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PATTERN FORMATION IN AN ARRAY OF OSCILLATORS WITH
ELECTRICAL AND CHEMICAL COUPLING∗

FATMA GUREL KAZANCI† AND BARD ERMENTROUT†‡

Abstract. Weak coupling theory is applied to a model for firing waves in the procerebral lobe
of the slug. Inhibitory synapses and electrical synapses have different synchronizing properties. We
show that, in concert, these two types of coupling can cause a bifurcation to a patterned state from
synchrony which ultimately develops into traveling waves. Normal forms for the bifurcation are
computed, and the results are compared to numerical simulations of the phase models.
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1. Introduction. Networks of coupled neural oscillators exhibit a variety of
activity patterns according to the properties of the coupling. There is clear experi-
mental evidence for the existence of electrical and chemical synapses in neocortical
inhibitory networks [11]. The effect of each type of coupling in isolation is well studied
[4, 17, 19]. Depending on the nature of the neural oscillation, inhibition can be either
synchronizing or desynchronizing [19, 12]. Electrical coupling between oscillators is
established via gap junctions. In numerous computational and theoretical studies,
it has been shown that electrical coupling can promote either synchrony or antisyn-
chrony [18, 1, 4, 3], depending on the shape of the action potential and the nature of
the oscillator. Recently, the combined effects of these couplings have been an area of
theoretical interest [16, 13, 2, 17]. In these papers, both the inhibition and the gap
junctions encouraged synchronization. Coupling is between pairs of oscillators or in
all-to-all coupled networks.

In a recent paper [6], Ermentrout et al. explored a biophysical model for the
olfactory lobe of the garden slug. Under resting conditions the slug lobe produces
slow periodic traveling waves of electrical activity. The oscillations are generated
by a class of inhibitory bursting neurons, which are coupled via gap junctions and
chemical inhibitory synapses. Experimentally, the wave of activity is biased to move
in one direction because of an intrinsic gradient in the frequency of the bursting
cells. In the above paper, the authors developed and simulated a biophysical model
for the waves with both inhibition and gap junctions. They found that even in the
absence of a gradient in frequency, it was possible to generate waves in an otherwise
homogeneous network. With large enough gap junction coupling (or small enough
inhibition), the network synchronized. However, with weak electrical coupling the
network becomes desynchronized, breaking into clusters of cells with different phase-
lags. At intermediate coupling strengths, the network produces waves.

Our broad goal in this paper is to explore what happens in spatially distributed

∗Received by the editors May 26, 2006; accepted for publication (in revised form) November 7,
2006; published electronically February 9, 2007. The authors were supported by National Science
Foundation grant DMS05135.

http://www.siam.org/journals/siap/67-2/66104.html
†Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260 (fag4@pitt.edu,

bard@math.pitt.edu).
‡Corresponding author.

512



PATTERN FORMATION IN OSCILLATORS 513

networks when one form of coupling (here, gap junctions) encourages synchrony but
the other form of coupling (chemical inhibition) encourages (at least pairwise) anti-
phase (half cycle apart) locking. More specifically, we suppose that the synchronous
coupling is local and the desynchronizing coupling is long range. Since electrical
junctions require that membranes of the cells be in direct contact, we expect that
gap junction coupling is spatially localized. In contrast, chemical inhibition might be
expected to have longer range. In the slug brain model, the inhibition is global, in
that each cell inhibited all the other cells in the network, while the gap junctions were
only between nearest neighbors. We show below that inhibition is desynchronizing
for the slug model and that gap junctions synchronize, so the slug model serves as an
example of a spatially distributed network in which the two types of coupling work in
opposition. Ermentrout and Kopell [10] explored the effects of one or two long range
desynchronizing interactions between cells that were coupled with local synchronizing
interactions. Various types of waves were found via direct analytic calculations which
were possible due to the simple form of the coupling.

In this paper, we explore the bifurcation to patterns in a general network of
oscillators in which there is long range desynchronizing coupling and short range
synchronizing coupling. The strength of the former coupling is a parameter which
when increased causes the synchronous state to lose stability. We determine the
critical values for this parameter via linear stability analysis, and the direction of the
bifurcation via a normal form calculation. To make the analysis possible and to avoid
the confound of boundary effects, we forgo the linear chain and work on a circular
domain. Numerical results of the chain produce similar behavior, but the analysis
is considerably more difficult. The normal form calculation is made somewhat more
difficult by the presence of a zero eigenvalue arising from translation invariance. Our
method is to first reduce the biophysical model to a chain of phase-coupled oscillators
on which we can apply the general theory. Thus, in the first section, after introducing
the biophysical model, we compute the interaction functions under the assumption
of weak coupling. We show that for this model, gap junctions are synchronizing,
while chemical inhibition is desynchronizing. Next, we analyze the bifurcation of
patterned states from synchrony in a continuum chain of phase-oscillators. We find a
novel phase-locked state which is patterned but not a traveling wave. We numerically
illustrate the transition to traveling waves as predicted in the reduced system and
provide conditions for the stability of the traveling wave.

2. The model and reduction. Ermentrout et al. introduced a biophysical
model for a network of bursting and nonbursting cells in the procerebral lobe of
Limax [6]. The bursting cells oscillate at about 1 Hz and are responsible for the
electrical wave observed in the lobe. The nonbursting cells fire only in the presence
of extrinsic stimuli. Thus, since we are interested only in the genesis of the wave, we
focus on the bursting cells. Each cell is an intrinsic oscillator, and, in the model, two
types of synapses couple the oscillating neurons: chemical inhibition and electrical
or gap junctions. The membrane potential for each bursting cell obeys the following
equations:

C
dV

dt
= −IL − IK − ICa − Igap − Isyn,

where each term is a current due respectively to the leak, the potassium channels, the
calcium channels, the gap junction coupling, and the synaptic inhibition. We used the
parameters given in Appendix B. The gap junction coupling is over nearest neighbors
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and depends on the voltage difference between the pre- and postsynaptic cells:

Igap = ggap(Vpost − Vpre).

Here, “post” refers to the cell receiving the connection from the “pre” cell. The inhi-
bition, Isyn, is global—every cell inhibits every other cell. Each synaptic interaction
adds a current of the form

Isyn = gsynspre(Vpost − Esyn),

where Esyn = −78 mV, and the synaptic conductance obeys an equation of the form

dspre
dt

=
0.1

(1 + exp(−(Vpre + 45)/5))
− spre

100
.

Networks of coupled oscillators are generally difficult to analyze. However, the method
of averaging has proven to be very useful for studying synchronization between os-
cillators [17]. That is, if we assume that the conductances ggap, gsyn are sufficiently
small, it is possible to reduce a network of coupled oscillators to a system of phase
models where each oscillator is represented by its scalar phase and interactions are
through the differences in the phases [21, 15, 9]. Let Vi be the membrane potential of
the ith cell and si be the synaptic component of the ith cell. If

−Isyn,i = −gsyn
∑
j

wijsj(Vi − Esyn)

is the synaptic current into the ith cell and wij is the weight of the connection between
cell i and j, which is taken to be 1/N , where N is the number of oscillators, then with
the weak coupling assumption, the phase interactions will take the form

−Īsyn,i = gsyn
∑
j

wijHsyn(θj − θi),(2.1)

where

Hsyn(φ) =
1

T

∫ T

0

V ∗(t)s(t + φ)(Esyn − V (t)) dt.

V ∗(t) is the voltage component for the T -periodic solution to the adjoint equation for
the stable limit cycle. V (t), s(t) are the voltage and synaptic components, respectively.
For the gap junction coupling, we find

−Īgap,i = ggap
∑
j

zijHgap(θj − θi),(2.2)

where

Hgap(φ) =
1

T

∫ T

0

V ∗(t)(V (t + φ) − V (t)) dt.

The weights, zij , satisfy zij = f(|i − j|), where f is a decreasing function in its
argument. The phase of each oscillator, θi, obeys the reduced dynamics

θ′i = 1 − Īsyn,i − Īgap,i,
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(a) (b)

Fig. 2.1. Coupling functions are computed using XPPAUT. Approximations are estimated
from the Fourier expansion. (a) shows Hsyn and its approximation, and (b) shows Hgap and its
approximation. The functions are plotted over a period of the oscillations, and the dashed line marks
the half period.

where the two currents are given by (2.1) and (2.2). The phase of each oscillator maps
directly onto the potential (or other variable) of each bursting cell once the zero phase
is chosen. A standard choice of zero phase is the peak of the membrane potential.

Figure 2.1 shows both Hsyn and Hgap for the Limax model evaluated numerically
using XPPAUT [5], along with their approximations using the 0, 1, 2 order terms
of the Fourier expansion. The Fourier approximations of these functions are used
in bifurcation calculations in section 3, the stability arguments in section 4, and the
numerical simulations of the phase model in section 5. Their values are given in
Appendix B. Note that Hsyn(0) �= 0, Hgap = 0, H ′

syn(0) < 0, and H ′
gap(0) > 0.

To interpret the meaning of these inequalities, consider a pair of identical cells:

θ′1 = 1 + gsynHsyn(θ2 − θ1) + ggapHgap(θ2 − θ1),

θ′2 = 1 + gsynHsyn(θ1 − θ2) + ggapHgap(θ1 − θ2).

Let φ = θ2 − θ1. Then

φ′ = gsyn[Hsyn(−φ) −Hsyn(φ)] + ggap[Hgap(−φ) −Hgap(φ)] ≡ F (φ).

Clearly, F (0) = 0, so synchrony, θ2 = θ1, is a solution. Synchrony is stable if F ′(0) < 0
or

gsynH
′
syn(0) + ggapH

′
gap(0) > 0.

Since the conductances, gsyn, ggap are nonnegative and H ′
syn(0) < 0, H ′

gap(0) > 0,
synchrony is stable if the gap junctions dominate. Since F (φ) is an odd T -periodic
function, F (T/2) = 0. This antiphase solution will be stable for the coupled pair if
F ′(T/2) < 0 or, equivalently,

gsynH
′
syn(T/2) + ggapH

′
gap(T/2) > 0.

As seen in Figure 2.1 by the dashed vertical lines at T/2, antiphase is stable for
synaptic and unstable for gap junction coupling. In the models considered by Lewis
and Rinzel, both synaptic and electrical coupling encourage stable synchrony [16].
Thus, the interaction of networks will lead to synchronous behavior. In contrast, for
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the intrinsic dynamics in the Limax model, electrical coupling encourages synchrony,
but synaptic inhibition opposes it. Our goal in the rest of this paper is to explore the
consequences of these differences in a one-dimensional spatially organized array of N
oscillators.

2.1. The spatial equations. We introduce a discrete model where we have
all-to-all synaptic coupling and local gap junction coupling. The equations can be
written down as

dθj
dt

= ω +
gsyn
N

N∑
k=1

Hsyn(θk − θj) + ggap

m∑
l=−m

JlHgap(θj+l − θj), j = 1, . . . , N,

(2.3)

where θj represents the phase of oscillator j, ω is the intrinsic frequency for all the
oscillators, gsyn is the synaptic coupling strength, ggap is the strength of electrical
coupling, and Hsyn, Hgap are the functions describing synaptic and gap junction
coupling, respectively. We note that the key point in the weak coupling assumption is
that the effects of different types of coupling are linear and additive. Thus, only the
ratio of gsyn and ggap in the phase model matter. The oscillators are arranged in a
ring to avoid boundary effects. W.l.o.g., we assume that the ring has length 2π. The
factor 1

N in front of the synaptic coupling contribution guarantees that the model also
works when we allow N → ∞. The weights Jl are taken to be nonnegative, and we
assume that J−l = Jl. m represents the scope of gap junction coupling. We also note
that m � N , since we assume that gap junction coupling is local. Henceforth, we
assume that the period of the oscillators (and thus of the coupling functions) is 2π.
The function Hsyn favors the antiphase state for pairwise interactions so that π is a
stable fixed point for a pair of oscillators coupled with only synaptic coupling. The
function Hgap favors the in-phase state for pairwise interactions so that 0 is a stable
fixed point for a pair of oscillators coupled with only gap junction coupling. This is
equivalent to saying the following:

A1. H ′
syn(0) < 0.

A2. H ′
gap(0) > 0.

For simplicity, we also need the following:

A3. Hsyn(0) = 0.
A4. Hgap(0) = 0.

Note that A4 holds automatically for gap junctions, since a cell cannot be coupled
to itself via gap junctions. If Hsyn(0) = κ �= 0, then let θj = θ̂j + (ω + gsynκ)t. We
write

dθ̂j
dt

=
gsyn
N

N∑
k=1

Ĥsyn(θ̂k − θ̂j) + ggap

m∑
l=−m

JlHgap(θ̂j+l − θ̂j), j = 1, . . . , N,

where Ĥsyn(φ) = Hsyn(φ) − κ. We can see that Ĥsyn(0) = 0, so w.l.o.g., we assume
Hsyn(0) = 0.

We also make a normalization assumption on Jl by taking the following:

A5*.
∑m

l=−m Jl = 1.
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Fig. 2.2. A plot of J(x) where the sum was taken over n = −2,−1, 0, 1, 2.

For the purposes of calculations, it is much easier to work with the continuum
analogue of (2.3), so our analysis will be on a continuum version of the network.
Hence, from now on, we study this model

∂θ

∂t
= ω +

gsyn
2π

∫ 2π

0

Hsyn(θ(y) − θ(x)) dy

+ ggap

∫ 2π

0

J(x− y) Hgap(θ(y) − θ(x)) dy,(2.4)

where analogous assumptions are made as for the discrete model. We remark that
the continuum model can be derived from the discrete model in the limit as N → ∞
with a suitable normalization assumption on the function J�. One difference is that
the discrete model, θj , was a function of time and the discrete index j, whereas it is
now a function of time and space. We assume that J(x) is a nonnegative, symmetric
kernel around 0 and that the normalization condition is

A5.
∫ 2π

0
J(y) dy = 1.

In our numerical simulations, we assumed J(x) =
∑∞

n=−∞ exp(−(x + 2πn)2)/
√
π.

(See Figure 2.2.)

3. Linear stability analysis for synchronous solution. We want to study
the spatial interactions between synchronizing and antisynchronizing influences. We
start with the synchronous state and study its stability. The synchronous state is
where all of the oscillators have the same phase. Note that if we assume heterogeneity
in the intrinsic frequencies, synchrony is not a solution to the system. If we have
homogeneity, θ(x, t) = Ωt is a solution to (2.4), where Ω = ω+gsynHsyn(0) represents
the frequency of the network. To determine the stability of synchrony, we let θ(x, t) =
Ωt + ψ(x, t) and write

∂ψ

∂t
=

gsyn
2π

∫ 2π

0

H ′
syn(0) [ψ(y) − ψ(x)] dy

+ ggap

∫ 2π

0

J(x− y) H ′
gap(0) [ψ(y) − ψ(x)] dy + O

(
|ψ|2

)
.(3.1)
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If we keep only the linear terms above, we can see that ψ(x, t) = einx eλnt solves (3.1)

with the appropriate choice of λn. Let In =
∫ 2π

0
J(s) e−ins ds, and substitute ψ(x, t)

into (3.1) to get

λn = −gsyn H ′
syn(0) + ggap H ′

gap(0) [In − 1](3.2)

for n �= 0. For n = 0, λ0 = 0. We choose J(x) so that we have I1 ≥ 1 and
I1 > I2 > · · · > In > In+1 > · · · . This means that the first Fourier mode dominates.
The Gaussian kernel shown in Figure 2.2 satisfies this criterion, as does, for example,
the periodic version of an exponential kernel, exp(−|x|). With this assumption, it is
easy to see that the first eigenvalue to cross over to positive values would be λ1. We
call n = 1 the most unstable node. To find the critical value of gsyn, we solve for
λ1 = 0, which gives us

g∗syn =
ggap H ′

gap(0) [I1 − 1]

H ′
syn(0)

.(3.3)

Here ∗ is used to denote the value of gsyn at the bifurcation point. To study
the stability of the bifurcating solutions we need to find the normal form for the
bifurcation. We prove the following theorem.

Theorem 3.1. The system (2.4) with the assumptions A1–A5 has a pitchfork
bifurcation at g∗syn, and the corresponding normal form is

0 = ζz2z̄ + ηz.

The coefficients ζ and η are

ζ = 12B1,3 − 3B2,3 − 9B0,3 + 2C B0,2 − 2CB2,2,

η = −g2α1,

where

Bn,j =

∫ 2π

0

Aj(y
′) einy

′
dy′,

Aj(x) =
g∗syn
2π

αj + ggap βj J(x),

C =
2B1,2 −B2,2 −B0,2

B2,1 −B0,1
,

with αj =
Hj

syn(0)

j! and βj =
Hj

gap(0)

j! for j = 1, 2, . . . . Here f j(x0) represents the ith
derivative at x0 for f = Hsyn, Hgap.

Proof. We use a perturbation expansion for the solution ψ and gsyn as

θ(x, t) = Ω(ε) t + ψ̂(x, ε),(3.4)

where

Ω(ε) = ε Ω1 + ε2 Ω2 + ε3 Ω3 + · · · ,

ψ̂(x, ε) = ε ψ1(x) + ε2 ψ2(x) + ε3 ψ3(x) + · · · ,
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and

gsyn = g∗syn + ε g1 + ε2 g2.

We define a linear operator L as follows:

Lψ =
g∗syn
2π

∫ 2π

0

H ′
syn(0)[ψ̂(y, ε) − ψ̂(x, ε)]dy

+ ggap

∫ 2π

0

J(x− y)H ′
gap(0)[ψ̂(y, ε) − ψ̂(x, ε)]dy

=
g∗syn
2π

∫ 2π

0

H ′
syn(0)[ψ̂(x− y′, ε) − ψ̂(x, ε)]dy′

+ ggap

∫ 2π

0

J(y′)H ′
gap(0)[ψ̂(x− y′, ε) − ψ̂(x, ε)]dy′(3.5)

with the substitution y′ = x − y. Note that e±ix, 1 are in the null space of L and
that L is self-adjoint. (Here, we use 1 to denote the constant function which is 1 for
all x.) We need to find the Taylor expansions of Hsyn and Hgap around 0 for the full
system

Hsyn(x) = Hsyn(0) + H ′
syn(0) x +

H ′′
syn(0)

2
x2 +

H ′′′
syn(0)

6
x3 + · · ·

= α1 x + α2 x2 + α3 x3 + · · · ,

Hgap(x) = Hgap(0) + H ′
gap(0) x +

H ′′
gap(0)

2
x2 +

H ′′′
gap(0)

6
x3 + · · ·

= β1 x + β2 x2 + β3 x3 + · · · .

Substituting θ in the form given in (3.4) into (2.4),

Ω(ε) =
(g∗syn + εg1 + ε2g2)

2π

∫ 2π

0

α1 [ψ̂(x− y′, ε) − ψ̂(x, ε)] dy′

+
(g∗syn + εg1 + ε2g2)

2π

∫ 2π

0

α2 [ψ̂(x− y′, ε) − ψ̂(x, ε)]2 dy′

+
(g∗syn + εg1 + ε2g2)

2π

∫ 2π

0

α3 [ψ̂(x− y′, ε) − ψ̂(x, ε)]3 dy′

+ ggap

∫ 2π

0

J(y′) β1 [ψ̂(x− y′, ε) − ψ̂(x, ε)] dy′

+ ggap

∫ 2π

0

J(y′) β2 [ψ̂(x− y′, ε) − ψ̂(x, ε)]2 dy′

+ ggap

∫ 2π

0

J(y′) β3 [ψ̂(x− y′, ε) − ψ̂(x, ε)]3 dy′ + O
(
|ψ̂|4

)
.(3.6)

Let Aj(x) =
g∗
syn

2π αj +ggap βjJ(x) for j = 1, 2, 3 and Q(x) =
∫ 2π

0
[α1(ψ̂(x−y′, ε)−

ψ̂(x, ε)) +α2(ψ̂(x− y′, ε)− ψ̂(x, ε))2 +α3(ψ̂(x− y′, ε)− ψ̂(x, ε))3] dy′, which lets us to
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rewrite (3.6) as

Ω(ε) =

∫ 2π

0

A1(y
′) [ψ̂(x− y′, ε) − ψ̂(x, ε)] dy′

+

∫ 2π

0

A2(y
′) [ψ̂(x− y′, ε) − ψ̂(x, ε)]2 dy′

+

∫ 2π

0

A3(y
′) [ψ̂(x− y′, ε) − ψ̂(x, ε)]3 dy′

+ ε
g1

2π
Q(x) + ε2

g2

2π
Q(x) + O

(
|ψ̂|4

)
.(3.7)

We match the coefficients of powers of ε terms from both sides of (3.7). This allows
us to compute the coefficients for the normal form. The rest of the calculations are
given in the appendix. The normal form for the bifurcation is

0 = ζz2z̄ + ηz,

where ζ = 12B1,3 − 3B2,3 − 9B0,3 + 2CB0,2 − 2CB2,2 − 2CB2,2 and η = −g2α1. Note
that η is positive since α1 < 0 from our assumptions. Thus, depending on the sign of
ζ, we can determine the stability of the new solutions.

In our case, we compute ζ = −210.09 and η = 105g2, which tells us that we have
a supercritical pitchfork bifurcation. The new solution bifurcating from synchrony is
stable.

4. Existence and stability of the traveling wave. Next, we look at the
existence and stability of the traveling wave, θ(x, t) = Ωt + x. Substituting θ back
into (2.4) gives us

Ω = ω +
gsyn
2π

∫ 2π

0

Hsyn(y)dy + ggap

∫ 2π

0

J(y)Hgap(y)dy.(4.1)

W.l.o.g., we can assume that the average of Hsyn(y) is zero and so let I =∫ 2π

0
J(y)Hgap(y)dy; (4.1) reduces to Ω = ω + ggapI. (The value of the frequency is

irrelevant to the stability calculation since the right-hand sides always involve terms
of the form θ(x, t) − θ(y, t) so that adding Ct to θ, where C is any constant, has no
effect.) We prove the following theorem about the stability of the traveling wave.

Theorem 4.1. The traveling wave solution, θ(x, t) = Ωt+ x, is a stable solution
to (2.4) if we have

Re(λn) = −1

2
gsynnbn + 2πggap

−n−1∑
m=−∞

m

4
[(cmfn+m − dmen+m) − (cmfm − dmem)]

− 2πggap

−1∑
m=−n

m

4
[(cmfn+m + dmen+m) + (cmfm − dmem)]

− 2πggap

∞∑
m=1

m

4
[(cmfn+m − dmen+m) − (cmfm − dmem)]

≤ 0
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for n > 0, where

Hsyn(y) =

∞∑
n=0

an cosny + bn sinny,

Hgap(y) =

∞∑
n=0

cn cosny + dn sinny,

J(y) =
∞∑

n=0

en cosny + fn sinny.

Proof. Letting θ(x, t) = Ωt + x + ψ(x, t), we write

∂ψ

∂t
=

gsyn
2π

∫ 2π

0

H ′
syn(y) [ψ(x + y) − ψ(x)] dy

+ ggap

∫ 2π

0

J(−y) H ′
gap(y) [ψ(x + y) − ψ(x)] dy + O

(
|ψ|2

)
.(4.2)

ψ(x, t) = einxeλnt solves (4.2) up to linear order. We solve for λn to get

λn =
gsyn
2π

∫ 2π

0

H ′
syn(y)[einy − 1]dy + ggap

∫ 2π

0

J(−y) H ′
gap(y)[e

iny − 1]dy.(4.3)

We look at the real part of λn, for Hsyn, Hgap, and J real-valued,

Re(λn) =
gsyn
2π

∫ 2π

0

H ′
syn(y)[cosny − 1]dy + ggap

∫ 2π

0

J(−y) H ′
gap(y)[cosny − 1]dy.

When n = 0, Re(λ0) = 0, which corresponds to translation invariance. We need
Re(λn) ≤ 0 for n �= 0. Also, we want to make our analysis as general as possible. For
this reason we use the complex Fourier series expansion for Hsyn, Hgap, and J . Let
J(y) =

∑∞
k=−∞ αke

iky, Hsyn(y) =
∑∞

l=−∞ βle
ily, Hgap(y) =

∑∞
m=−∞ γmeimy, where

α−k = αk, β−l = βl, and γ−m = γm. Substituting these into (4.3) gives

λn = −igsynnβ−n + 2πiggap

∞∑
m=−∞

[mγm(α−(n+m) − α−m)].

If we look at the real part of λn, we see that

Re(λn) = −1

2
gsynnbn + 2πggap

−n−1∑
m=−∞

m

4
[(cmfn+m − dmen+m) − (cmfm − dmem)]

− 2πggap

−1∑
m=−n

m

4
[(cmfn+m + dmen+m) + (cmfm − dmem)]

− 2πggap

∞∑
m=1

m

4
[(cmfn+m − dmen+m) − (cmfm − dmem)],

where Hsyn, Hgap, and J are given with the Fourier expansion with coefficients a0 =
2β0, c0 = 2γ0, e0 = 2α0, an = βn + β−n, bn = i(βn − β−n), cn = γn + γ−n,
dn = i(γn − γ−n), en = αn + α−n, and en = i(αn − α−n).
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In our case, the traveling wave is always stable. Substituting our parameters
into the eigenvalue equation, we see that Re(λn) ≤ −50gsyn − 824.27ggap ≤ 0 for all
positive values of gsyn and ggap.

We close this section with some comments on the existence and stability of trav-
eling waves in the discrete system for local gap junction coupling. Consider a discrete
ring,

dθj
dt

= ω +
m∑

i=−m

aiH(θj+m − θj),

where m � N and N is the number of oscillators. The coupling constants ai are
nonnegative. Suppose that H is 2π-periodic and that H ′(x) > 0 for −r < x < r and
r > 0. Then, it follows from [7] that the synchronous state is asymptotically stable.
Now, consider a traveling wave:

θj = Ωt + 2πj/N.

This satisfies the discrete model if and only if

Ω = ω +
m∑

i=−m

aiH(2πi/N).

If m/N is sufficiently small, then

H ′(±2πm/M) > 0

since H ′(x) is positive in some neighborhood of 0. Thus, again from [7], the traveling
wave is asymptotically stable. Figure 2.1(b) shows that H ′

gap(x) > 0 over more than
half the cycle surrounding the origin. Thus, we can pick m as large as N/4 and still
be assured that the traveling wave is stable. This shows that there is bistability be-
tween traveling waves and synchrony in the discrete model with small enough synaptic
coupling.

5. Numerical results. In this section we (i) show that the bifurcation theory
developed for the continuum model appears to hold for the discrete model by nu-
merically simulating the latter, (ii) numerically extend the local bifurcation analysis
to get the full picture for the discrete phase-model, (iii) numerically simulate the
conductance-based model and show patterns similar to those found via our analysis,
and (iv) compute the bifurcation diagram for a line of 20 oscillators which are not
connected in a ring.

Figure 5.1 depicts the steady-state relative phases for a ring of 20 phase-oscillators
using the interaction functions shown in Figure 2.1. The strength of the gap junction
coupling is fixed at .01, and gsyn is varied along the vertical axis. Simulations are
done by starting the relative phases close to synchrony and then letting them evolve
until a steady state is reached. Figure 5.1(a) shows this steady state (color-coded)
for each value of gsyn examined. (We remark that in the phase model, the absolute
value of the coupling parameters is irrelevant, and only their ratio matters.) Figure
5.1(b) shows vertical cross sections from part (a) to more clearly illustrate different
types of solutions observed for various ρ ≡ gsyn/ggap values. For example, when
ρ = 0.3, there is no difference in phases of the oscillators, indicating that the system
is synchronized. In contrast, between ρ ≈ 0.35 and ρ ≈ 0.87, the solution is the



PATTERN FORMATION IN OSCILLATORS 523

g
sy

n

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

4

g
syn

X
1

X
5

X
10

X
15

X
19

g
syn

 ≈ 0.34

 

g
syn

 ≈ 0.87

 

(a) (b)
x0 x19

1

0

0.6

0.8

0.2

0.4

0 6.28

Fig. 5.1. Transition from synchrony to intermediate state and then to traveling wave. (a) illus-
trates an array plot of the relative phases of the oscillators as ρ ≡ gsyn/ggap is increased; (b) shows
the phases of some oscillators as ρ is increased.

patterned state which bifurcates from the synchronous state as described in section 3.
As ρ increases beyond 0.87, the patterned state (which qualitatively resembles a cosine
wave) disappears and leaves a traveling wave as the only solution. The traveling wave
is, in fact, stable for all ρ shown in the diagram, so that for ρ < 0.87 there is bistability.
The loss of stability of the synchronous state occurs at ρ ≈ 0.35, which is very close
to the value of 0.3476 predicted in section 2.

To give the reader some intuition for the patterns, we depict the spatio-temporal
patterns in terms of their absolute phase in Figure 5.2. As we increase the relative
coupling strength, we see the transition from synchrony to a stable patterned state
(compare 5.2(a) and (b)). This is the state which arises via the pitchfork bifurcation
calculated in section 2. As we further increase gsyn, the patterned state disappears
and produces traveling waves; the transition from the patterned state to the waves is
shown in Figure 5.2(c). Finally, for larger gsyn, only the traveling wave remains.

The analytic calculations along with the numerical calculations of the phase re-
duced model show that as the inhibition increases, the synchronous state loses stability
to a patterned state in which the relative phases are close to a cosine wave. Further
increases in the inhibition result in a deepening of this pattern, followed by a tran-
sition to a traveling wave. In Figure 5.3, we show the result of a simulation of the
biophysical model as the synaptic inhibition increases. To match the theory, we have
made the connections periodic, so that the last cell is coupled to the first. Figure
5.3(a) shows a clear phase pattern in which the oscillators at the end lag the ones
in the middle. This corresponds to the patterned state shown in Figures 5.2(b) and
5.1(a), when ρ ≈ 0.4. For a larger amount of inhibition, the behavior becomes quite
complicated and, after a long transient, begins a transition to traveling waves, as
shown in Figure 5.3(b). Thus, the phase model provides a very good description of
the full biophysical model and has the advantage of being simple enough to analyze.

We conclude this section with some comments on the simplification to a ring of
oscillators instead of a line as in the original model. The main reason for assuming a
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Fig. 5.2. Evolution of the solution to the discrete phase model is shown as we change gsyn
while ggap is kept at the value 0.03. (a) shows synchronous solution when gsyn = 0.01, (b) shows
the intermediate state when gsyn = 0.02, (c) shows the transition to the traveling wave solution
when gsyn = 0.03, and (d) shows the traveling wave solution when gsyn = 0.04.

ring is that the analytic calculations are then possible. If, instead of a ring, we consider
a line of oscillators and choose the coupling functions so that the synchronous state
exists, we can explore the stability and bifurcations as the antisynchronous (synaptic
inhibition) coupling increases. Rather than attempt these calculations analytically,
we instead display numerical simulations for the phase model with all-to-all synaptic
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Fig. 5.3. Behavior of the conductance-based model for gsyn = 0.03 and gsyn = 0.07. Voltage
is plotted for each oscillator.
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Fig. 5.4. Behavior of 20 phase oscillators in a line as the synaptic coupling increases. (a) The
relative phase of oscillator 10; ggap = 1 and the interaction functions are the same as in the ring
model. (b) Spatial profiles with various solutions from (a). u refers to the solution being unstable,
and s means the solution is stable.

coupling and nearest neighbor gap junction coupling.

Figure 5.4 shows the behavior for a line of 20 oscillators. By considering a linear
array, the symmetry in the ring model was broken, and we are able to use the AUTO
bifurcation package [5]. We depict two pitchfork bifurcations. The first emerges as a
stable supercritical bifurcation. The pattern is like a half of a cosine wave, as opposed
to the full cycle seen in a ring. The ring of oscillators can be imagined as a pair
of lines joined symmetrically through the midline. Thus, we expect that the first
bifurcation would be “half” of that seen in the ring (see curve 1 in Figure 5.4(b)). As
gsyn increases, this branch seems to approach a solution which looks like a traveling
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wave (Figure 5.4(b) curves 2 and 3). There is no true traveling wave in the line due
to the boundary conditions; however, the solutions in the figure look like traveling
waves. A second branch bifurcates supercritically but it inherits the instability of the
synchronous branch, so that it is unstable. The shape of this solution is shown by
curve 4 in Figure 5.4(b). As these solutions were unstable, they were not continued
beyond gsyn = 0.5. Thus, while the details are somewhat different, the ultimate
result is the same for both a ring and a linear array: as gsyn increases, synchrony
loses stability, and for large enough gsyn there is a traveling wave. The traveling wave
exists for all values of gsyn in the ring model but not for the linear array.

6. Discussion. In this paper, we have shown that the combination of long range
inhibitory synaptic coupling with local gap junction coupling was sufficient to induce
a destabilization of the synchronous state. A new state which is not a traveling wave
but rather a spatially organized phase shift stably appears and is lost as the amount of
long range inhibitory coupling increases. Numerical solutions indicate that the only
remaining attracting state is a traveling wave. Our mathematical results concern
a network on a ring; the original motivation for this problem is the slug olfactory
lobe, which is actually a line of oscillators. However, it is known from our earlier
work [14] that boundary effects are enough to induce patterns of phases that depend
very strongly on the choices of boundary conditions at the edges. To avoid this
difficulty, we have considered periodic boundary conditions which eliminate questions
about the behavior at the edges. In spite of this simplifying assumption, we see
that the linear array and the ring behave similarly, at least when the inhibition is
sufficiently large compared to electrical coupling.

A number of studies have investigated interactions between electrical coupling
and synaptic coupling between neural oscillators. This problem is important since
inhibitory interneurons in the mammalian neocortex appear to be coupled with both
types of interactions. These networks may act as the “pacemakers” for 40 Hz oscil-
lations observed in the cortex during various cognitive tasks [20]. Most theoretical
explorations involve either pairs of cells or globally coupled networks. In most in-
stances, both the synaptic and the electrical coupling encourage synchrony, so that
there is not a chance for pattern formation. However, [4] has shown that gap junctions
can either stabilize or destabilize synchrony, depending on the shape of the action po-
tential, while [17] has shown that the intrinsic currents also affect whether or not
electrical coupling is synchronizing. Combining coupling that destabilizes with cou-
pling that stabilizes synchrony can be expected to produce other patterns of activity
besides waves. Such patterns may play some role in cortical processing of information
and may confer certain computational advantages [8].

Appendix A. To calculate the normal form for the bifurcation, we match the
“ε” terms from (3.6):

Ω1 =

∫ 2π

0

A1(y
′) [ψ1(x− y′) − ψ1(x)] dy′ ≡ L ψ1.

We integrate both sides of the equation with respect to x to get Ω1 = 0. If we
solve Lψ1 = 0, we get that ψ1(x) = zeix + z̄e−ix w.l.o.g. Next, we look at ε2 terms:

Ω2 = L ψ2 +

∫ 2π

0

A2(y
′) [ψ1(x− y′) − ψ1(x)]2 dy′

+
g1α1

2π

∫ 2π

0

[ψ1(x− y′) − ψ1(x)] dy′.(A.1)
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Substituting ψ1 into (A.1) and integrating with respect to x,

∫ 2π

0

Ω2 dx = 8π z z̄ [B0(A2) −B1(A2)],

Ω2 = 4z z̄ [B0(A2) −B1(A2)],

where Bn(Aj) =
∫ 2π

0
Aj(y

′) e±iny′
dy′, j = 1, 2, 3. Now, we multiply (A.1) by e−ix,

0 = −2π g1 α1 z,

which implies g1 = 0. So, we can write gsyn = g∗syn + ε2g2, and we solve for ψ2:

0 = L ψ2 + (z2e2ix + z̄2e−2ix) [B2(A2) + B0(A2) − 2B1(A2)].(A.2)

We now propose that ψ2 = C z2e2ix + C̄ z̄2e−2ix and substitute back into (A.1)
to get

0 = [B2(A1) −B0(A1)] (C z2e2ix + C̄ z̄2e−2ix)

+ [B(A2) + B0(A2) − 2B1(A2)] (z2e2ix + z̄2e−2ix).

Looking at the coefficients of the z2 term gives

C =
2B1(A2) −B2(A2) −B0(A2)

B2(A1) −B0(A1)
.(A.3)

We have to make sure here that the denominator is nonzero. This is easy to see,

since B2(A1) − B0(A1) = 0 would imply that g∗syn = gSβ1(I2−1)
α2

, which is not true

since g∗syn =
ggapβ1(I1−1)

α2
and I1 > I2.

Next, we look at ε3 terms:

Ω3 = L ψ3 +

∫ 2π

0

A3(y
′) [ψ1(x− y′) − ψ1(x)]3 dy′

+ 2

∫ 2π

0

A2(y
′) [ψ1(x− y′)ψ2(x− y′) + ψ1(x)ψ2(x)] dy′

− 2

∫ 2π

0

A2(y
′) [ψ1(x− y′)ψ2(x) + ψ1(x)ψ2(x− y′)] dy′

+
g2α1

2π

∫ 2π

0

[ψ1(x− y′) − ψ1(x)] dy′.(A.4)

Let us look at the terms in (A.4) closely:

[ψ1(x− y′) − ψ1(x)]3 = [zeixe−iy′
+ z̄e−ixeiy

′ − zeix − z̄e−ix]3

= z3e3ixe−3iy′
+ 3z2z̄eixe−iy′

+ 3zz̄2e−ixeiy
′
+ z̄3e−3ixe3iy′

− 3z3e3ixe−2iy′ − 3z2z̄eixe−2iy′ − 6z2z̄eix

− 6zz̄2e−ix − 3zz̄2e−ixe2iy′ − 3z̄3e−3ixe2iy′

+ 3z3e3ixeiy
′
+ 3z2z̄eixeiy

′
+ 6z2z̄eixe−iy′

+ 6zz̄2e−ixeiy
′
+ 3zz̄2e−ixe−iy′

+ 3z̄3e−3ixeiy
′

− z3e3ix − 3z2z̄eix − 3zz̄2e−ix − z̄3e−3ix.
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Let T = [ψ1(x− y′)ψ2(x− y′)+ψ1(x)ψ2(x)−ψ1(x− y′)ψ2(x)−ψ1(x)ψ2(x− y′)];
then

T = (zeixe−iy′
+ z̄e−ixeiy

′
)(Cz2e2ixe−2iy′

+ C̄z̄2e−2ixe2iy′
)

+ (zeix + z̄e−ix)(Cz2e2ix + C̄z̄2e−2ix)

− (zeixe−iy′
+ z̄e−ixeiy

′
)(Cz2e2ix + C̄z̄2e−2ix)

− (zeix + z̄e−ix)(Cz2e2ixe−2iy′
+ C̄z̄2e−2ixe2iy′

)

= Cz3e3ixe−3iy′
+ C̄zz̄2e−ixeiy

′
+ Cz2z̄eixe−iy′

+ C̄z̄3e−3ixe3iy′
+ Cz3e3ix + C̄zz̄2e−ix

+Cz2z̄eix + C̄z̄3e−3ix − Cz3e3ixe−iy′ − C̄zz̄2e−ixe−iy′

−Cz2z̄eixeiy
′ − C̄z̄3e−3ixeiy

′

−Cz3e3ixe−2iy′ − C̄zz̄2e−ixe2iy′

−Cz2z̄eixe−2iy′ − C̄z̄3e−3ixe2iy′
.

Substituting ψ1 and ψ2 into (A.4) and using the expansions for [ψ1(x−y′)−ψ1(x)]3

and T , we then integrate with respect to x to get Ω3 = 0. Next, multiply both sides
by e−ix and integrate with respect to x to get

0 = z2z̄

∫ 2π

0

A3(y
′) [9e−iy′

+ 3eiy
′ − 3e−2iy′ − 9] dy′

+ 2C z2z̄

∫ 2π

0

A2(y
′) [e−iy′ − eiy

′ − e−2iy′
+ 1] dy′ − g2α1z.

We can simplify this as follows:

0 = z2 z̄[12B1(A3) − 3B2(A3) − 9B0(A3) + 2C B0(A2) − 2CB2(A2)] − g2α1z.

By letting ζ = 12B1(A3) − 3B2(A3) − 9B0(A3) + 2C B0(A2) − 2CB2(A2) and η =
−g2α1, we have the normal form at the bifurcation point as

0 = ζz2z̄ + ηz.

Appendix B. We use the biophysical model given in [6]. Each uncoupled burst-
ing cell in the Limax model has the form

C
dV

dt
= −IL − IK − ICa

= −gL(V − EL) − gKn4(V − EK) − gCam
2h(V − ECa),

where n, h obey the equations

dn

dt
= .075[an(V )(1 − n) − bn(V )n],

dh

dt
=

1.125(h∞(V ) − h)

τh(V )
,

with

an(V ) = .032(−48 − V )/(exp(−(48 + V )/5) − 1),

bn(V ) = .5 exp(−(43 + V )/40),

h∞(V ) = 1/(1 + exp((V + 86)/4)),

τh(V ) =

{
if (V < (−80)), then (exp((V + 470)/66.6)),

else (28 + exp((V + 25)/− 10.5)).
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The activation gate for the T-type calcium current has the form

m(V ) = 1/(1 + exp(−(V + 60))).

The parameters are C = 2.66, gK = 5, gL = 0.024, gCa = 2, EK = −90, ECa = 140,
EL = −82, and Esyn = −78. Using this model, we compute the approximations of
the coupling functions as follows:

Hsyn(x) = 35 + 200 cos(x) + 32 cos(2x) − 95 sin(x) − 5 sin(2x),

Hgap(x) = 87 − 50 cos(x) − 37 cos(2x) + 295 sin(x) − 65 sin(2x).
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