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Abstract. Temporal precision of spiking response in cortical neurons has been a subject of intense debate. Using a
canonical model of spike generation, we explore the conditions for precise and reliable spike timing in the presence
of Gaussian white noise. In agreement with previous results we find that constant stimuli lead to imprecise timing,
while aperiodic stimuli yield precise spike timing. Under constant stimulus the neuron is a noise perturbed oscillator,
the spike times follow renewal statistics and are imprecise. Under an aperiodic stimulus sequence, the neuron acts
as a threshold element; the firing times are precisely determined by the dynamics of the stimulus. We further study
the dependence of spike-time precision on the input stimulus frequency and find a non-linear tuning whose width
can be related to the locking modes of the neuron. We conclude that viewing the neuron as a non-linear oscillator
is the key for understanding spike-time precision.
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Introduction

How neurons encode sensory stimuli has been a long
standing and central question of systems neuroscience.
Earliest theories of neural encoding considered the
mean firing rate as the relevant quantity (for example
see Adrian and Zotterman, 1926; Barlow, 1994). How-
ever it has been long recognized that sensory informa-
tion may also be encoded by the temporal pattern of the
neural activity (MacKay and McCulloch, 1952). In fact,

a number of recent experimental and theoretical results
have suggested that coding by simple firing rate alone,
as classically considered (e.g. Barlow, 1994; see also
Bugmann et al., 1997; Shadlen and Newsome, 1998;
Tovée et al., 1993), may be at odds with observed data.
Experimental studies, primarily performed in the visual
system, have found a significant role for precise tim-
ing of individual spikes in coding as well as precisely
reproducible spike time patterns or “relational codes”
(see for instance Bair and Koch, 1996; Engel et al.,
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1992; Krüger and Becker, 1991; McClurkin et al., 1991;
Panzeri et al., 2001; Reinagel and Reid, 2000; Thorpe,
1996). This “temporal coding” hypothesis states that
the precise timing of spikes, in addition to the firing
rate, carries information (e.g. Bialek et al., 1992; Gray,
1994; Prut et al., 1998; Theunissen and Miller, 1995; for
a comprehensive overview see de Charms and Zador,
2000).

A pre-requisite for the spike-time code to work is that
spikes must be evoked precisely and reliably by a given
stimulus. Over the past years, several converging lines
of research have found that spike generation in cortical
neurons can be indeed precise and reliable, depending
on the nature of the inputs. In one of the first experi-
mental studies aimed at investigating mode locking and
spike-time precision, Bryant and Segundo (1976) ele-
gantly demonstrated that repeated injections of white
noise in Aplysia neurons led to a remarkable invari-
ance in the firing times accompanied by a high degree
of reliability in the response. In vivo recordings have
shown that the neural responses were robust and repro-
ducible when the stimulus leads to fast fluctuations in
the firing rates (e.g. in monkey MT: Britten, 1993; in the
LGN: Reinagel and Reid, 2000) and under stimuli with
statistics of natural scenes (e.g. for motion-sensitive
H1 neurons in the fly’s visual system: de Ruyter van
Steveninck et al., 1997). In vitro experimental work
has examined more closely the conditions for precise
spike-timing (e.g. Calvin and Stevens, 1968; Hunter et
al., 1998; Mainen and Sejnowski, 1995; Nowak, 1997;
Tang, 1997). The main finding of these studies is that
spike-timing is rather imprecise for constant (Mainen
and Sejnowski, 1995) and low frequency (Nowak et al.,
1997) driving currents, but relatively precise for stimuli
with pronounced temporal structure.

Precision of spike-timing has also received consid-
erable attention in the computational literature, using
a variety of modeling approaches (e.g. see Howeling
et al., 2001; Needleman et al., 2001; Kretzberg et al.,
2001; Van Rossum, 2001) and analytical methods (e.g.
Brunel et al., 2001). In this paper we explore this is-
sue through simulation and analysis of the stochastic
θ -neuron (Gutkin and Ermentrout, 1998). While nu-
merous models of neurons can be used for this study
(e.g. see Van Rossum, 2001), our choice is motivated
by the fact that the θ -neuron is a reduced model of cor-
tical neurons which captures the dynamics of neural ex-
citability and allows for a clear distinction between the
excitable and the oscillating regimes. Our main focus
is to study the precision of spiking activity under noisy

current inputs that reproduce in a heuristic way exper-
imental conditions. We suggest that the experimental
results (e.g. Mainen and Sejnowski, 1995; Nowak et
al., 1998) can be succinctly explained using the the-
oretical framework of non-linear oscillators, of which
the θ -neuron is an example.

Methods

The Model

The model is a formal mathematical reduction from a
wide class of more complicated neural models. In what
follows, we briefly review its derivation. A more mathe-
matical treatment is given in Ermentrout and Kopell
(1984, 1986), Hoppensteadt and Izhikevich (1997), and
Gutkin and Ermentrout (1998).

The starting point for the reduction is that the dynam-
ical behavior of conductance based neural models is of
Type I excitability (see Hansel et al., 1995; Rinzel and
Ermentrout, 1999). This classification of membrane ex-
citability was originally noted by Hodgkin in squid
giant axons (Hodgkin, 1948) and is based on several
characteristic properties of the neural responses to cur-
rent injections. Type I neural membranes exhibit the
following salient characteristics:

• All-or-none action potentials, i.e. the shape of the ac-
tion potential is largely invariant with respect to the
frequency of firing. In general, the amplitude and
the duration of the action potential in real neurons
may change slightly with the changing response fre-
quency, but the spike remains a special and stereo-
typed solitary event that is well separated from the
subthreshold responses. Spikes are not a continuous
increase in the amplitude of subthreshold oscilla-
tions, as it would be the case for Type II membranes.

• Repetitive firing appears with arbitrarily low fre-
quencies when the neuron is depolarized with a pro-
longed current step. Although this is rather difficult
to observe in experiments, neural models that are
parameterized to include cross-membrane conduc-
tances underlying spike generation in, for example,
cortical pyramidal neurons clearly show this effect.
The important notion is that the neuron is capable of
responding with a wide range of firing frequencies.

• The frequency-response ( f -i) curve for the Type
I neuron in vitro, where noise levels are relatively
low, can be readily fitted with a square root (for the
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instantaneous f -i , or the f -i for a neuron with weak
spike frequency adaptation) or a linear function (the
steady state f -i for a strongly adapting neuron), e.g.
see Connors et al. (1990), McCormick et al. (1985),
and Stafstrom et al. (1984).

A majority of biophysical models for cortical neu-
rons fall into Type I excitability. Such biophysical mod-
els have a specific underlying mathematical structure
by which the above characteristics appear, namely the
saddle-node bifurcation. When analyzed in the phase
space in the excitable regime (below the bifurcation)
these models have at least three critical points: the at-
tracting node that is the rest, a saddle point that is the
threshold and an unstable point (repellor) that deter-
mines the shape of the action potential (see Fig. 1A,
left). In other words, the repellor ensures that the limit
cycle traced out by the full model remains topologi-
cally invariant. The repellor persists beyond the bifur-
cation (see Fig. 1A, right) and, thus, the action poten-
tial shape remains largely constant but the speed with
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which the model traverses the limit cycle changes de-
pending on the input bias and, thus, the time between
the action potentials changes. The above characteris-
tics of response are directly related to the structure of
the bifurcation, particularly to the fact that the bifurca-
tion occurs when the steady state (the node) comes to-
gether with the threshold (saddle point) as the injected
current is increased to the critical value. As the neuron
passes through the bifurcation, a single real leading
eigenvalue changes its sign from negative to positive.
In topological terms, right at the bifurcation there exists
a single critical point and a homoclinic orbit that joins
this point to itself. By definition, this orbit has infinite
period (hence the arbitrarily low onset frequency) as it
winds around a repellor that survives the bifurcation.
Above the bifurcation the period of the oscillation is
finite and the spike shape remains invariant due to the
persistent repellor.

For this type of bifurcation there exists a simple
canonical equation that captures the generic behavior
of all models that fall within this dynamical class (see

←
Figure 1. The θ -neuron model. A: Representative Type I membrane
dynamics (Morris-Lecar model). V −w phase plots, where V denotes
the membrane potential and w the recovery variable (see Rinzel and
Ermentrout, 1998), are shown for the excitable (left panel) and os-
cillatory (right panel) regime. In the excitable regime, w-nullclines
(grey solid) and V -nullclines (grey dashed) intersect at three points:
a stable resting state (R), a saddle point threshold (T) and an unsta-
ble node (U). Unstable and stable manifolds for the saddle node are
indicated by black solid and dashed lines, respectively. Lifting the
V -nullcline by a constant bias current, one observes a bifurcation of
the critical points in the course of which the resting state and sad-
dle node disappear, leaving only the unstable node. The topology of
the transient orbits due to suprathreshold excitation in the excitable
regime and the stable limit cycle in the oscillatory regime remains
invariant. This invariance allows for a reduction to the phase descrip-
tion. B: Scheme of the dynamical structure of the θ -neuron, shown in
the excitable regime (β < 0, left) and the oscillatory regime (β > 0,
right). The relative positions of the rest and the threshold are deter-
mined by β; the spike occurs near θ = π , where the rate of change of
the phase is the fastest and the inputs are “shunted”. If β is adjusted
above zero, the model passes into an oscillatory regime, where the
spikes are produced due to intrinsic oscillations. The unstable node
is implicit in the formulation of the θ -neuron. The insets show rep-
resentative (spontaneous) activity of the θ -neuron in the excitable
regime due to random noise inputs, and oscillatory regime due to in-
trinsic mechanisms. Here, β is adjusted so as to produce mean firing
at 10 Hz in both cases, σ = 0.01. Note that here we plot an auxiliary
quantity ν = 1 − cos θ in order to visualize spikes. C: Coefficient of
variation (CV ) as a function of model parameters β and σ . The CV

quantifies the regularity of the train of individual events, and shows
the two regimes characterizing the θ -neuron: Whereas regular spik-
ing activity (oscillatory regime) yields low CV values, for irregular
activity the CV is around 1.
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e.g. Ermentrout and Kopell, 1986 for proof):

dθ

dt
= (1 − cos θ ) + (1 + cos θ )(β + I (t) + σ Wt ),

(1)

where θ is a phase that gives the position of the neural
membrane in its firing cycle. The motion of the phase is
nonuniform: it is relatively slow near the rest, “speeds
up” as the neural membrane traverses the spike (near
θ = π ), and “slows down” during the re-polarization
phase. This is the key to this model’s ability to repro-
duce the behavior of a neural membrane, such as the
changes in the effective membrane time constant dur-
ing spiking. The original dynamics is reduced to one
phase variable due to the invariance in the shape of the
limit cycle. Heuristically, since the repellor in the full
model persists on both sides of the bifurcation and the
limit cycle shape does not change, the firing behavior
can be described by the phase around the limit cycle.
Thus the repellor point is implicit in the phase descrip-
tion.

The input term (β + I (t) + σ Wt ) is multiplied by
(1 + cos θ ), as determined by the mathematical reduc-
tion procedure and reflecting the relative and absolute
refractory periods during and after the spike. In gen-
eral, the time dependent input can be of arbitrary form,
with the exception of β, which is the constant bias and
the major control parameter determining whether the
model is below or above the bifurcation. With β be-
low zero, the neuron is excitable and shows threshold
behavior (Fig. 1B, left). When the bias is positive, the
neuron is in the oscillating regime producing periodic
action potentials (Fig. 1B, right).

The term I (t) denotes a deterministic and, in gen-
eral, time varying stimulus, e.g. a constant current with
amplitude α (which normally can be subsumed in the
bias term), an aperiodic current or “frozen noise” (ob-
tained from a sampled random process, or a sinusoid
superimposed on a DC-offset equal to the amplitude,
I (t) = α (1 + sin(2πνstimt)). In this case, νstim(t) de-
notes the stimulation frequency and α the stimulation
amplitude. The different stimuli used in this paper were
chosen to qualitatively reflect the various current injec-
tion protocols in the in vitro studies: constant currents
and frozen noise (Mainen and Sejnowski, 1995), or
sinusoid currents (e.g. Nowak et al., 1997). The am-
plitudes for the DC input were set to match the ex-
perimental firing frequencies. Wt is white noise with
the noise scaling factor σ . Note that the θ -neuron with
noise does not have any long-lasting slow processes and
is formally a Markov process with a renewal property.

The white noise injection is capable of evoking
spikes in the excitable regime, or modifying the spike
times for periodic firing patterns in the oscillatory
regime. In the excitable regime (Fig. 1B, left) the model
fires due to random threshold crossings, in the oscilla-
tory regime (Fig. 1B, right) noise modulates the intrin-
sic rather regular spike times. Note that the noise level
is the same for both panels as is the mean firing rate,
yet the excitable regime gives irregular firing, while the
oscillator is much more regular. The two firing regimes
are readily apparent from the interspike interval coeffi-
cient of variation CV , defined as the ratio between the
standard deviation of the interspike intervals and the
mean interspike interval (Fig. 1C).

For further discussion of the underlying mechanisms
for the interspike interval irregularity and a heuris-
tic discussion of the stochastic θ -neuron behavior see
Gutkin and Ermentrout (1998). This model can be used
to explore response properties of single neurons, as well
as synaptically generated behavior of small circuits
(Ermentrout et al., 2001; Gutkin et al., 2001) and large
synaptically coupled networks (Latham et al., 2000).

Simulation Parameters. The model was run under
several stimulus conditions with random initial condi-
tions (variance of θ (0) was 10% around rest values)
to model random membrane drifts seen under experi-
mental conditions. Parameters varied during the sim-
ulations were σ , β and input stimulus characteristics
as described below. The strength of the noise σ was
adjusted as a free parameter. In general, the noise level
fell into two qualitative classes. For “low noise”, σ was
chosen sufficiently small as not to affect the mean fir-
ing rate (σ < 0.01). If the cell is close to spike thresh-
old, this situation reflects the in vitro constant stimulus
condition in Mainen and Sejnowski (1995). For some
simulations, σ was large (σ > 0.01, “strong noise”).
The latter condition can be seen as one reflecting the
high input levels present in in vivo preparations where
random synaptic inputs impinge on the neuron at a high
rate (e.g. Destexhe and Paré, 1999; Paré et al., 1998).
We note that the noise comes in our model as a cur-
rent, while under in vivo conditions synaptic inputs are
conductance fluctuations (see Discussion).

For the constant current injection, the bias β was ad-
justed so as to provide an average (spontaneous) firing
rate consistent with previous experiments (10–40 Hz).
For the time structured aperiodic stimulus we used a
frozen random current. The amplitude of this stimulus
was scaled as a free parameter in the simulations. For
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the injected sinusoid stimuli, the amplitude and fre-
quency were changed to examine their effects on the
spike-time jitter. In general, the frequency of the sinu-
soid was varied between 0.2 and 150 Hz, the amplitudes
were set between 0 and 0.5, σ between 0 and 0.05. To
ensure robust statistics, 1000 traces were simulated for
each set of parameters. The model was integrated with
the Euler method with time step sufficiently small to
ensure stability.

Data Acquisition and Analysis. The analysis proto-
col closely matches the procedure given in Mainen and
Sejnowski (1995). For each parameter setup, the spik-
ing responses for a fixed number of repetitions (in our
case 1,000) of the same stimulus (constant, “frozen”
random or sinusoid current) were accumulated, trig-
gered by the stimulus onset, accumulated. The result-
ing rasterplots (Fig. 2A) were integrated, yielding peri-
stimulus time histograms (PSTHs, Fig. 2B). Subtract-
ing a threshold value (Fig. 2B, threshold), which was
set at the mean firing rate during the stimulus, yielded
reduced PSTHs (Fig. 2C). The latter can be viewed
as an adequate description of the time course of the
response of the cell to the applied stimulus.

Reduced PSTHs were used as input for further anal-
ysis. In most cases, the stimulation led to statistically
significant peaks in the reduced PSTHs (Fig. 2C), in-
dicating the occurrence of spikes at preferred times
during the course of the stimulus. In accordance with
Mainen and Sejnowski (1995), these peaks in the (re-
duced) PSTHs are called events. A standard statistical
analysis of these events was used to characterize the re-
sponse with measures of reliability and precision: Event
reliability is defined as the fraction of spikes within a
single event and, thus, equals the ratio between num-
ber of spikes in a single event and the total number of
spikes in the reduced PSTH (see Fig. 2D). Reliability is
the sum of the event reliability for all events occurring
in the reduced PSTH, thus quantifying the fraction of
total spikes specifically evoked by the stimulus. Event
jitter is defined as the standard deviation (SD) of the
spikes within a single event (Fig. 2D). Finally, jitter is
defined as the average of the event jitter for all events
in the reduced PSTH.

Results

To determine spike time precision of the stochastic θ -
neuron in the oscillatory regime, we ran a number of
simulations with a constant injected current I (t) = α.

threshold
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Figure 2. Simulation and data analysis protocol. The responses of
the θ -neuron to repeated stimulation with fixed stimuli (see Methods)
were recorded. The resulting rasterplots (A) were integrated, yielding
peri-stimulus time histograms (PSTHs) with spike times clustering
into contiguous groups of bins (B). After a further reduction of the
PSTHs by cutting above a threshold which corresponds to the mean
firing rate during the stimulus (yielding reduced PSTHs, see C), these
groups define events of enhanced occurrence of spikes in the course
of the stimulus (see peaks in C). The number of spikes falling into a
single event as well as the standard deviation (SD) of the spike times
belonging to a single event yield event reliability and event jitter,
respectively (D). The average of the event jitter and the sum of the
event reliability for all events observed during the stimulation finally
define jitter and reliability used in the analysis.

The stimulation amplitude α was set to produce repet-
itive firing at firing rates consistent with those previ-
ously reported in experiments (see e.g. Mainen and
Sejnowski, 1995). The model was biased to oscillate in
the range of 10–40 Hz frequencies (0.1 < α < 0.11 for
fixed σ = 0.01 and β = −0.099). Figure 3 shows rep-
resentative results for 10 Hz and 30 Hz average firing
rate. The model responds to the constant stimulus with
nearly periodic spike trains. Across different trials, in-
dividual spikes are randomly shifted due to the noise.
The mean firing rate, reliability and jitter can be easily
matched to that observed in experiments by adjusting
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Figure 3. Spike timing jitter under constant current injection is compatible with a renewal process. The jitter grows as a square root of the event
number (variance is proportional to event number), and is reduced for higher firing rates. A: Typical rasterplots (upper panels) and PSTHs (lower
panels) for constant stimuli. The bias was adjusted to give 10 Hz (left) and 30 Hz (right) average firing rate. The noise strength was fixed to
σ = 0.001. B: Spike-time jitter and spike-time variance (insets) as a function of the event number. Left: Result for mean firing rate of 10 Hz and
noise amplitude of σ = 0.001 (stars) and σ = 0.003 (dots). Right: Results for σ = 0.001 (stars) and σ = 0.003 but higher bias (average firing
rate 30 Hz). C: Example of spike-time jitter in the θ -neuron under an aperiodic stimulus. Left: rasterplots (upper panel) and PSTH (middle) for
repeated injection of aperiodic current (lower panel; mean firing rate 17 Hz, amplitude of aperiodic stimulus 0.05, noise strength σ = 0.003).
Right: jitter as function of even number. Note that under such strong aperiodic signal the event jitter does not depend on event number.

the noise strength σ and bias β. The PSTHs (Fig. 3A)
show clear peaks (events), indicating a rather regular
(periodic) response. The SD of the peaks increases
in the course of the stimulation (Fig. 3B), leading to
the “diffusion” of the events; i.e. successive events be-
come broader and lower in amplitude, as expected for
a simple renewal process. For a given noise strength, at
lower firing rates the event structure may be completely
masked by the random spike-times shifts towards the
end of the spike train, while for higher firing frequen-
cies the structure remains (results not shown). The jitter

depends on the noise strength σ and decreases with in-
creasing mean firing rate.

We then examined the response of the θ -neuron
to time structured aperiodic stimuli (see Methods).
Parameters, including noise, bias and initial conditions
were chosen to give a mean firing rate of 10 Hz with-
out aperiodic stimulus. Under the aperiodic stimulus
the firing rate was approximately 17 Hz (Fig. 3C, left).
Spike times were highly correlated from trial to trial.
However, in contrast to the constant stimulus, here the
event jitter was not a function of the event number, but
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rather determined by the aperiodic input current itself
(compare Fig. 3C, right). Moreover, in the shown ex-
ample, the firing rate was determined by the aperiodic
stimulus and not by the bias since the background rate
was 10 Hz and the “driven” rate was 17 Hz.

We can understand the above results in an intuitive
way if we consider that during the constant current in-
jection (or a slowly changing current input) the neuron
is in a repetitive firing regime, i.e. the neuron produces
spikes due to the intrinsic dynamics. The periodic cy-
cling of the currents that underlies spike generation
yield two distinct time scales for the evolution of the
phase in the theta-neuron: the rapid all-or-none action
potentials and the slow recovery (or re-polarization)
of membrane excitability between the spikes. The tim-
ing of the spike depends on the duration of this slow
recovery, and the membrane spends, under these con-
ditions, a relatively long time in the neighborhood of
the firing threshold. The presence of noise induces ran-
dom changes in the recovery duration as well as ran-
dom threshold crossings. Thus, in the repetitive firing
regime, the noise has an expanded window of oppor-
tunity to effect individual spike times. Furthermore,
previously it was shown (see Gutkin and Ermentrout,
1998) that for the Type I neurons the spike latency de-
pends on the amplitude of input deviations above the
threshold and that minute amounts of randomness in the
current amplitude are amplified by the intrinsic spike
generating mechanism (for experimental evidence see
Azouz and Gray, 1999, 2000). Thus, the repetitive firing
regime in conjunction with noise act to induce random-
ness in the individual spike times.

In contrast, when the neuron is stimulated by the
aperiodic stimulus (superimposed on the constant cur-
rent and noise), this stimulus dominates the behav-
ior of the membrane and the neuron fires in response
to the threshold crossings induced by the input cur-
rent. Here, the neuron acts as a threshold element and
the noise mechanisms discussed above are swamped
by the action of the input, leading to individual spike
times which are relatively robust across trials. This is in
line with experimental results in Bryant and Segundo
(1976), who reported reproducible and precise spike
times under repeated noise injection and suggested a
threshold model of the spike-triggering system.

In dynamical terms, the neuron, biased by a con-
stant current, is a noise-perturbed nonlinear oscillator.
Thus, it produces action potentials as a renewal process,
meaning that the probability for the occurrence of the
(N + 1)th spike depends only on two factors, namely

the time of occurrence of spike N and the statistics of
generating a spike in a given time interval.

Let us assume that the interspike interval (ISI) distri-
bution function P(τISI; µ, σ ), where τISI gives the ISI
duration, is characterized by some mean µ and stan-
dard deviation σ . We can also write the moment gen-
erating function for the ISI duration �(τISI), given by
the Laplace transform of P(τISI; µ, σ ). Assuming that
we have a stationary renewal process (no memory and
statistical stationarity), all interspike intervals are iden-
tically distributed and independent. The time of the N th
event (spike) is the sum of the interspike intervals (τi )
tN = τ1 + τ2 + · · · + τN = NτISI, and the probability
distribution of the N th spike time equals the N -fold
convolution of the ISI distribution function:

P(tN ; µN , σN ) = P(τ1; µ, σ ) � · · · � P(τN ; µ, σ ).

(2)

The moment generating function for the N th event time
is:

�(τN ) =
N∏

i=1

�(τi ) = [�(τISI)]
N . (3)

From this it is easy to show that the variance for the N th
event is just N σ 2.1 Thus, standard deviation of spike
times should build up as a product of the square root of
the spike number and the standard deviation of the first
spike. Figure 3B shows plots of event jitter and vari-
ance (insets) as a function of event number. The latter
follow a linear relationship, consistent with the renewal
prediction. A similar relationship should hold for ex-
perimental results (Mainen and Sejnowski, 1995).

In contrast, for a cell driven with strong aperiodic
inputs, the response appears to be evoked by the fast
rising input current. The latency of the spikes is deter-
mined by the time of the current rise, and the intrinsic
regenerative membrane currents are superseded. In this
situation, the spike generation is not a renewal process
and the precision of spike times is independent of spike
number (Fig. 3C).

Spike-time precision appears to be dependent on
the frequency composition of the input (Nowak et al.,
1997). In fact, recent experiments in cortical slices
suggest that certain input frequencies may be en-
coded preferentially, since they may be in resonance
with subthreshold membrane oscillations. It was shown
(Fellous et al., 2001) that in vitro the subthreshold
dynamics of neurons may act as a band pass filter,
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Figure 4. Representative responses of the θ -neuron to sinusoidal
stimuli. Rasterplots (top panels) and PSTHs (bottom panels) for si-
nusoid injections of a fixed amplitude α = 0.045 and frequency of
10 Hz (A, C) and 30 Hz (B, D) for two different noise strength (A,
B: σ = 0.003 low noise, C, D: σ = 0.05 strong noise) are shown
(β = −0.099). The mean frequency in the presence of stimulation is
marked on the graphs, and was different from the intrinsic frequency
without stimulation (10 Hz). In all cases, the cell phase-locked to the
driving stimulus.

allowing reliable 1:1 phase-locked responses to sinu-
soidal stimulation in a band of driving frequencies com-
mensurate with the intrinsic oscillations.

Therefore, we next investigated the response of the θ -
neuron to sinusoidal stimulation. In general, the model
showed a 1:1 phase-locking in a broad parameter range
of the driving stimulation. The occurrence of a 1:1
phase-locking regime was relative robust to changes
in the noise strength σ and bias β, which both deter-
mine the intrinsic frequency (representative examples
for low and strong noise, and driving frequencies of 10
and 30 Hz are shown in Fig. 4). However, the quanti-
tative characteristics of the locking regime depend on
the model parameters. To further characterize the re-
sponse, we investigated the mean output frequency νout,
the jitter (precision) and reliability as a function of the
driving stimulus frequency for given sets of σ and β.

Three qualitatively different regimes of phase-
locking were found. First, a 1:n regime, where the
cell responds with several spikes during one phase of
the driving stimulation (“bursts”, see Fig. 5A). Here,
the stimulus acts as a slowly changing (or nearly
constant) bias, and the output frequency during one
period is mainly determined by the stimulation am-
plitude (Fig. 6A, compare circles with triangles for
νstim <10 Hz). The jitter, estimated for the whole
“burst”, was high (Fig. 6B) and a function of the period
of the stimulation. After a low reliable response for very
small νstim (<1 Hz), at higher stimulation frequencies

200 events

20 ms

νstim= 10 Hz

νstim= 66.7 Hz

νstim= 100 Hz

A

B

C

Figure 5. Rasterplots and the PSTHs for three different stimulation
frequencies (parameters: α = 0.09, β = −0.099, σ = 0.003 weak
noise, see also Fig. 6), indicating three locking regimes: Low and high
driving frequencies (upper and lower panel, respectively) act like a
constant bias, whereas for intermediate driving frequencies (middle
panel) the model phase-locked with a high temporal resolution to the
driving stimulus.

nearly all spikes clustered into the “bursts”, yielding
high reliability (Fig. 6C) especially in the case of low
noise strength (Fig. 6C, left). Interestingly, the reliabil-
ity reached a plateau much earlier than the jitter, and for
low noise strength the reliability value characterizing
this plateau was nearly independent of the stimulation
amplitude (Fig. 6C, left).

An increase in the stimulation frequency leads to a
rather sharp transition into the second regime, where
the model 1:1 phase-locked to the external stimulus
(see Fig. 5B and the linear regime in Fig. 6A). The
jitter was low and nearly unaffected by the driving fre-
quency (see plateau regions at low jitter in Fig. 6B),
but the value depended markedly on the intrinsic noise
strength with an increasing jitter (lower precision) for
increasing noise strength (compare filled and white cir-
cles in Fig. 6B). For a given noise strength, the width of
the 1:1 regime depended mainly on the stimulation am-
plitude (compare white dots and triangles in Fig. 6B),
but was found to be rather large for a broad parame-
ter range. For low noise amplitudes (compared to the
stimulation amplitude), the behavior of the reliability
as a function of the driving frequency followed that of
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Figure 6. Mean output rate νout (A), jitter (B) and reliability (C)
as a function of the frequency νstim of the sinusoidal stimulation for
weak (left) and strong (right) noise strength. Representative results
for two stimulation amplitudes (dots: α = 0.09, triangles: α = 0.01)
and two different noise strength (white symbols: σ = 0.003 low
noise; filled symbols: σ = 0.5 strong noise) are shown (β = −0.099).
The arrows in the upper right panel mark stimulation frequencies
for which rasterplots and PSTHs are shown in Fig. 5. Stars in the
precision and the reliability plots mark the frequency at which 1:1
phase-locking is lost, or at which the model can no longer resolve the
stimulus. Note that for the weak stimulus the tuning in both precision
and reliability is rather narrow, while for the strong stimulus the
tuning is wide. The upper limit of the tuning in both cases is related to
the critical input frequency at which 1:1 locking begins to deteriorate.

the jitter, with a plateau region at high reliability in the
1:1 regime.

For strong noise strength and small stimulation am-
plitudes, a 1:1 phase-locking regime could not be ob-
served (Fig. 6A, right, filled triangles). Here, the fir-
ing rate of the model did not change with the driving
frequency, and was mainly determined by the intrin-
sic noise amplitude and bias. The cell acted like under
constant stimulation, showing events with low reliabil-
ity and temporal precision (Fig. 6B and C, right, filled
triangles).

For increasing noise amplitudes the reliability de-
creased and showed a peak at stimulation frequencies
comparable to the response rate with slow varying or
constant stimulation of the same amplitude. Given that
the average firing rate sets the threshold for estimating
the reliability (see Methods), and due to the dependence

of the average firing rate on the noise strength, the re-
liability can be viewed as a measure of the signal-to-
noise ratio. For higher (but fixed) noise strength, this
ratio becomes optimal (maximal) for certain stimulus
characteristics, as shown here for νstim.

For further increase of the driving frequency, 1:1
locking is lost (stars in Fig. 6B and C), as indicated by
the decrease in the output rate (Fig. 6A). The response
of the cell in this regime was either determined by
noise, or a n:1 phase-locking was observed (Fig. 5C).
In the first case, no events could be seen in the PSTHs,
hence no values of jitter and reliability could be de-
duced (filled and white triangles in Fig. 6B and C).
In the n:1 phase-locking regime the model showed,
for increasing stimulation frequency, a response with
low jitter and decreasing reliability (for high noise, see
Fig. 6 filled dots), or increasing (but low) jitter and
constant reliability (for low noise strength, see Fig. 6
white dots). This difference between the behavior of
reliability and jitter for various noise strengths can be
traced back to the definitions of these two measures
(see Methods). In general, as in the 1:n regime, in the
n:1 regime the cell cannot follow the time course of the
stimulation and acts like it is under constant stimula-
tion. This is further supported by the observation that
the jitter only slowly varies with increasing frequency.

In summary, our simulations of the θ -neuron show
that precise and reliable spike-times in response to si-
nusoid stimuli are obtained in a wide range of driving
frequencies. Without exhibiting strong or narrow res-
onances for a particular intrinsic frequency range, the
cell acts like a band pass filter, in agreement with pre-
vious studies (Fellous et al., 2001). The intrinsic pa-
rameters, like the noise strength or constant bias, act as
a modulating factor on the shape and width of the 1:1
locking regime.

Discussion

In this report we have considered the reproducibility
of spike timing in Type I neurons by studying the re-
sponses of the canonical model for this excitability
class, the θ -neuron. First, we showed that spike tim-
ing precision and reliability results reported previously
from in vitro experiments can be reproduced by the
stochastic θ -neuron. In spike trains evoked by constant
current injections (oscillating regime, Fig. 3A and B),
the overall spike-time jitter is high and increases with
successive spikes. Here the response is caused by re-
generative activity of the intrinsic currents and the jitter
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in each spike depends on the jitter in the preceding
spikes. On the other hand, under aperiodic stimulus
(Fig. 3C), the response is caused by the rapid fluc-
tuations in the stimulus itself, and the cell acts as an
excitable threshold element. In this case, a given spike
is largely statistically independent from the previous
spike and its jitter is stationary and relatively low com-
pared to the case with constant stimulation.

We tested the hypothesis that spike timing precision
is strongly affected by the temporal structure of the
stimulus. The simulations with sinusoid input showed
that slow rising stimuli act almost like an additional
bias and result in imprecise spike times. Rapid stimuli
(frequencies above 100 Hz) are filtered by the mem-
brane and once again lead to low precision (Fig. 5C).
In between both regimes, there was a wide optimal
range of input frequencies that evoke precisely timed
spikes (Fig. 5A and B). No sharp resonances with re-
spect to intrinsic frequencies were found, but a rather
broad band pass filter behavior. This is predicted from
the dynamics of Type I membrane excitability and is
quite different from the situation described in studies
of noise driven Type II oscillators (e.g. Jensen, 1998).
In the latter case, each oscillator exhibits subthreshold
oscillations in a limited frequency band, leading to a
narrow range of periodic inputs that evoke precisely
timed responses.

Fellous et al. (2001) showed in vitro that the preci-
sion tuning in prefrontal cortical neurons can be corre-
lated with subthreshold oscillations of the membrane
potential. A broad tuning curve for the reliability of
the response to sinusoid current stimuli at a frequency
corresponding to the average subthreshold oscillation
frequency was found. Although there are no subthresh-
old oscillations in the theta-neuron model, we obtain
results that qualitatively match these experimental find-
ings. In addition, no sharp differences in the precision
and reliability tuning could be deduced between the
cases where the constant stimulus amplitude was below
the oscillatory regime (thus, the cell operated in the ex-
citable regime) and those in the oscillatory regime (see
Methods). This suggests that the stated link between
subthreshold oscillations and reliability of the cellular
response might be weaker. Also, the broad reliability
tuning found experimentally appears to be in contrast
with a sharp tuning one expects for a resonance cou-
pling between subthreshold oscillations and response,
indicating that the subthreshold neuronal dynamics is
not the only determinant of a reliable response under
the investigated current stimuli.

The loss of precise spike-timing in the model for
higher input frequencies can be explained by the struc-
ture of the stable locking regimes of non-linear oscil-
lators (e.g. see Coombes and Bressloff, 1999). That is,
the precision and reliability tuning curves have their
inflection points at the frequency where 1:1 locking
mode is lost. For Type I oscillators this upper bound is
dependent on the input amplitude (as it would be for
any non-linear oscillator), and also on the amplitude of
the back-ground DC component of the input. Thus, we
predict that it is the upper edge of the tuning that would
be modified by the input amplitude or the DC offset.

The response rate of the model as a function of the
stimulus frequency shows that, in the 1:1 phase-locking
regime, the cell phase-locked to the external stimulus
by modulating its firing rate. The firing rate sharply
decreased at a critical frequency, indicating the loss of
a reliable and precise response to the external stimu-
lus. This behavior is typical for current driven (noise or
stimulus) models. Simulations performed using simpli-
fied models of cortical neurons with voltage-dependent
membrane conductances and synaptic background ac-
tivity modeled either by current or conductance noise
(Destexhe et al., 2001) revealed two different modes
of 1:1 phase-locking. Whereas under current noise the
neuron encoded different stimuli by modulating its fir-
ing frequency, under conductance noise the relative
timing of spikes was changed with only minimal im-
pact on the mean output rate (Rudolph and Destexhe,
unpublished observation). High-frequency stimuli (up
to 200 Hz) could be resolved for a broad parameter
range with high precision and reliability with conduc-
tance noise (Rudolph and Destexhe, 2002), but not
with current noise. The latter is in agreement with the
breakdown of a precise response for higher driving fre-
quencies (νstim > 70 Hz) reported here. The difference
between both locking modes can be traced back to
the high conductance component imposed by synap-
tic background activity, and the resulting decrease of
the effective membrane time constant. To which ex-
tent the noisy component σ in the stochastic θ -neuron
model used in the present study describes synaptic
background activity remains to be investigated.

We have shown that the θ neuron model repro-
duces experimental results which suggest that the pre-
cisely timed spiking is primarily a result of rapidly
changing inputs driving the cell to spike threshold.
This particular fact has already been recognized by
Bryant and Segundo (1976) in an experimental study
of Aplysia neurons in vitro. The authors found that in
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response to repeated injection of Gaussian white noise
the neuron responded with highly reproducible spike
trains. After estimating the first order Wiener kernel
for the neuron (or the average current input leading to
spike production), Bryant and Segundo were able to
heuristically account for this effect of noise injection
by a simple current threshold device coupled with this
kernel. In our study we looked into this issue by quanti-
fying the precision of spike timing for individual spikes.
We also found that, in this mode, the neuron’s response
can be described best in terms of a thresholding effect,
provided that spike-generating dynamics is taken into
account. Interestingly, Bryant and Segundo found that
the average input leading to a spike depended on the DC
input bias, with more depolarized bias yielding input
waveforms that included an early hyperpolarizing com-
ponent, followed by a rapid depolarizing component.
This is compatible with our conjecture (see Results)
that a neuron that is sitting near its firing threshold
would need to be transiently re-polarized in order to
remove any partial inactivation of the sodium channels
and, thus, augment the membrane excitability. Such re-
polarization would break any remaining effects of the
previous spike or, in other words, transiently move the
cell out of the oscillating regime and, hence, result in
a reliable spike timing. At more hyperpolarizing bias
the cell is away from the threshold and, thus, already in
the excitable (threshold) regime, with no requirement
of an additional hyperpolarization.

A crucial difference between the elegant early study
by Bryant and Segundo (1976) and the work presented
here is that Bryant and Segundo essentially approached
spike generation as a thresholding process. In this study
we suggest a specific dynamical structure for spike gen-
eration (Type I dynamics). We show that it is able to
account for responses of neurons to a variety of noisy
stimuli (DC and noise, repeated noise, sinusoid current
and noise) quantitatively and also provide a unifying
explanation for such responses. Furthermore, the focus
of the study by Bryant and Segundo (1976) was dif-
ferent by asking what input patterns lead to spikes and
how such pattern can be characterized by estimating
first and second order Wiener kernels. We drew atten-
tion more on the question wether a canonical model of
spike generation can account for spike time precision
and reliability and how these can be explained in the
context of non-linear oscillators.

In fact we propose that spike timing is a micro-
scopic quantity that reflects strongly the fine tempo-
ral structure of the input current (i.e. high frequency

fluctuations, possibly due to correlation structure in the
synaptic inputs as discussed in Salinas and Sejnowski,
2000). On the other hand bias induced firing preserves
the over-all firing rate, a macroscopic quantity that de-
pends on the mean level of the input current. In this
way we may imagine that the firing rate and the spike
timing can be multiplexed to carry two related but dif-
ferent kinds of information about a sensory stimulus.
It is interesting to note that when the spike-times are
precise across trials, the ISIs within an individual spike
train are highly variable (CV near 1, results not shown).
In fact, there is a reciprocal relationship between the
ISI coefficient of variation and the spike time jitter (see
Gutkin and Ermentrout, 1998 for further discussion).
Thus, we suggest that the high CV observed in vivo
is a signature of precise spike-timing, whereas a more
regular discharge activity indicates that the neuron acts
as an oscillator.

In this report we have not considered the effect
of slower intrinsic currents, such as currents causing
spike-frequency adaptation. The latter would increase
variability as a consequence of the “forward excitabil-
ity break” proposed by Wang (1998), and change the
renewal explanation given here for the constant current
case (see Results). The simple picture we presented
is a minimal case. Our modeling conditions corre-
spond roughly to the experiments of Tang (1997) where
the slow potassium channels were blocked by acetyl-
choline. This manipulation appeared not to affect the
overall precision of a given spike-train. The slow cur-
rents may induce subthreshold resonances on the mem-
brane potential by converting Type I behavior into Type
II (as shown in Ermentrout et al., 2001). Signatures of
resonances have been shown experimentally in Aplysia
neurons (see Hunter et al., 1998). In that study, the res-
onance in spike-time jitter was shown to be directly
related to the resonant frequency of the stimulated neu-
ron. The relationship between the input frequency tun-
ing and the effects of spike frequency adaptation on the
membrane resonances remains to be investigated.

Another issue that remains to be investigated is how
the synaptic identity of the inputs affects the spike time
precision (in this report we only considered current
stimuli). Our results imply that rapid fluctuations in the
inputs are crucial for spike-time precision. Such rapid
input fluctuations could be a result of correlated bursts
of rapid excitatory synapses, e.g. AMPA receptors,
while the lower frequencies could be either due to asyn-
chronous synaptic activity or slower NMDA receptors.
Recently, Harsch and Robinson (2000) have shown that
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spike-time precision is lower for NMDA-like inputs
than for AMPA postsynaptic potentials. Furthermore,
it was shown that for each NMDA evoked burst of ac-
tion potentials the initial spikes are precise, while the
trailing spikes are imprecise. This is in agreement with
the behavior obtained in simulations with the θ -neuron
for low frequency sinusoids, where the cell fires many
spikes per stimulus cycle. Thus, the theoretical model
presented here is sufficient to give a simple explanation
of the experimental results: The initial spike in each
burst is caused by the stimulus crossing the threshold,
whereas the subsequent spikes are evoked by the intrin-
sic spiking mechanism. The resulting average precision
should then be lower for NMDA stimuli.

Another way to obtain rapid fluctuations in the in-
put current is through random activation of inhibitory
synapses. In fact, Harsch and Robinson (2000) reported
that the presence of inhibitory inputs significantly im-
proved spike-time precision. Interpreted in our frame-
work this means that the inhibitory inputs provide rapid
hyperpolarizing transients and “reset” the neuron (for
example by removing inactivation of the sodium chan-
nels and/or activation of slow potassium channels), thus
breaking the oscillatory serial dependence between
successive spikes.

In conclusion, by using the θ -neuron, we have tied
specific experimental results to a structural mathemat-
ical theory of the nonlinear dynamics of spike gen-
eration. Since the θ -neuron is the canonical model for
Type I membrane excitability, the results presented here
should apply to neural models as long as they exhibit
Type I dynamics. To which extend our results apply to
more complex neural models, e.g. those with extended
dendritic structures, voltage dependent conductances
that modulate the dynamics of spike generation and
conductance inputs, remains an interesting subject for
future investigations.
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Note

1. This follows directly from the basic properties of sums of inde-
pendent random variables: The distribution of the sum is charac-
terized by the mean, which is equal to the sum of the individual

means and the variance, equal to the sum of the individual vari-
ances. A simple example of this is the Poisson process where the
sum of several Poisson processes is just another Poisson with the
parameter (mean rate) being the sum of the individual rates (e.g.
see Cox, 1979).
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