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Abstract A number of experimental groups have recently
computed Phase Response Curves (PRCs) for neurons. There
is a great deal of noise in the data. We apply methods
from stochastic nonlinear dynamics to coupled noisy phase-
resetting maps and obtain the invariant density of phase
distributions. By exploiting the special structure of PRCs,
we obtain some approximations for the invariant distribu-
tions. Comparisons to Monte-Carlo simulations are made.
We show how phase-dependence of the noise can move the
peak of the invariant density away from the peak expected
from the analysis of the deterministic system and thus lead
to noise-induced bifurcations.
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Pulsatile coupling

Introduction

Synchronous neural oscillations are found in many brain
areas (Buszaki and Draguhn, 2004). The mechanisms by
which neurons synchronize vary depending on the intrin-
sic properties of the cells and how they are connected (van
Vreeswijk et al., 1994; Chow et al., 1998; Jones et al., 2000).
One approach to understanding synchrony in experimen-
tal preparations is to measure quantitatively the response
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of a rhythmically firing neuron to brief inputs (Reyes and
Fetz, 1993; Stoop et al., 2000; Oprisan and Canavier, 2000;
Netoff et al., 2005; Galan et al., 2005). Typically, current is
injected into a neuron to make it fire repetitively. Then, brief
stimuli are applied to the cell at different times after it spikes
to quantify how the inputs alter the timing. Let T denote the
time between spikes in the unperturbed neuron (this is the
period of firing). An input at phase s after the last spike (that
is, occurring at a time sT since the last spike) causes the inter-
spike interval to change to T′(s). The Phase Resetting Curve
(PRC) is defined as �(s) = 1 − T ′(s)/T . If the PRC is pos-
itive (negative), then the input makes the spike occur earlier
(later) than it would. Once a PRC is computed, it is possible
to create networks of oscillators and explore whether or not
they synchronize (Mirollo and Strogatz, 1990; Stoop et al.,
2000; Oprisan and Canavier, 2000; Goel and Ermentrout
2002; Netoff et al., 2005). The main difficulty in computing
neural PRCs is that in many experimental preparations there
is a large amount of noise. Thus, in order to make sense of
models using experimental PRCs we have to incorporate the
noisiness of the system in our analysis. Several groups have
recently computed experimental PRCs (Netoff et al., 2005;
Galan et al., 2005) and in some cases measured the variance
of their PRCs. One important finding in Netoff et al. (2005)
is that the variance of the PRC is also timing-dependent.

This paper is organized as follows. We derive the equa-
tions for the distribution of phases in noisy phase resetting
curves. We provide an example showing that there is a strong
phase-dependence on the variance for PRCs of nonlinear os-
cillators. We numerically solve the distribution equations
(which are linear integral equations) and compare them to
Monte-Carlo simulations. We then use two different pertur-
bation approaches the approximate the resulting stationary
distributions and use these approximations to study how the
phase-dependent variance alters the stationary distributions.
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Finally, we compare the results of the integral equations to
the experimental data in Netoff et al.

Methods

Derivation of the maps

Mirollo and Strogatz (1990) derive maps for pulse-coupled
integrate and fire neurons. Similarly, Goel and Ermentrout
(2002) derive maps for pairs of oscillators coupled by their
PRCs:

dφA

dt
= ωA + δ(φB)�A(φA)

dφB

dt
= ωB + δ(φA)�B(φB), (1)

where δ(x) is the Dirac delta-function. Let FA,B(x) = x +
�A,B(x) be the phase transition curve. We assume that
FA,B(x) are invertible functions which implies that �′

A,B(x)
cannot be less than −1. If x A

n is the phase of cell A at the
moment right before cell B fires for the nth time (with x B

n

similarly defined), then

x A
n+1 = ωA

ωB

(
1 − FB

(
x B

n

)) ≡ G B
(
x B

n

)

x B
n+1 = ωB

ωA

(
1 − FA

(
x A

n

)) ≡ G A
(
x A

n

)
(2)

If the cells are identical (ωA = ωB and FA(φ) = FB(φ)), then
iterates of Eq. (2) are just iterates of the single map:

x → 1 − F(x) = 1 − x − �(x) ≡ G(x).

We will focus mainly on the identical cell case. However,
in order to look at pairs of excitatory and inhibitory neurons,
it will be necessary to return to the general case.

Derivation of the distributions

Noise can appear in a PRC map in many different forms.
Most generally, the map is given by

x → B(x, z)

where z is a random variable. The simplest assumption would
be that B(x, z) = G(x) + z which would represent additive
noise that is independent of the phase, x. This case is consid-
ered in Lasota and Mackey (1986). The data of Netoff et al.
(2005) and simulations discussed below indicate that this is
too simple a model, thus we will assume that

B(x, z) = G(x) + R(x)z

so that there is some phase (x) dependence of the noise. The
map is defined on the unit circle, but since we will consider
mainly normally distributed noise, we will work on the whole
real line to derive a density function. We extend the definition
of B(x, z) to the real line by using the periodicity of B with
respect to x, B(x + 1, z) = B(x, z). We will then sum the
computed density up modulo 1 to obtain a density function
on the circle. We follow standard arguments (see, e.g., Lasota
and Mackey (1986)) in order to determine the distribution.
Consider the random process

Xn+1 = G(Xn) + zn R(Xn) (3)

where zn are i.i.d. and taken from a distribution with density
Q(z). For us, G(x) ≡ 1 − F(x) = 1 − x − �(x). All vari-
ables and functions are defined on R Let pn(x) be the proba-
bility density function for Xn, and H(x) an arbitrary function
on R. Then from E[H (Xn+1)] = E[H (G(Xn) + zn R(Xn))]
we have:
∫

R

H (x)pn+1(x)dx

=
∫

R

∫

R

H (G(y) + R(y)z))pn(y)Q(z)dydz

=
∫

R

∫

R

H (x)Q[(x − G(y))/R(y)]pn(y)/R(y) dydx .

(To get the last integral, we let x = G(y) + R(y)z be a
change of variables for z.) Since the function H(x) is ar-
bitrary, we must have

pn+1(x) =
∫

R

Q[(x − G(y))/R(y)]pn(y)/R(y)dy

≡
∫

R

t(x, y)pn(y) dy. (4)

The function t(x, y) is the rate of transition from state y to
state x for the discrete time Markov process (4).

We are not actually interested in p(x) since this is the
distribution on the real line. Rather, we want

Pn(x) ≡
∞∑

j=−∞
pn(x + j)

which is the probability for x modulo 1. Using Eq. (4) and
the fact that G(x) = 1 − x − �(x) we sum the pn and also
rewrite the integral as a sum:

Pn+1(x) =
∞∑

j=−∞

∞∑

k=−∞

∫ k+1

k
×Q[(x + j + k + y + �(y))/

R(y)]pn(y)/R(y) dy.
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Let y ′ = k + y and use the fact that �(x), R(x) are 1-periodic
to obtain:

Pn+1(x)

=
∑

j,k

∫ 1

0
Q[(x + y′ + j + �(y′))/R(y′)]

×pn(y′ − k)/R(y) dy

=
∫ 1

0




∑

j

Q[(x + y + j + �(y))/R(y)]

R(y)



 Pn(y) dy.

Thus, if we define

S(x, y) =
∞∑

j=−∞

Q[(x + y + j + �(y))/R(y)]

R(y)
(5)

then the invariant density satisfies:

Pn+1(x) =
∫ 1

0
S(x, y)Pn(y) dy. (6)

Note that the function S(x, y) is doubly periodic with
period 1.

Numerical calculation of Pn

The function S(x, y) is an infinite sum but since Q(x)
vanishes as |x | → ∞, we can truncate the infinite sum and
not lose to much accuracy. The integral in Eq. (6) is found
by discretizing the density into M bins of size 1/M and
computing the appropriate sum:

∫ 1

0
S(x, y)P(y) dy ≈ 1

M

M−1∑

j=0

S

(
i

M
,

j

M

)
P j .

Since S does not depend on P we can evaluate S(x, y) at the
M × M grid points and the iteration (6) is reduced to a simple
matrix multiplication. Since S ≥ 0 and has a spectral radius
of 1, the iteration (6) will converge to the stationary distri-
bution. We generally use M = 100 and obtain convergence
to a stationary density in 200–500 iterations. This is com-
pleted in less than a second, so that the invariant densities can
be computed much faster than the Monte Carlo simulations.
Furthermore, we can use the integral equations to develop ap-
proximate expressions for the stationary phase distributions.

Simulations

The maps (3) are iterated for 500000 steps and the results are
binned into histograms after throwing out the first 100000

iterations. In order to show that there is phase-dependence
on the variance of phase-resetting curves, we compute the
PRC for a noisy neuron model by stimulating with a brief
timed pulse. We use a simple model due to Izhikevich (2003)
as our neuron:

dV

dt
= V 2 + I − u + σdz

du

dt
= a(bV − u)

such that when V = 10, V is reset to c and u is incremented
by d. We used I = 0.1, a = 0.05, b = 1, c = −1, and d = 0.2.
This produces an oscillation with a period of about 22 msec.
dz is a white noise process. We solve this using the Euler
method with a time step of 0.005 msec. The PRC is computed
by perturbing the V equation by a square pulse of duration
0.2 msec and with amplitude 0.5. At each simulation, we
start V(0) = −1 and u(0) = 0.43 which is the value of the
variables immediately after resetting. The time for V(t) to
reach 10 is computed, T10 and the PRC is thus:

PRC = 1 − T10/T

where T is the unperturbed period. The mean and the vari-
ance of the PRC over 500 trials are computed at each time
of the perturbation. The PRC is computed in time steps of
0.2 msec from 0 to 22 msec after the spike.

In all of our example maps, we use a simple model for the
PRC and the phase-dependence of the PRC:

�(x) = A sin 2πx + B(1 − cos 2πx) + C sin 4πx (7)

and

R(x) = σ [1 + D sin(2πx + φ)]. (8)

Noise is normally distributed with unit variance.

Results

The variance of PRCs is phase-dependent.

Netoff et al. (2005, Figure 5) show that the PRCs which
they compute from their hippocampal neurons have a clear
dependence of the variance on the phase. In particular, the
variance decreases with the time of the spike. Theoretically,
the variance and the mean of the PRC should be periodic
functions of the time since spiking but it is very difficult to
get accurate spike times when the stimulus occurs late in the
spiking phase (John White, personal communication). To see
if this phenomena can be simply explained and to justify the
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assertion that there is phase-dependence, we computed the
PRC for a noisy neural model. Figure 1 shows an example
of this calculation. The noise is small, but sufficient to cause
a rather broad range in the spike times due to any single
perturbation (A). The mean has almost exactly the same
shape as the mean expected from the deterministic system
and does not seem to depend on the noise since it is the
same when the noise is doubled (B). Panel C shows the
standard deviation for two different noise strengths, σ =
0.02 and σ = 0.04. In the former case, we have multiplied the
standard deviation by 2 to show that the shape of this curve
is independent of the noise up to scaling. There is an obvious
dependence of the variability on the time of the spike but
the relationship is not entirely clear. Figure 1D shows a plot
of the standard deviation against the mean which indicates
roughly that there is a 90 degree phase-shift between the two.
One would be tempted to suggest that the standard-deviation
varies like the derivative of the PRC, but the dependence is
more subtle than that. An adequate theory of this dependence
remains to be discovered.

Analysis I. Moderate noise

We cannot find closed form solutions to the stationary PDFs
in Equation (6). However, if we assume that R(x) is close to
1 and �(x) is small, then we can find a good approximation
to P(x) which also provides insight into qualitative changes
of P(x) as parameters vary. Recall that the invariant density
satisfies:

P(x) =
∫ 1

0

∞∑

j=−∞

Q([x + y + j + �(y)]/R(y)

R(y)
P(y) dy

=
∫ ∞

−∞

Q([x + y + �(y)]/R(y)

R(y)
P(y) dy

where we have “unwrapped’ the sum. We keep P(x) as a
periodic solution with period 1. We write

R(x) = 1 + εr (x)

and assume that �(x) is also 0(ε) where 0 < ε � 1. We also
assume that Q(x) has variance σ 2. We now expand P(x) is a
series in ε:

P(x) = P0(x) + εP1(x) + ε2 P2(x) + · · · ·

To lowest order:

P0(x) =
∫ ∞

−∞
Q(x + y)P(y) dy.

The solution to this equation is P0(x) = 1. (This is what you
would expect if the PRC was zero and there was no phase-
dependence on the noise; the stationary phase is uniform.)
The next order equation is:

P1(x) −
∫ ∞

−∞
Q(x + y)P1(y)

=
∫ ∞

−∞
Q′(x + y)�(y)dy

−
∫ ∞

−∞
[Q(x + y) + (x + y)Q′(x + y)]r (y)dy.

We change variables in the right-hand integrals x + y → y′

and then, noting that Q(y) + yQ′(y) = (yQ(y))′, integrate
by parts yielding

P1(x) −
∫ ∞

−∞
Q(x + y)P1(y)dy

= −
∫ ∞

−∞
Q(y)�′(y − x)dy +

∫ ∞

−∞
yQ(y)r ′(y − x)dy. (9)

This is a linear inhomogeneous equation which can be solved
by Fourier series. We write

�(x) = a0 +
∞∑

n=1

an cos 2πnx + bn sin 2πnx

r (x) = c0 +
∞∑

n=1

cn cos 2πnx + dn sin 2πnx

P1(x) =
∞∑

n=1

αn cos 2πnx + βn sin 2πnx

and define

qn =
∫ ∞

−∞
Q(x) cos 2πnx dx

sn =
∫ ∞

−∞
x Q(x) sin 2πnx dx .

We have assumed that Q(x) is symmetric in order to sim-
plify the analysis, but asymmetric noise could also be ana-
lyzed. We note that for normally distributed noise (Q(x) is
Gaussian),

qn = exp(−n2π2σ 2)

sn = πσ 2nqn
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Fig. 1 Phase resetting curves
for the Izhikevich model. (A)
Data for σ = 0.02; (B) Mean of
the data in (A) (black circles),
mean for σ = 0.04 (red
squares), and the noise-free
PRC (thin blue line); (C)
Standard deviation of the data in
(A) (black circles) scaled by a
factor of 2 and the standard
deviation for a simulation with
σ = 0.04 (red squares); (D)
standard deviation against the
mean for data in (A)

Plugging in the expansions for P1(x),�(x), r (x), we find:

αn = − 2πn

1 − qn
[qnbn + sncn]

βn = − 2πn

1 + qn
[qnan − sndn]. (10)

We can now use this expression to gain some insight into the
form of the stationary state. We consider several different
examples.

Example 1

We consider the simplest scenario in which the PRC is a pure
sinusoid and there is no phase-dependence of the variance.
Thus, we have �(x) = εb1 sin 2πx and thus:

P(x) = 1 − 2πεb1
q1

1 − q1
cos 2πx .

If b1 > 0 then the deterministic map has a stable fixed point
at x = 1/2 and we see that the P(x) is also peaked at x = 1/2.
When b1 < 0, the peaks of P(x) occur at x = 0,1 correspond-
ing to a stable synchronized state. Figure 2A shows three
curves for σ = 0.2, b1 = 1, and ε = 0.02 corresponding to
the approximation, the solution to the integral equation and
the Monte-Carlo simulation.

Example 2

Next, we look at the behavior when there are two Fourier
modes and the deterministic system has multiple stable
phase-locked states. We note that this type of behavior
has been seen in several models, notably, the integrate and
fire model with excitatory coupling (van Vreeswijk, et al.,
1994). Figure 2B shows a simulation with ε = 0.02, σ =
0.2, and b2 = 1, b1 = −0.25. There are two peaks to the
invariant density corresponding to asymmetric locked states
between the oscillators. This can be destroyed if the noise
is increased because the term q2 goes to zero as σ increases
faster than q1 so that order two harmonic is washed out
leaving a stable synchronous state.

Example 3

We now use the approximation to study the effects of phase-
dependent variance on the stationary behavior. In particular,
we demonstrate a noise-dependent switch from antiphase
to synchrony. We suppose that �(x) = εb1 sin 2πx as in
the first example and R(x) = 1 + εc1 cos 2πx with Gaussian
noise. From (10) we find

P(x) = 1 − 2πε
q1b1 + s1c1

1 − q1
cos 2πx .

This density has a peak at either x = 0 (synchrony) or at x
= 1/2 (antiphase). Since the noise is Gaussian, the peak of
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Fig. 2 Comparison of the approximation, the invariant density, and the Monte Carlo simulations for (A) σ = 0.2, b1 = 1, ε = 0.02; (B) σ = 0.2,
b1 = −0.25, b2 = 1, ε = 0.02.

the density depends only on the sign of

b1 + σ 2πc1.

By choosing b1 and c1 to have opposite signs, we can change
the amount of noise, σ to effect a switch in stationary
phase-loked behavior. The critical value of the noise is

σ ∗ =
√

− b1

πc1
.

For example if c1 = −0.25 and b1 = 0.05, then the critical
noise level is σ ∗ ≈ 0.252. Figure 3 shows the result for
both the numerical and the analytic calculation. Unlike
Example 2, the bifurcation is not one that could be “pre-
dicted’ from the deterministic dynamics. In the present
example, anti-phase is the only stable behavior and chang-
ing b1 only modulates the amplitude (unless of course b1

changes sign). For σ = 0.25 which is very close to the
bifurcation point, the density is almost flat (Fig. 3B).

Analysis II. Weak noise

If the noise is small, that is, 0 < R(x) � 1 then we ex-
pect that the PDF will be sharply peaked around the stable
phase-locked states of the deterministic system. A standard
approximation is to assume that the PDF consists of a sum
of Gaussians centered at the mean phase-locked states with
some variance, v:

P(x) = C
k∑

i=1

e(x−mi )2/vi

√
vi

(11)

where C is a normalization constant, mi , vi unknown pa-
rameters corresponding to the dynamics of the map. In the

appendix, we use the Gaussian approximation to derive the
dynamics of the stationary values of m, v:

mn+1 = G(mn) + G ′′(mn)vn/2 (12)

vn+1 = R(mn)2 + vn
(
G ′(mn)2 + R′(mn)2 + R(mn)R′′(mn)

)

(13)

This map is quite useful as it can be used to study bifurca-
tions and the shapes of the PDF. Periodic points of this map
correspond to peaks in the stationary distribution.

We consider the following model:

�(x) = 0.02 sin 2πx + 0.02(1 − cos 2πx) + c sin 4πx

R(x) = 0.025[1 + 0.5 sin(2πx + 4.55)].

The parameters for � are chosen so that for c negative or
very small and positive, the noiseless system has a stable anti-
phase state which undergoes a period doubling bifurcation
as c increases (that is, G ′(m̄) = −1). Parameters for R(x)
are chosen so that with a flat PRC the systems settles into
a synchronous state. (Here, because the noise is so low, the
phase-dependence of the noise makes little difference.)

For small noise, away from the bifurcation point, we can
estimate the variance for the map as:

v̄app = R(m̄)2

1 − G ′(m̄)2
. (14)

For c = −.04, the approximation yields v̄app = 0.00166 and
the true value is v̄ = 0.00164. When c = 0.008 (very close
to the bifurcation point for the deterministic system), the
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Fig. 3. Noise-induced bifurcation from anti-phase to synchrony. (A) Plot of the stationary density as a function of the noise (increasing along the
vertical axis). (B) Three examples from (A) comparing the numerical density with the approximation.

approximation yields v̄app = 0.060 while the true value is
v̄ = 0.039, a 33% error.

Figure 4(A) shows the Gaussian approximation and the
numerical solution of the PDF when c = 0.0 for which the
approximate map predicts a single peak. Figures 4(B,C) show
the bifurcation diagrams for period two solutions to Eqs.
(12)–(13) as the parameter c varies. Near the deterministic
bifurcation value c = 0.02, there is an abrupt change in
the period one solution and the variance increases by two
orders of magnitude (panel C). Away from the bifurcation (c
= 0.04) the variance is again small so that both our simple
linear approximation (14) and the Gaussian ansatz work very
well as is seen in figure 4D. Here, the map has a period two
solution leading to the double peaks in the PDF. We remark
that in A, the peak is considerably wider than the peaks
in D; this is seen in the variance curve 4C. For c between
about 0.007 and c = .025, the dynamics are too close to
the bifurcation point and the Gaussian approximation breaks
down. We also remark that this type of breakdown of the
approximation near a bifurcation is not seen in the analysis
in the previous section. On the other hand, our prior analysis
is only good when the PRC is quite small, while here, no
such constraints were necessary.

The Gaussian approximation works even for “exotic”
cases. For example, if we take

�(x) = 0.04 sin 2πx + 0.16(1 − cos 2πx) + 0.06 sin 4πx

and R(x) = 0.01 (very small noise), the map (12, 13) has a
period 4 fixed point. The Monte-Carlo simulation (400000
steps) show 4 peaks in the stationary distribution. Both the
position of the peaks and their width is matched as can be
seen in Figure 5.

Application to experimental data

We can apply the thory to experimental data. Figure 6 shows
the results of this. In A,B we show polynomial fits for the
PRC and the standard deviation as a function of the phase
for excitatory and inhibitory stimuli. In the experiments, cells
in the hippocampus were driven to fire at a regular rate and
stereotyical EPSPs and IPSPs were applied at different times
after a spike. For EPSPs, the PRC is typical of that seen in the-
oretical models. However for IPSPs the PRC does not vanish
at 1. This is likely due to the difficulty in resolving the precise
spike time when the stimulus occurs near the natural (unper-
turbed) period (John White, private communication). Figure
6B shows that there is only a small phase-dependence for
IPSP input standard-deviation while the phase-dependence
for EPSPs can be rather substantial. Figure 6(C, D)show the
predicted phase relationships for a pair of mutually coupled
cells in absence of noise. EPSPs tend to synchronize while
IPSPs result in an alternating rhythm. Figures 6Ei,ii show
the invariant density using the functions in A, B. In addition
we show that for EPSP stimuli, the phase-dependence of the
noise has a small effect on the invariant density (compare
dashed and solid line in 6Ei). While these effects are not as
dramatic as those in the toy models, the results show that
phase-dependent noise can shift the timing between pairs of
coupled oscillators.

Netoff et al. (2005) also look at heterogeneous pairs in
which once cell sends EPSPs to the other while receiving
IPSPs. So far, our methods have been applied to identical
cells. There is no reason why heterogenous networks cannot
also be analyzed. Consider Eq. (2). Recall that xA is the phase
of cell A when cell B has fired and vice-versa. Equation (2)
has a noisy analogue. Instead of the deterministic phase-
transition curve, FA(xA)), we have the noisy one FA(x A) +
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with very low noise. + symbols are the result of a Monte Carlo simula-
tion broken into 400 bins. Solid lines are the Gaussian approximation

with the mean and variance obtained from iterations of Eqs. (12, 13)
Note that in order to improve the comparison, we have broken up the
full distribution into two pieces and have used a different vertical scale

ξ A RA(x A)) where ξA is a random variable with zero mean.
Thus, the noisy heterogenous dynamics are given by:
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) − ξ B
n RB

(
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n

) )

x B
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(
x A

n

) − ξ A
n RA

(
x A

n

) )
.

If we assume that ξ A,B come from identical symmetric dis-
tributions, then we can readily derive equations for P A,B(x),
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the density of the phases. This results in a pair of coupled
integral equations for the probabilities of xA B:

P A
n+1(x) =

∫ 1

0
SB(x, y)P B

n (y)dy (15)

P B
n+1(x) =

∫ 1

0
S A(x, y)P A

n (y)dy

where

SB(x, y) = ωB

ωA
Q

[(
ωB

ωA
x − 1+FB(y)

)/
RB(y)

] /
RB(y)

S A(x, y) = ωA

ωB
Q

[(
ωA

ωB
x − 1+FA(y)

)/
RA(y)

] /
RA(y).

Figure 6E(iii,iv) depicts the stationary distributions for an
excitatory-inhibitory pair. That is, cell A is excitatory and
cell B is inhibitory. Pe(x) is the density of the phase of the
excitatory cell at the moment the inhibitory cell fires and
Pi(x) is the phase density for the inhibitory cell at the moment
the excitory cell fires. We note that the E cell lags the I cell
slightly because the IPSPs can only delay the onset of a spike
(Figure 6A). Similarly, the I cell leads the E cell since EPSPs
advance the spike time (except for a narrow window near the
beginning of a cycle, cf. Figure 6A). The two distributions
are not simple reflections of each other since the effects of
the coupling are not symmetric.

Discussion

We have developed a method to compute various proba-
bilistic quantities which arise in the study of coupled neural
oscillators. Previous work on the questions of oscillator syn-
chrony in the presence of noise has mainly been applied
to differential equations models (Sompolinsky et al., 1991;
Tass 2003; Acebron et al., 2005; Strogatz, 2000, ). For neu-
rons coupled in a pulsatile manner, maps are a more natural
setting. The methods here can be used in conjunction with
experimental studies. It is now possible to create artificially
coupled networks with real cells using a method called the
dynamic clamp (Netoff et al., 2005). Thus, the techniques
derived in this paper can be applied to experimental synchro-
nization of noisy neurons. There are several adavantages of
the integral equations over Monte-Carlo simulations. First, it
is not easy to determine how many iterations to run; this can
depend on both the amplitude of the noise and the intrinsic
dynamics. The integral equations are exact and can be solved
very quickly by iteration. More importantly, the determin-
istic nature of the integral equations allowed us to develop
a simple perturbation scheme to approximate the invariant
density.

Throughout the paper, we have made a number of assump-
tions about both the PRCs and the form of the noise in order
to derive simple models for the phase densities. The assump-
tions on the PRCs are necessary in order to have well-defined
maps even in absence of the noise. For a single forced os-
cillator, the invertibility requirement for the phase-transition
curve (PTC : F(x) = x + �(x)) can be relaxed (Stoop et al.,
2000). But for coupled oscillators, stronger coupling forces
one to make additional assumptions about the behavior of the
oscillators. A classic example is the work of Mirollo and Stro-
gatz (1990) which considered strong phase-resetting. They
make the assumption of absorption—if an oscillator is in-
duced to fire immediately, then it is absorbed into the group
of synchronous oscillators. This assumption is not robust
to noise or to heterogeneity. In the experiments of Netoff
et al. (2005), and Galan et al. (2005) the stimuli are suf-
ficiently weak so that the PTC is invertible. However, the
PRCs computed by Reyes and Fetz (1993) have a slope of
−1 near the time of firing which means that they fire as soon
as stimulated. Thus, the function F(x) is not invertible for
their experiments. We have also assumed that the PRCs are
memoryless: the effect of a stimulus lasts for only one cycle.
For weak stimuli, this is a reasonable assumption, but for
stronger stimuli, such as in Reyes and Fetz (1993), the phase
continues to evolve over at least two cycles. We chose a
simple additive noise model simply because this is the same
model that Netoff et al. (2005) used to fit their dynamic
clamp. We need not make this assumption in order to derive
the densities. If we consider a more general form of the map,
say x → B(x, z) where z is a random variable, then we can
still derive an equation for the invariant density provided
we can solve B(x, z) = y for z. It remains to be seen if the
simple additive assumption holds in other experiments.

One of our most interesting findings is that phase-
dependent noise can change the peaks of the PDF so that they
can be substantially moved from the deterministic locked
state. In one example, the noise induced a switch from syn-
chrony to anti-phase. It is not clear how strong this effect
will be in experimental models although there is a shift in
the peak of the phase distribution in the Netoff data (see
Figure 6Ei). Any nonlinear oscillator driven with a small
amount of noise appears to have phase-dependence of the
variance of the PRC, so that the existence of this dependence
should come as no surprise. However, in most theoretical
studies of noisy phase-locking this dependence is ignored.
An adequate theory which explains the relationship between
the variance and the mean remains to be found although
progress on some simple cases has been made (Doiron and
Ermentrout, in preparation).

We have not applied the analytic methods to heteroge-
neous networks although the techniques are obviously ex-
tendable. For example, if the noise is weakly dependent on
the phase, the frequencies of the two oscillators are close,
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Fig. 6 Application of the theory to the results of Netoff et al. (2005).
(A) Polynomial fit to the experimental PRCs (provided by Theoden
Netoff) E-excitatory stimulus, I = inhibitory. (B) The standard devia-
tion as a function of the phase for the excitaory and inhibitory stimuli.
(C) Fixed points for mutual excitatory coupling in absence of noise.

(D) Fixed points for mutual inhibitory coupling in absence of noise. (E)
Invariant densities from (6) for excitatory and inhibitory coupling (i,ii)
and for mixed coupling (iii,iv, see text). In (i) the dashed line depicts the
invariant density for a constant (rather than phase-dependent) variance

and the PRCs are small, then the lowest order solutions
to (15) will be P j (x) = 1. The next order terms can be
solved using Fourier series just as the homogeneous case
was.

Another case which should be amenable to analysis is
the “all-all” model in the limit as there are infinitely many
oscillators. Ariaratnam and Strogatz (2001) recently gave a
complete analysis of the all-all model:

dxi

dt
= ωi − K

N

N∑

j=1

am(1 + cos x j )
m sin xi

for m = 1 (with numerical support in the case m > 1). If
m → ∞, the coupling becomes a delta function. Thus, it
is likely that their methods could be applied to our situa-
tion. The analysis of any other networks (small N or lo-
cal coupling) is probably best handled with a Monte Carlo
simulation.

How does this approach compare or differ from weakly
coupled noisy oscillators? Suppose that the PRC is small (as
we assumed for the perturbation methods) and the oscillators
are identical. Then Eq. (1) can be averaged leading to

dφA

dt
= ω + �(φA − φB) + dWA

dφB

dt
= ω + �(φB − φA) + dWB

where we have added an independent source of noise to each
oscillator. Letting ψ = φB−φA denote the phase-difference
between the oscillators, it is easy to derive a Fokker-
Planck equation for the distribution of the phase differences
(Gardiner, 1997) and from this extract the stationary
PDF:

P(ψ) = A exp(−H (ψ)/σ 2)

where

H (ψ) =
∫ ψ

0
�(x) − �(−x)dx

and A is a normalization constant. The peaks and valleys of
P(ψ) correspond to zeros of the odd part of the PRC. There
is clearly no phase-dependence of the noise amplitude in
this model. Thus, for example, in the case of I-I coupling in
Netoff et al. (2005), this simple model is probably a good
predictor of the stationary PDF, but would fail in the example
illustrated in Figurei 3. Similarly, for the weak noise case,
this expression fails to capture the complexity of, say, Fig.
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5 which arises due to the finite (as opposed to infinitesimal)
nature of the coupling. Thus, while there have been numerous
papers on weakly coupled noisy phase-locking, there are
aspects of the problem which are best captured by maps and
the integral equations which arise from these maps.

Appendix

Here we fill in the details of the analytic calculations for
weak noise in the main text. We start with the noisy map
with normally distributed noise:

xn+1 = G(xn) + R(xn)ξn

and assume that the PDF is a gaussian with mean mn and
variance vn. Rodriguez and Tuckwell (1996) make a simi-
lar assumption in their analysis of the role of noise in the
Fitzhugh-Nagumo equations. This approach applied to dif-
ferential equations is reviewed in Lindner et al. (2004). Here
we follow their methods applied to maps. The mean satisfies
the equation:

mn+1 = E[G(xn)]

which is exact since the expected value of the noisy part is
zero. The variance satisfies

vn+1 = E
[
x2

n+1

] − E[xn+1]2

= E[{G(xn) + R(xn)ξn}2] − m2
n

= E[G(xn)2] + E[R(xn)2] − E[G(xn)]2.

As with the mean, this expression is also exact. The challenge
is to approximate the expectations. To do this, we write:

G(x) = G(m + x − m) ≈ G(m) + G ′(m)(x − m)

+G ′′(m)(x − m)2/2 + · · · ·

We use the fact that v = E[(x − m)2] so that the mean satisfies:

mn+1 = G(mn) + G ′′(mn)v/2. (16)

This is an approximate expression since we have truncated
to linear order in the variance. Applying the same methods
to the variance, we find

vn+1 = R(mn)2 + vn(G ′(mn)2 + R′(mn)2 + R(mn)R′′(mn)).

(17)

Note that one could continue the series to get higher order
accuracy, but for our purposes, this is sufficient.

Acknowledgments We’d like to thank Theoden Netoff and John White
for graciously providing the formulas for the fits to their experimental
data. BE thanks Mike Mackey for references to the integral equations
and Brent Doiron for related conversations.

References

Acebron JA, Bonilla LL, Prez Vicente, CJ, Ritort F, Spigler R
(2005) The Kuramoto model: A simple paradigm for syn-
chronization phenomena. Reviews of Modern Physics 77:
137–185.

Ariaratnam JT, Strogatz SH (2001) Phase diagram for the Winfree
model of coupled nonlinear oscillators. Phys. Rev. Lett. 86: 4278–
4281.

Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical net-
works. Science 304: 1926–1929.

Chow CC, White JA, Ritt, J, Kopell N (1998) Frequency control in syn-
chronized networks of inhibitory neurons. J. Comput. Neurosci.
5: 407–420.

Ermentrout B, Pascal M, Gutkin B (2001) The effects of spike fre-
quency adaptation and negative feedback on the synchronization
of neural oscillators. Neural Computation 13: 1285–1310.

Galan RF, Ermentrout GB, Urban NN (2005) Efficient estimation
of phase-resetting curves in real neurons and its significance for
neural-network modeling. Phys. Rev. Lett. 94: 158101.

Gardiner CW (1997) Handbook of Stochastic Methods (2nd edition).
Springer, New York.

Goel P, Ermentrout B (2002) Synchrony, stability, and firing patterns
in pulse-coupled oscillators Physica D 163: 191–216.

Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans-
actions on Neural Networks 14: 1569–1572.

Jones SR, Pinto DJ, Kaper TJ, Kopell N (2000) Alpha-frequency
rhythms desynchronize over long cortical distances: A modeling
study. J. Comput. Neurosci. 9: 271–91.

Lasota A, Mackey MC (1986) Chaos, Fractals and Noise: Stochastic
Aspects of Dynamics, Springer Applied Mathematical Science
97. Springer-Verlag, Berlin (Chapt. 10.5).

Lindner B, Garcia-Ojalvo J, Neiman A, Schimansky-Geier L (2004)
Effects of noise in excitable systems, Phys. Rep. 392, 321.

Mirollo RM, Strogatz SH (1990) Synchronization of pulse-coupled
biological oscillators. SIAM. J. Appl. Math. 50: 1645–1662.

Netoff TI, Banks MI, Dorval AD, Acker CD, Haas JS, Kopell N, White
JA (2005) Synchronization in hybrid neuronal networks of the
hippocampal formation. J. Neurophysiol. 93: 1197–208.

Oprisan SA, Canavier CC (2000) Phase response curve via multiple
time scale analysis of limit cycle behavior of type I and type II
excitability. Biophys. J. 78: 218–230.

Reyes AD, Fetz EE (1993) Effects of transient depolarizing potentials
on the firing rate of cat neocortical neurons. J. Neurophysiol. 69:
1673–183.

Rodriguez R, Tuckwell HC (1996) Statistical properties of
stochastic nonlinear dynamical models of single spik-
ing neurons and neural networks. Physical Review E 54:
5585–5590.

Sompolinsky H, Golomb D, Kleinfeld D (1991) Phase coherence and
computation in a neural network of coupled oscillators. In: Non-
Linear Dynamics and Neural Networks, H.G. Schuster and W
Singer Eds. (VCH, Weinheim, 1991), pp. 113–140.



J Comput Neurosci () :

Stoop R, Schindler K, Bunimovich LA (2000) Neocortical networks of
pyramidal neurons: From local locking and chaos to macroscopic
chaos and synchronization. Nonlinearity 13: 1515–1529.

Strogatz, S (2000) From Kuramoto to Crawford: Explaining the onset
of synchronization in populations of globally coupled oscillators.
Physica D 143: 1–20.

Tass PA (2003) Stochastic phase resetting of two coupled phase
oscillators stimulated at different times. Phys. Rev. E 67:05
1902.

Van Vreeswijk C, Abbott LF, Ermentrout GB (1994) When inhibition
not excitation synchronizes neural firing. J. Comput. Neurosci. 1:
313–321.


