 
good approximation of the full dynamics. 

For the purposes of illustration, we choose the following functions: 

f (0) = 1- cu cos 0, 

c($) = sin($ +v)- sin(q), 
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2 . 5  
C e l l  1 -
C e l l  2 ..... 

FIG.2.6. "Echo" in  the phase model. Cell 2 starts at the stable rest state (8 FZ -.309), and 
cell 1 starts at O1 = 1.5. Parameters are a = 1.05,y = 0.8, and 6= 1.25. Rather than plotting the 
phases, we plot 1- acos(Oj) to make the similarity to Figure 2.l(c) more explicit. 

where a > 1and (ql < 7r/2. When q = 0, the coupling is particularly simple to analyze 
and we will keep q = 0 throughout the remainder of the paper. In keeping with our 
previous pictures, we fix the initial data of the first cell to  be suprathreshold and that 
of the second cell to be at  rest. Then, we vary the parameter S until block and normal 
transmission occur. 

In Figure 2.6, we show an echo solution to this system of equations. The trajectory 
traverses one full period around O2 and nearly two around 81. Each circuit corresponds 
to the firing of one "spike." Note the long delay in the firing of cell 2. In the next 
section, we analyze (2.4). For definiteness, when we say "firing" for the phase model, 
we mean that 0 crosses 7r as that is when d0/dt is maximal. 

3. Analysis of the phase model. We continue our discussion of the simple 
phase model described in section 2. We will show that under reasonable assumptions 
there is an unstable periodic solution to (2.4). The two branches of the unstable 
manifold of this invariant circle divide the phase space into regions within which each 
cell traverses the circle a set number of times before returning to rest. Thus, echo 
is associated with the existence of this unstable periodic orbit. It  is interesting to 
note that the unstable circle persists even in the case where 6= 1, i.e., the cells are 
identical. In a later section, we numerically show that this is also true in a chain of 
two or more excitable cells. 

Recall that the function f (0) has two roots, R and T ,  corresponding to the stable 
rest state and the unstable threshold, respectively. Since the coupling function van- 
ishes at zero phase-difference, this implies that there are at  least two equilibria for 
the coupled system corresponding to symmetric solutions el = 02. We denote these 
symmetric solutions as (R, R) and (T, T). The following characterizes their stability. 

PROPOSITION3.1. For y, S nonnegative, (R, R) is  a n  asymptotically stable equi- 
librium and (T, T) is  unstable for (2.4). 

Proof. The Jacobian matrix for (2.4) is 
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where 3 is one of R, T. We note immediately that (1, l )T  is an eigenvector with 
eigenvalue f1(3). This implies that (T, T)  is always unstable since f f (T)  > 0. Since 
the sum of the eigenvalues is the trace, the other eigenvalue is fl(%) -y(1/6+l)c1(0) so 
that (R, R) is always a stable node with two negative eigenvalues. For small coupling 
(y << I ) ,  the other eigenvalue for (T, T)  is positive so that this equilibrium is an 
unstable node. At a critical coupling strength yl = f f (T) / ( ( l /6+ l)cf(0)), there is an 
exchange of stability bifurcation and the unstable node becomes an unstable saddle 
point. We will use this below. O 

If 6 is very large and if y is not too large, then block occurs and there are four 
equilibria. Indeed, for y = 0 there are the two asymmetric equilibria, (R, T)  and 
(T,R), which persist for nonzero values of y. By letting 6 decrease from a very large 
value, a sequence of bifurcations arises as shown in Figure 3.1. For large 6 there 
are four equilibria with two asymmetric saddles (Figure 3.l(a), (b)). The stable and 
unstable manifolds of the two asymmetric saddle points break up the phase space in 
such a way as to make it impossible for any initial condition along the line 02 = R 
to traverse the circle along 02. As the 6 decreases toward 1, one of the asymmetric 
saddles exchanges stability with the symmetric unstable node, becoming a node and 
leaving the symmetric fixed point, (T, T), as a saddle (Figure 3.l(b), (c)). Further 

F I G .  3.1. Sequence of equilibria in O1 -On plane for (2.4) as a function of decreasing diameter, 
6 ,  assuming that y is i n  the appropriate range. Point types: stable node, filled circle; unstable node, 
open square; saddle, filled triangle. Unstable periodic cycle appears when asymmetric saddle and 
asymmetric unstable node coalesce and disappear. 
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decreases in S toward 1cause the two asymmetric equilibria to merge in a saddle node 
bifurcation (Figure 3.l(d)).  For all smaller values of 6 there are only two rest states: 
(T, T )  and (R, R). This picture is critical to the remainder of our analysis, for here we 
prove that there exists an unstable periodic orbit that has the property that it winds 
around both 81 and 82. This will turn out to imply that there is echo. 

Remark.  Decreasing the second cell's diameter in the phase model is related to 
our method for finding echo in the cable and coupled-cell models; start with block 
and gradually decrease the diameter. 

PROPOSITION3.2.  Suppose that  the only equilibria for (2.4) are the symmetr ic  
stable node (R, R) and the symmetr ic  saddle point (T, T). T h e n  there exists at least 
one repelling periodic orbit that  traverses the torus with rotation number 1. 

Proof. The diagonal O1 = O2 is attracting so that there is a neighborhood around 
this diagonal out of which no trajectories can flow. If this diagonal strip is removed 
from the torus, the result is a cylinder containing no equilibria and out of which 
all trajectories flow. This is topologically a repelling annulus, and in reverse time it 
follows from the Poincark-Bendixson theorem that there is at least one periodic orbit. 
Furthermore, the orbit has a rotation number of 1;both phases wrap around precisely 
once. (See Figure 3.2.) O 

If we now assume that there is an unstable periodic orbit and that it has the 
property that it wraps around the torus in a 1:l fashion, then the mechanism for echo 
becomes clear. In Figure 3.3, we depict an exaggerated view of the two branches of 
the stable manifold of the symmetric saddle point (T, T) as well as their limit set, 
the periodic orbit. Call these branches FL and rR,corresponding respectively to the 
branch emanating from the left and right of (T, T) .  Consider a horizontal line through 
the stable rest state. Initial conditions on this line correspond to fixing cell 2 at rest 
and letting the initial conditions on cell 1vary. The intersections of rRand FL with 
this line divide the initial conditions into a sequence of open sets that have special 
properties. We will use the notation & to denote the curve on the torus corresponding 
to 82 = R and O1 E ( a ,b) .  Suppose that we start in the set I%. Following the trajectory 
we see that neither cell fires. This corresponds to block of the firing of both cells. We 
call this 0:O echo. Note that this region extends beyond the threshold for firing cell 1 
in the absence of coupling. Intuitively, the "current drain" due to coupling increases 
the threshold for firing the first cell. Suppose that we now start in region 03. This 
results in both the firing of cell 1 and the firing of cell 2 and is called 1:l echo or 
normal transmission. Initial conditions in region 12 result in two firings of each cell, 
or 2:2 echo. Indeed, in each of the regions to the left of the critical periodic orbit, we 
obtain n:n echo for nonnegative integers n. 

Let us turn to the regions to the right of the critical orbit. Consider initial data 
in the region 6k.Following this trajectory we see that cell 1 fires once and cell 2 does 

FIG.3.2. Deformation of the torus with the diagonal removed to form an  annulus. 
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F I G .  3.3. Exaggerated view of the phase plane picture corresponding to echo for the two-cell 
phase model. The  numbers are meant t o  aid i n  identifying the trajectories o n  opposite edges of the 
torus. Numbers along the top also serve t o  define the endpoints of the intersections with the line 
82 = R. Double numbers along the left and bottom edges associate numbers o n  the right edge with 
those o n  the top edge. The  unstable periodic orbit is  the heavy curve. 

not fire at all. This is called 1:O echo and corresponds to the usual notion of block. 
Next let the initial data lie in 6%. The result is that cell 1 fires twice and cell 2 fires 
once. We have found 2:l echo, which is the usual notion of a reflected spike. As 
we move closer to the critical orbit, more and more firings are added; as long as we 
remain to the right, there will be (n  + 1):n echo for all nonnegative integers, n. 

In the above discussion, we have held the parameters fixed and varied the initial 
data. However, one can just as easily fix initial data and vary the parameters. For 
a fixed value of the coupling parameter, y,we can vary S and plot (Figure 3.4) the 
boundaries for 1:l  and 1:O (block). These are simply the first points where the stable 
manifold of the symmetric saddle point intersects the line B2 = R. Initial conditions 
within this narrow band will lead to 2:l and more complex echo solutions. Note that 
intermediate values of S give the largest range of initial conditions leading to echolike 
solutions. 

Proposition 3.2 shows that under fairly general circumstances there is an unstable 
periodic orbit. However, it yields little information about the detailed structure of 
the orbit. The following propositions use singular perturbation theory to explore the 
quantitative features of this orbit. Furthermore, we can see precisely how the echo 
behavior disappears through a block solution. Numerical results in the next section 
confirm that a similar behavior occurs for the two-cell model. 
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diameter 

FIG.3.4. Region for initial state of cell 1 that leads to echolike behavior for y = 0.8, a = 1.05 
$xed and diameter, 6,variable. 

We first consider the case for which the second root of the coupling function c is 
not n as it is in the above figures and examples (7 = 0). (When c is an odd function, 
the second root is n. More generically, the second root will not be n. However, for 
c odd, the analysis yields more details. Thus, we discuss both cases.) In both cases, 
we assume that the coupling strength is large. Since any fixed-diameter difference 
can be overcome with large enough coupling, we will assume that the diameter of the 
second cell is of the same order of magnitude as the coupling strength. That is, we 
set y/S = ,8 and assume that ,8 is O(1) as y + oo. 

PROPOSITION = 	 0 such that cl($) < 03.3. Let #I $ be the nonzero root of c(4) = 

and c(-4) # 0. Let ,8 = y/6 be fixed and positive as y -+ oo. Then for y suficiently 
large, Q2 - el = $ + O(l/y)  and 

Proof. To prove this, we will introduce a new coordinate system. Let 0,-el = $+< 
and consider the system in terms of (El  Q2). If we let E = 117,we obtain 

Setting E = 0 we see that (' = 0 is an invariant circle on the torus (E, 8,). This yields 
the equation, (3.2), for the dynamics on the invariant set. Since cl($) is nonzero, it 
follows from [7]that the set is hyperbolic. Thus, it persists for E > 0 and sufficiently 
small. Furthermore, since cl($) < 0, the set is repelling. O 

For ,8 small (that is, a large value of the diameter compared to the coupling 
strength) (3.2) has fixed points. However, since c(-$) # 0 as ,8 is increased (i.e., 
the diameter is reduced), will be of one sign and so there will be a nontrivial 
periodic solution on the torus on which both e2 and el traverse one cycle. This is the 
unstable periodic orbit of Proposition 3.2. This suggests the following scenario for 
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the production of echo in the phase model. For a large-diameter cell, there is block. 
As the block is removed, an unstable periodic arises via a saddle-node loop. This 
unstable orbit serves as the mechanism by which echo is produced. 

Since our numerical examples use c(4) = sin(4), we will prove a modification of 
Proposition 3.3 in which the existence of the unstable circle is guaranteed, but we do 
not need to assume that the diameter, 6, is of the same order of magnitude as the 
coupling strength, y. 

PROPOSITION Suppose that 4 and c is an odd function. Then for 3.4. = n 
suficiently large y there is an unstable invariant circle, Q2 - Q1 = n + O(l/y) ,  on 
which the dynamics satisfy 

Remark. Depending on the size of S, this system may or may not have any 
equilibria. If there are no equilibria, then 8; is of one sign and so there is an unstable 
periodic orbit. Clearly as S t co the right-hand side of (3.5) tends to f (Q2), which 
has a fixed point. 

Proof. We once again introduce new variables. Let E = l / y  and Q2 - Q1 = n + E [ .  

Then (2.4) becomes 

Since cl(n) # 0, we can set E = 0 and solve the first equation for <. Substituting this 
into the equation for Q2 yields the desired equation for (3.5). Since cl(n) # 0, the 
invariant set defined by < is hyperbolic so that it persists for E small and positive. 
0 


We have shown that an unstable periodic solution exists and argued that this 
solution implies that echo occurs in the simple phase models. In the broader context 
of biophysical models, the existence of the periodic coincides with echolike behavior 
only in so far as it is the limit of n:n and n + l : n  types of solutions. In the next section, 
we reconsider the two-cell model and numerically show that there is an unstable 
antisymmetric periodic solution for parameters in which there is echo. 

4. Numerical computation of unstable periodic solutions for nerve 
membrane models. In the previous section, we suggested that echo solutions arise 
as the diameter of the "thick" cable decreases from the blocked case, and that these 
transient solutions are a consequence of an unstable periodic orbit in the dynamics of 
the coupled system. Here, we use numerical methods to compute this periodic orbit, 
first for the two-cell Morris-Lecar model and then for a six-cell version. We compute 
the unstable periodic orbit over a range of diameters, including the case of identical 
cells. For the two-cell model, we show that the orbit's position in phase space (as a 
function of d2) allows us to anticipate whether block, echo, or 1:l  transmission will 
occur. For the discrete (homogeneous) cable, the unstable periodic orbit appears to 
be related to the unstable one-dimensional "spiral" waves that were first discovered 
by Kopell and Howard [17]. In the next section, we show that wave reflection 
phenomena occur more generally, for other types of inhomogenieties, and even for 
type I1 excitability, although less robustly it seems. 
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4.1. Periodic solutions for the two-cell model. Consider once again the 
two-cell Morris-Lecar system (2.1). We choose the diameter of the second cell to get 
a complicated echo (in the present example, 5:4 echo, occurring for g, = 0.16 and 
d2 = 1.94344). Then we pick a portion of this transient, and use it as a starting 
guess for the continuation software AUTO [6]. In Figure 4.1 we depict the unstable 
periodic orbit found by AUTO along with the projection of the 5:4 echo solution in 
the vl - vz plane. The periodic orbit is indistinguishable from the middle part of the 
transient echo solution. We can then use AUTO to study the evolution of this orbit as 
we change the diameter. As d2 is increased, we find that at d2= 3.5523 the unstable 
periodic orbit disappears via a saddle-node bifurcation. The periodic orbit persists as 
d2 decreases to 1. This is exactly the same scenario as occurred in the two-cell phase 
model described in 5 3. 

It is important to emphasize that the existence of the unstable periodic orbit 
does not imply that echo solutions will occur for the membrane model. Rather, 
we believe that its existence is a necessary condition for echo. For example, in the 
above calculation, the unstable periodic persists for dz = dl = 1,but we have never 
found echo in this regime. The reason is that the trajectory evolving from the initial 
conditions that we use to mimic an incoming wave (cell 2 at rest and cell 1at a fixed 
suprathreshold voltage, v2 = 0.0) never comes close to the unstable orbit. In the 
blocking regime, the same holds: the initial data are not on a trajectory that comes 
close to the unstable orbit. Figure 4.2 shows a blown-up region of the vl - vz plane 
illustrating the trajectories of the unstable periodic orbit for three different diameters. 
The horizontal line is the curve of initial values of vl when vz, wl ,  and w z  are at 
rest. The differences between block, echo, and transmission are clearly illustrated. 
(Note that the middle trajectory is an expanded view of the unstable periodic orbit 
shown in Figure 4.1.) Block occurs when the unstable orbit lies sufficiently above the 

F I G .  4.1. Voltage plane showing the two-cell unstable periodic orbit (dashed line) and the 5:4 
echo solution (solid line). Initial condition for the echo solution i s  shown ( I C ) .  ( T h e  dashed periodic 
orbit i s  essentially identical to a piece of the echo solution and thus i s  barely visible in this picture.) 
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FIG.4.2.  Voltage plane showing the two-cell unstable periodic orbit for values of d2 at which 
there is block (d2 = 2.6), echo (d2 = 1.98), and 1:1 transmission. The horizontal line shows the 
resting value of v2,  and the vertical line i s  the initial value of vl  used to mimic an  "incoming" wave. 

"incoming wave" initial conditions, for then cell 2 never gets excited enough to fire. 
1: l transmission occurs when the initial conditions lie sufficiently inside the unstable 
orbit. The second cell fires easily, but the trajectory is far enough away from the 
unstable orbit to preclude subsequent firings of either cell. Echo occurs when the 
initial conditions are close to the unstable periodic orbit. Thus, echo emerges in 
the two-cell system in the same manner as in the phase model. As we decrease the 
diameter of cell 2 from a large value, the unstable periodic orbit's vl - v2 projection 
moves downward, and the sequence of "reflected" wave patterns n + 1:nfollowed by 
n:n is seen until the trajectory falls low enough, after which 1: l transmission is found. 
The unstable orbit, while existing in regions where there are no echo solutions, plays 
a pivotal role in the transient behavior of the two-cell model as one goes from block 
to 1: l transmission. 

Another question that can be asked is, how does this unstable periodic orbit, born 
as a homoclinic at a saddle-node point, disappear? If we continue decreasing d2 below 
unity, then cell 1 is the larger cell and, by analogy, we expect that the orbit ought 
to become homoclinic and disappear for small enough d2. It can also be lost in a 
different way, by varying an intrinsic excitability parameter. Starting with our orbit, 
continued to the symmetric case of identical cells, we increased the stimulating current 
I in both cells and used AUTO to follow the orbit. If the current is large enough, each 
cell individually oscillates. Our unstable periodic orbit is just the expected antiphase 
solution of two oscillators, coupled with weak diffusion [21].This feature means the 
case of two cells is special in some sense. Thus, to get more insight into the origin 
and role of the unstable periodic in the cable, we turn to a longer chain of cells. 

4.2. Multiple-cell periodics. For simplicity, we have numerically investigated 
a chain of six Morris-Lecar cells with diffusive coupling on vj. The first three cells 
have diameter 1, and the last three have diameter d. With coupling g, = 0.5, echo 
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FIG.4.3. Unstable periodic orbit for a chain of six Morris-Lecar cells with g, = 0.5. This 
pattern is the discrete-chain analogue of one-dimensional spiral pattern of Kopell and Howad [17]. 

occurs when d RZ 2.5 and persists over a wide range of values. Using the methods 
described above, we can get a good approximation for the unstable periodic at a 
value of d for which there is echo. Then, using AUTO, we continue this branch back 
to d = 1. Figure 4.3 shows the cells' voltage time courses for the periodic solution 
at d = 1. The left central cell (cell 3) fires and produces a wave going to the left. 
Half a period later the central right cell (cell 4) fires and produces a rightward wave. 
This pattern of alternating leftward- and rightward-going waves, emanating from one 
location, is the discrete-cell analogue of the one-dimensional spiral pattern discovered 
by Kopell and Howard 1171. The pattern was shown to be unstable by Ermentrout 
and Rinzel 181. While the proof of Kopell and Howard was for a very special class of 
oscillatory reaction-diffusion equations, we believe that these solutions exist in cables 
more generally. In fact, our cable is excitable, not autorhythmic. Thus, we conjecture 
that echo on a continuous cable equation is a consequence of an unstable periodic 
solution that is a continuation of the unstable one-dimensional spiral wave solution 
centered at the point of the inhomogeneity. 

5. Discussion. We have described reflection and block phenomena for coupled- 
cell pairs, chains, and continuous excitable cables in which parameters such as diam- 
eter change abruptly with distance. Figure 2.2 summarizes the complex systematic 
sequence of echo waves that we believe occurs as the degree of inhomogeneity changes. 
The mathematical solutions for echo are difficult to analyze since they are transient 
rather than stable and persistent, as are stable traveling wave solutions, for example. 
On the other hand, we have gained insight into these behaviors by identifying an 
underlying persistent structure, an unstable periodic orbit that plays a key role. As 
we have shown, mere existence of such an orbit, however, does not guarantee echo 
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behavior; the orbit exists over a parameter range that exceeds the echo range. Of 
importance is how the specific initial conditions of interest (for us, those that mimic 
an incoming wave) relate to the unstable orbit. If they lead to a trajectory that comes 
near the orbit, then echo can occur. As the inhomogeneity parameter is varied, the 
complex transition from block to 1:l transmission climaxes for a critical parameter 
value with an infinite number of reflected and transmitted waves. In mathematical 
terms, we conjecture that at criticality the initial state lies on the unstable periodic 
orbit's stable manifold. The manifold sweeps through the incoming wave initial state 
as the parameter is varied; the (n + 1):n and n:n behaviors occur when the initial 
conditions are either "above" or "below" the stable manifold. 

This understanding was reached by explicit analysis of the two-cell phase-variable 
model. The phase model embodies the essence of type I excitability, a saddle-type 
threshold behavior. We believe this feature underlies robust echo behavior; it is found 
in several other models that show echo (see introduction). This is not to say that 
reflections do not occur in a cable having type I1 excitability. Finding echo with, say, 
the standard Hodgkin-Huxley equations is possible, but the regime is very narrow. 
Such type I1 models, without a sharp threshold, can yield spike responses of graded 
amplitude as the initial data change. Indeed, when one varies d2 between regimes 
of block and 1:l transmission for the Hodgkin-Huxley equations or the Morris-Lecar 
equations (in the parameter regime for type I1 firing) one does find echo in a two- 
cell model, but for a very narrow range. However, the spike of the second cell is 
considerably smaller than its usual height because of the "pull" toward equilibrium 
from the coupling. Figure 5.1 shows an example of "echo" in the two-cell Morris- 
Lecar system when the dynamics are type 11. Note the diminished amplitude of the 
second cell's spike. In contrast, for the type I case of Figure 2.5(a), the downstream 
spike has full amplitude. It appears that small q5 enhances the possibility for type I1 
echo. If the dynamics are not close to the relaxation limit, the transition from block 

FIG.5.1. Voltage traces for echo i n  a two-cell Morris-Lecar model, with type I1 excitability. 
Parameters are the same as those i n  previous figures except 4 = 0.1, vg = 0, vq = 0.3, g ~ ,= 
1.1, i = 0.2, gc = 0.2, dn = 3.79. 
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to transmission occurs via a gradual increase in the amplitude of v2,not in the way 
we have viewed echo. We finally note that, as in our analysis for type I echo, there 
is an unstable periodic orbit. Thus, for echo with type I1 excitability, an unstable 
periodic orbit still appears necessary. 

Up to now, we have discussed echo in the context of changing diameter. Significant 
inhomogenieties in other parameters can also lead to conduction delays, block, and 
reflections. In many of the cardiac preparations, propagation is jeopardized in a 
localized region by a reduced axial conductance. Thus consider, instead of a cable 
with a changing diameter, one for which there is a reduced conductance over some 
midportion of its length. As noted in the appendix, this results in a slightly different 
equation. For illustration, we let the axial conductance decrease by 42% in a interval 
from x = 20 to x = 24 on a cable of length 50. As in the case of a changing diameter, 
there is a reflected wave (Figure 5.2). There is a range, approximately between 40% 
and 50% conductance decrease, where reflected waves are found. 

As noted by Goldstein and Rall [lo], the existence of reflected waves suggests a 
means by which a pacemaker could be created. Consider a long axon with a smaller- 
diameter central region. Stimulating the left end results in a wave that propagates 
into the thin region. If a reflected wave occurs on the thin segment after the right 
thicker region is excited, it will propagate back to the left again, exciting the leftmost 
segment. A wave is again reflected and travels to the right. This continues periodically 
and results in a "pacemaker." Similar rhythmogenic phenomena associated with mid- 
axon changes in properties may be involved with neural mechanisms of pain such 
as trigeminal neuralgia [3]. Since wave reflection occurs in cellular discrete media 
as well as in continuous cables it may provide yet another mechanism for ectopic 
pacemakers in cardiac tissue. Ito and Glass [13] and Chay [5] have suggested that 
such ectopic pacemakers can arise by reentry in "rings" of cardiac excitable tissue. 
The mechanism outlined here is geometrically much less stringent and requires only 
some local inhomogeneities in the fibers. 

FIG.  5.2.  Echo resulting from a region of decreased axial conductance in a type 1 Morris-Lecar 
cable. 
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Appendix. 

A.1. Morris-Lecar equations. The Morris-Lecar model is a simplified 
conductance-based model with a fast persistent calcium current and a delayed-
rectifier potassium current. The dimensionless equations (see [22]) are 

where 

The parameters used in our simulations are 4 = 0.333,gl = 0.5,gK = 2, gca = 1, 
vl = -0.01,~2= = 0 . 1 , ~ ~  = 1 , v ~  =0 . 1 5 , ~ ~  = 0.145, VC, = - . 7 , v ~= -0.5, I 0.08. 

A.2. Cable equations. We derive the continuum model for a passive cable here. 
Consider the discrete compartment model in Figure A.l ,  where 

Here A is the compartment length; Ri, Cm, and Rm are fixed geometry independent 
constants; and dj is the diameter of the j t h  compartment. The equations for the j th  
potential are 

Substituting the values above into this, we obtain 

To proceed to the continuum limit, we let vj = v(jA) and dj = d(jA) so that,  e.g., 
vj+l = v(x) + Av, + A2/2vxx+ . . . . Substituting the analogous quantities for vj-1 
and djil and expanding in A we obtain the equation 

Taking the limit as A -+ 0 we obtain the desired equation. 
Remarks. 1. For an excitable cable, replace the resistive current with the expres- 

sion for the nonlinear ionic currents. 
2. If, instead of a changing diameter, we simply let rj  be a function of j to mimic 

a conductance alteration, the analogous operator is (v(x),/r (x)),/2. 
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FIG.A.1. Diagram of the cable with varying resistances. 

Acknowledgments. G.B.E. would like to thank David Terman for his sugges- 
tion that the bagel be sliced (cf. Proposition 3.2). All numerical calculations and 
bifurcation diagrams for the differential equations were done with XPPAUT, and all 
PDE calculations were done with XTC. Both programs are available via anonymous 
ftp at ftp.math.pitt.edu in the /pub/bardware directory. 

REFERENCES 

[I] C .  ANTZELEVITCH, G. K. MOE, Characteristics of reJection as a mechanism J .  JALIFE,AND 
of reentrant arrhythmias and its relationship to parasystole, Circulation, 61 (1980), pp. 
182-191. 

[2] S. M. BAER, J .  RINZEL, AND H. CARRILLO, Analysis of an  autonomous phase model for neuronal 
parabolic bursting, J .  Math. Biology, 33 (1995), pp. 309-333. 

[3] W. H. CALVIN, J .  D. LOESER, AND J .  F .  HOWE, A neurophysiological theory for the pain 
mechanism of tic doulourem, Pain, 3 (1977), pp. 147-154. 

[4] Y .  CHAGNAC-AMITAI Horizontal spread of synchronized activity and its AND B. W. CONNORS, 
control by GABA-mediated inhibition, J.  Neurophys., 61 (1989), pp. 747-758. 

[5] T .  R. CHAY, Studies on  reentrant arrhythmias and ectopic beats i n  excitable tissue by bifurca- 
t ion analysis, J.  Theoret. Biol., 155 (1992), pp. 137-171. 

[6] E.  DOEDEL, AUTO: A program for the automatic bifurcation analysis of autonomous systems, 
Congr. Numer., 30 (1981), pp. 265-284. 

[7] N. FENICHEL, Geometric singular perturbation theory for ordinary differential equations, J .  
Differential Equations, 31 (1979), pp. 53-98. 

[8] G.  B. ERMENTROUT One dimensional target patterns: Empirical stability tests, AND J .  RINZEL, 
J.  Math. Biol., 10 (1980), pp. 97-100. 

[91 -, Waves i n  a simple excitable or oscillatory reaction-diffusion model, J .  Math. Biol., 11 
(1981), pp. 269-294. 

[lo] S. S. GOLDSTEIN AND W.  RALL, Changes of action potential shape and velocity for changing 
core conductor geometry, Biophys. J. ,  14 (1974), pp. 731-757. 

[ l l ]  J .  F. HOWE, W. H. CALVIN, AND J .  D. LOESER, Impulses reflected from dorsal root ganglia 
and from focal nerve injuries, Brain Research, 116 (1976), pp. 139-144. 

[12] A. L. HODGKIN AND A. F. HUXLEY, A quantitative description of membrane current and its 
application to conduction and excitation i n  nerve, J.  Physiol. (London), 117 (1952), pp. 
500-544. 

1131 H. ITO AND L. GLASS, Theory of reentrant excitation i n  a ring of cardiac tissue, Phys. D., 56 
(1992), pp. 84-106. 

[14] J .  JALIFE AND G. K. MOE, Excitation, conduction, and reflection of impulses i n  isolated bovine 
and canine cardiac Purkinje fibers, Circ. Res., 49 (1981), pp. 233-247. 

[15] J .  P .  KEENER, Propagation and its failure i n  coupled systems of discrete excitable cells, SIAM 
J. Appl. Math., 47 (1987), pp. 556-572. 

[16] B. I .  KHODOROV,The Problem of Excitability; Electrical Excitability and Ionic Permeability 
of the Nerve Membrane, New York, Plenum, 1974. 

[17] 	N.  KOPELLAND L. N. HOWARD,Target patterns and horseshoes from a perturbed central-force 
problem: Some temporally periodic solutions to reaction-diffusion equations, Stud. Appl. 
Math., 64 (1981), pp. 1-56. 

[18] 	C. MORRISAND H. LECAR, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J . ,  
35 (1981), pp. 193-213. 



1128 G. BARD ERMENTROUT AND JOHN RINZEL 

[I91 F. RAMON,  R .  W .  JOYNER, A N D  J. W .  MOORE, Propagation of action potentials i n  inhomoge- 
neous axon regions, Federation Proc., 34 (1975), pp. 1357-1363. 

[20] 	J. R I N Z E L ,  Mechanisms for nonuniform propagation along excitable cables, in Mathematical 
Approaches t o  Cardiac Arrhythmias, Ann.  New York Acad. Sci. 591, J. Jalife, ed., New 
York Academy o f  Sciences, New York ,  1990, pp. 51-61. 

[21] 	A.  SHERMAN AND J .  R I N Z E L ,Rhythmogenic effects of weak electrotonic coupling i n  neuronal 
models, Proc. Natl. Acad. Sci. U S A ,  89 (1992), pp. 2471-2474. 

[22] J. R I N Z E L  A N D  	 Analysis of neural excitability and oscillations, in Methods G. B .  ERMENTROUT, 
i n  Neuronal Modeling: From Synapses t o  Networks, C .  Koch and I .  Segev, eds., MIT Press, 
Cambridge, M A ,  1989. 

[23] 	G. J .  ROZANSKI ,J .  JALIFE,A N D  G.  K .  MOE,  Reflected reentry i n  nonhomogeneous ventricular 
muscle as a mechanism of cardiac arrhythmias, Circulation, 69 (1984), pp. 163-173. 

[24] H. R .  WILSON J .  D.  COWAN, Excitatory and inhibitory interactions i n  localized populations A N D  


of model neurons, Biophys. J., 12 (1972), pp. 1-24. 

[25] A.  T .  WINFREE,The Geometry of Biological T ime,  Springer-Verlag, Berlin, 1980. 
[26] 	Y .  ZHOUA N D  J .  BELL,  Study of propagation along nonuniform excitable fibers, Math. Biosci., 

119 (1994), pp. 169-203. 


