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Abstract. The problem of alignment of cells (or other objects) that interact in
an angle-dependent way was described in Mogilner and Edelstein-Keshet
(1995). In this sequel we consider in detail a special limiting case of nearly
complete alignment. This occurs when the rotational diffusion of individual
objects becomes very slow. In this case, the motion of the objects is essentially
deterministic, and the individuals or objects tend to gather in clusters at
various orientations. (Numerical solutions show that the angular distribution
develops sharp peaks at various discrete orientations.) To understand the
behaviour of the deterministic models with analytic tools, we represent the
distribution as a number of d-like peaks. This approximation of a true
solution by a set of (infinitely sharp) peaks will be referred to as the peak
ansatz. For weak but nonzero angular diffusion, the peaks are smoothed out.
The analysis of this case leads to a singular perturbation problem which we
investigate. We briefly discuss other applications of similar techniques.

Key words: Orientation selection — Total alignment — Peak ansatz — Parallel
cells

1 Introduction: the peak ansatz

In this paper we develop a method for investigating solutions to a system of
equations that were proposed in Mogilner and Edelstein-Keshet (1995), fur-
ther called MEK (1995). We are particularly interested in sharp peak-like
solutions that develop when the effects of dispersal are very small. Such



solutions are known to occur in a number of systems of physical and bio-
logical relevance. Examples include: peaks of cell density in chemotaxis
equations (Grindrod et al., 1989) in cell-contact models (Edelstein-Keshet and
Ermentrout, 1990), and in models for individual aggregation in population
dynamics (Grindrod, 1988). Other applications include the analysis of models
for the distribution of traits (for example, dominance) in animals (see Jaeger
and Segel, 1992).

First, the technique, which we call the peak ansatz, will be illustrated on an
explicitly solvable system from the literature, and then this method will be
applied to studying behaviour of the models for angular distributions de-
scribed in the previous chapter.

The following example comes from a model for the dispersal of a popula-
tion of insects with density distribution u(x, t) given in (Grindrod, 1991) :
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Here w is the swarming velocity, and is positive if the total density ahead of
an individual is higher than the density behind it. (If the density ahead is
lower, the velocity is negative.) The parameter e is a measure of the random
dispersal of the swarm. The model is somewhat unrealistic as it assumes an
infinite viewing horizon to the front and back of an individual. However, it is
attractive mathematically, as it is an explicitly solvable case. The steady state
solution (given in Grindrod, 1991) is:
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is the total number of insects in the population.
For us the most interesting case is the case of e approaching zero, when the

solution (1.3) represents a d-like peak with width of order e. In the limit e"0,
the shape of the peak is formally a d function itself. The location of the center
of the peak, x

0
is arbitrary due to the fact that space is homogeneous. In this

particular model, the unrealistic but simple nature of w, permits the above
explicit solution to be computed. However, in many more realistic models, no
such explicit solution can be found, and then the peak ansatz can reveal the
behaviour of solutions for negligeable dispersal rates. Our approach to this
problem would be as follows:

We start with the case e"0 and find that the solution of the truncated
equation

u
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x
, (1.5)
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can be formally represented as a superposition of a few delta-like peaks, the
heights of which are constant. The locations of the peaks change due to
interaction between individuals. The only stationary stable configuration
would be that of one peak. If one now wants to take diffusion into account,
and this diffusion is slow, one can consider it as a small stochastic perturba-
tion of the quasi-deterministic processes described above. Mathematically,
because diffusion is described by a Laplacian, while the interaction terms are
algebraic or integral, we have a singular perturbation problem. (The character
of the problem changes if the small parameter e is set equal to zero.) This
situation is similar to the Fokker-Planck equation with a small diffusion term
described in Gardiner (1985). As in his treatment, we introduce a scaled
variable and try one or another perturbational expansion of the solution. One
of the approaches to this type of problem is to assume solutions of the form

u (x)"exp(!/ (x)/e) (1.6)

where e is a small parameter, and then look for an expansion of the form

/ (x)"+ en/
n
(x) . (1.7)

Our approach is similar to this, but rather than dwell on the mathematical
technicalities, we essentially consider only the first approximation in this
expansion. The idea illustrated here will be applied to studying the behaviour
of three angular-distribution models which were derived and introduced in
MEK (1995). For convenience we briefly summarize the equations in Sect. 2.

The paper is organized as follows: in Sect. 3 we demonstrate the existence
of d-like peak solutions in Model I and consider the stability of these
solutions. We investigate the shape of these peaks under the influence of small
e (i.e., weak random turning) in Sect. 4. The peak ansatz is applied to Models
II and III in Sects. 5 and 7, respectively. We investigate the profile of the
peak-like solutions of Model II at small random turning in Sect. 6. In Sect. 8
we describe the results of numerical experiments for Model I, and correspond-
ence with our analytic results. As we will show, when the rotational diffusion
of objects becomes very slow, the objects tend to gather in clusters at various
orientations. We will describe in detail the case of objects turning in two
dimensions, but the results can be generalized (as we will indicate briefly) to
three dimensions.

2 Summary of the angular distribution models

In MEK (1995) we considered three models which describe the dynamics of
angular distributions of interacting cells (or other kinds of individuals or
objects). Two of these (Models I, III) describe the redistribution of the objects
between different angles as the result of an instantaneous realignment, as if by
a jump process. In Model II the individuals turn gradually under the influence
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of forces. For completeness, we summarize the three models (in dimensionless
form) below:

Model I

G
LP

Lt
(h, t)"CK*C#PK* C!aP ,

LC

Lt
(h, t)"eDhC!CK* C!CK*P#aP .

(2.1)

where

K*C(h)"P
n

~n
K(h!h@)C(h@, t)dh@ . (2.2)

In this model, K (h, h@)"K(h!h@) is the probability of (instantaneous)
contact-induced alignment from h@ to h. We consider K(h) strictly positive and
even. We also assume that K attains an absolute maximum at h"0. In this
paper we concentrate on the 2D case, so Dh"L2/Lh2. The variables represent

C(h, t)"density of free objects oriented at angle h at time t,
P (h, t)"density of bound objects oriented at angle h at time t,
a, e are dimensionless parameters (a"c/b, e"k/b in the notation of

MEK (1995)) governing the relative rates of fragmentation of clusters and
random turning of free objects, respectively.

Model II
In this paper we also discuss a second model, Model II (in MEK (1995)) which
for the sake of convenience we write in the form:

LC

Lt
"eDhC!

L
Lh · (C(¼ *C)) , (2.3)

where

¼ *C,P¼(h!h@)C (h@, t)dh@ . (2.4)

We assume that ¼ (h) is an odd function, and that ¼(0)"¼ (n)"0,
¼(h)(0 for 0(h(n, and ¼(h)'0 if !n(h(0. The single variable
C(h, t) is the density of objects of one type at orientation h. This equation
describes the convectional drift of the objects in angular space towards the
points of highest concentration, causing alignment.

Model III
The third model which was introduced in MEK (1995) is

LC

Lt
"eDhC#C(Q (C) *C) . (2.5)

Here the integral term is defined as:

Q(C) *C"P
S

dh@¸ (C (h)!C(h@))G(h!h@)C(h@, t) . (2.6)

814 A. Mogilner et al.



The function ¸ (C(h)!C(h@)) governs the tendency for a bigger cluster to
grow at the expense of the smaller cluster. We assume that the function ¸ is
odd, monotonically increasing, and bounded. The function G describes the
angle dependence and has the same meaning and form as K in Model I. This is
a rough approximation of the process of fast turning of a small cluster of
objects towards a more slowly moving big cluster, and their final merging.

In the above three models, there are two types of elementary processes
leading to turning of the individuals: The first is random rotational diffusion,
while the second is mean turning caused by direct interaction (the mean of
a certain stochastic process). A special case occurs when rotational diffusion is
very slow compared to the interaction-mediated turning. In this case, the
random element of the models can be essentially neglected. Models I and III
have the following important feature in common: When rotational diffusion is
omitted (e"0), individuals can only ‘‘be attracted’’ to some angle by sticking
to other individuals or clusters already oriented at that angle. Thus, if there
are no individuals at some angle, none will appear there. This suggests
applying the peak ansatz and reducing the system of integro-partial differen-
tial equations (IPDE’s) of the models to ODE’s.

In the limiting case of e"0 in Model II, if a number of cells are concen-
trated at the same angle, the velocity of each individual in the group is
completely prescribed by deterministic terms in the model. Moreover, indi-
viduals at a given angle move collectively with the same velocity. This can be
represented as convection of a number of d-like peaks in the angular distribu-
tion. Contrary to the case of Models I and III, in Model II the location of the
peaks changes but the heights remain constant. Each peak has a deterministic
trajectory prescribed by a kinematic equation (which is Liouville-like). There
are a number of stable static equilibria for the ensemble of d-like peaks. In
a way, this case reduces to a problem in nonlinear classical mechanics. Again
this limiting case allows analytic treatment.

In MEK (1995) we distinguished between cases where parallel and anti-
parallel interactions were identical versus those in which only parallel interac-
tions occur. This was depicted by double humped versus single humped kernels
K. Here we will consider only one type of interaction kernel (the one-humped
case), in which objects align only in parallel. This case usually leads to the
existence of a single peak. We speculate that generalization to other kernels
would also lead to the existence of a number of stable peaks.

3 Application of the peak ansatz to Model I

Let us start with equations (2.1) of Model I and explore the behaviour of these
equations in the limit as the parameter e gets small. This means that the
angular ‘‘diffusion’’ of the population becomes insignificant compared to the
rates of the other processes. Note that the absence of diffusion does not mean
that there is no transfer of ‘‘mass’’ from one angle to another, since the
convolution terms still represent reorientation of cells due to interactions.
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(For small rotational diffusion individuals tend to maintain their directions of
motion until they make contact with another individual.)

This suggests a solution in the form of a number of d-like peaks in the
angular distribution, the location of which is constant and the heights of
which change due to exchange of individuals. The heights of the peaks are
governed by a system of nonlinear ordinary differential equations (ODE’s).

The stability properties of these peaks can be studied. It is convenient to
rewrite the model in terms of the mass at a given angle h, which is

M (h, t)"C(h, t)#P(h, t) . (3.1)

(The total mass M defined as M": M(h, t)dh is conserved and can be
considered as a parameter of the model, see MEK (1995).) Plugging the
expression P"(M!C) into (2.1) and assuming e"0, the model can be
reformulated in a more convenient form:

LM

Lt
"M(K* C)!C(K*M) ,

(3.2)
LC

Lt
"!C(a#(K*M))#aM .

(Note that while not evident from this form of the model, the positivity of
M and C is implied by the original model.) The second equation can be
interpreted in the following way: the rate of change of the total mass of cells at
a given orientation is the sum of effects of free cells attracted to that direction
minus the mass of free cells that are attracted to other directions. The
expression K* M represents the influence of the mass distribution on the
direction h. Since it appears repeatedly in these equations and their analysis, it
is convenient to use the notation

F(h),(K*M) (h) . (3.3)

Setting the time derivatives to zero we arrive at the steady state equations:

G
!C(a#(K*M))#aM"0 ,

M(K*C)"C(K*M) .
(3.4)

From equations (3.4) we can observe that

C"

aM

a#(K* M)
"

aM

a#F
. (3.5)

Further, inserting this result into the equation for M we get

M AK*
M

a#FB"M
K* M

a#F
. (3.6)

The only possible solutions to this equation are those satisfying pointwise

M"0 , (3.7)
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or

K*
M

a#F
"

K*M

a#F
. (3.8)

Here only the class of peak-like solutions will be explored:

M(h)"G
0,

+n
j/1

M
j
d (h!h

j
) ,

h N Mh
1
, . . . , h

n
N ,

h3Mh
1
, . . . , h

n
N .

(3.9)

The masses concentrated at these angles, namely MM
1
, M

2
, . . . , M

n
N

satisfy a set of n equations:

(K*M) (h
i
)"constant, h

i
3Mh

1
, h

2
, . . . , h

n
N . (3.10)

(See Appendix A.)
Note that we are not claiming that this solution is unique, as there may

also be solutions in the form of functions with an absolutely or singularly
continuous support. However, in the case of this model of a finite collection of
objects, such solutions are of lesser interest. As will be shown by numerical
simulations, these peak-like solutions evolve from a variety of initial data.

Biologically, this solution can be interpreted as the existence of a discrete
set of directions Mh

1
, h

2
, . . . , h

n
N, n"1, 2, . . . along which cells are oriented.

3.1 Reduction of Model I to discrete equations governing the peaks

In this section the peak ansatz will be applied to reducing Model I from a set
of integro-partial differential equations to a set of ordinary differential equa-
tions for the masses concentrated at a number of peaks. We will consider
individually the cases of one, two, and more than two d-like peaks. An
eventual goal is to investigate the stability of such peaks. Note that under-
standing stability to an arbitrary perturbation is a challenging problem not
here attempted. Rather, we formulate and study the equations governing
interactions between these discrete peaks, and determine whether one or more
peaks can persist. We develop here a short-hand notation for describing
various special cases.

In the equations below the following short-hand notation is used for the
probability that a cell at direction h

i
turns to direction h

j
:

K
ij
,K (h

i
!h

j
) . (3.11)

Observe that since K (h
i
!h

j
)"K (h

j
!h

i
) it follows that K

ij
"K

ji
. The

convolution in equation (3.10) is now a finite sum, rather than an integral, but
the interpretation is the same: the influence of the distribution is the same for
each value of h

i
. Thus, the steady state satisfies

n
+
j/1

K
1j

M
j
"

n
+
j/1

K
2j

M
j
" · · ·"

n
+
j/1

K
nj
M

j
. (3.12)
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The conservation of total mass must also be maintained, so that

n
+
j/1

M
j
"M . (3.13)

These steady state equations have a unique solution in the set of real numbers,
but clearly, for biological applications, only nonnegative values of the M

j
’s

are acceptable. This system does not have a unique solution if the matrix
MG

ij
N
i,j/1...n

is singular, where

G
ij
"K

ij
!K

nj
, i"1 . . . n!1, j"1 . . . n;

(3.14)
G

nj
"1, j"1 . . . n

The elements of this matrix are defined on an (n!1) dimensional parameter
space of (n!1) angles between the peaks. This matrix is singular on some
manifold of co-dimension 1 in the parameter space (Arnold, 1978), so, in
a generic case, the steady state equations (3.12—13) have a unique solution.

The amplitudes of the peaks, MM
1
, M

2
, . . . , M

n
N are fully determined by

the set of directions Mh
1
, h

2
, . . . , h

n
N given a particular choice of the kernel

function K (h), as the values of the coefficients K
ij

are defined by this set of
values. This means that not all sets Mh

1
, h

2
, . . . , h

n
N have meaningful solutions.

It can happen that an arbitrary set of directions leads to a system of algebraic
equations having one or more negative values of M

j
in its solution. This set

must then be rejected as unbiological.
Given a strictly positive solution, MM

1
, M

2
, . . . , M

n
N, the masses of the free

cells, MC
1
, C

2
, . . . , C

n
N are given by the expression

C
j
"

a

a#F
0

M
j
, F

0
"

n
+
j/1

K
ij
M

j
. (3.15)

In order to understand stability of the steady state in the general case, in
the sections below we will consider sequentially the behaviour of one, two, and
three peaks. We shall restrict attention to a limited class of perturbations
consisting of a finite number of peaks. (The analysis of the general case is
considerably more challenging.)

3.2 Stability for the case of two competing peaks

In this case all material is concentrated in two peaks located at angles h
1

and h
2
, and the amplitudes (M

1
, C

1
) and (M

2
, C

2
) define the distributions.

According to the definition of K
ij
, cells having the same orientation will be

represented by interactions

K
11
"K

22
,K

0
, (3.16)

and the interaction of cells in distinct clusters is given by:

K
12
"K

21
,K

1
. (3.17)
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Recall the assumption that K(0) represents interactions that are stronger than
at other relative orientations. This means that

K
0
'K

ij
iOj . (3.18)

Then by equation (3.12) we have for the steady states:

K
0
MM

1
#K

1
MM

2
"K

1
MM

1
#K

0
MM

2
. (3.19)

The above equation leads to the following steady state solutions:

MM
1
"MM

2
"

M

2
, CM

1
"CM

2
"

a

a#KM M/2

M

2
, (3.20)

where KM ,(K
0
#K

1
), and M is the total mass.

Now time-dependent peaks at fixed angles are considered. We start with
the properties of the stationary solution given in (3.20), namely the case of two
peaks. Since mass is concentrated only at two discrete angles, we can consider
the ordinary differential equations that describe these masses.

The total mass is conserved: MQ ,(MQ
1
#MQ

2
)"0 (where the traditional

dot notation is used here for time derivatives.) This can be put into a more
convenient form by defining the difference of masses m, as follows:

m"

M
1
!M

2
2

. (3.21)

The dynamics of the variables, m, C
1
, C

2
is given by the system

G
mR

CQ
1

CQ
2

"K
1C

M

2
(C

2
!C

1
)#m(C

1
#C

2
)D ,

"C
1A!Aa#

KM M
2 B#(K

1
!K

0
)mB#

aM

2
#am ,

"C
2A!Aa#

KM M
2 B#(K

0
!K

1
)mB#

aM

2
!am ,

(3.22)

We look for the solutions of this system in the form C
1
"CM

1
#c

1
,

C
2
"CM

2
#c

2
, m, where m, c

1
, c

2
are small perturbations from the steady state.

In Appendix B the linearized system of equations for the variables m, c
1
, c

2
will be derived, and linear stability will be investigated. It is shown there that
small deviations from the stationary steady state grow exponentially and that
therefore two peaks are unstable.

3.3 Stability for the case of a single peak

Here we formally consider two directions in order to then investigate the
stability of one peak. In the stationary state, we consider all cells concentrated
along the first direction and none of them along the second direction. Then,

MM
1
"M, MM

2
"0, CM

1
"

aM

a#K
0
M

, CM
2
"0 . (3.23)
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The stability of one peak is to be considered. As a result of small perturba-
tion, a small peak may appear in the second direction. We look for solutions
of the system (3.22) in the form C

1
"CM

1
#c

1
, C

2
"CM

2
#c

2
, m"mN #mJ ,

where mJ , c
1
, c

2
are small perturbations of the steady state (3.23) (in this case

the steady state value of mN "M/2). In Appendix C the linearized system of
equations for the variables mJ , c

1
, c

2
is considered in order to investigate linear

stability. The conclusion reached there is that one peak is stable to a perturba-
tion consisting of one other small competing peak.

3.4 The case of three interacting peaks

Two possible cases are considered, one in which the three peaks are equally
separated from each other by angles of 2n/3, and a second case in which there
are three uneven peaks.

(a) Equally spaced peaks
In this case, h

2
!h

1
"h

3
!h

2
"h

1
!h

3
"2n/3. We will denote the values of

the kernel as K(0)"K
0
, K($2n/3)"K

1
. Then it follows from (3.12—13) that

a steady solution exists provided

K
0
M

1
#K

1
(M

2
#M

3
)"K

0
M

2
#K

1
(M

1
#M

3
)

"K
0
M

3
#K

1
(M

1
#M

2
) . (3.24)

As K
0
'K

1
, the stationary solution is

M
1
"M

2
"M

3
"M/3 . (3.25)

We are not interested here in solutions having some of the M
i
’s zero, since

these cases have already been covered under the previous analysis of two and
one peaks. Then the masses at the three peaks satisfy a system of six equations
which are shown in Appendix C. The stability calculation there demonstrates
that three equally spaced peaks are unstable. As expected, the analysis of this
problem is more taxing than those of the previous cases of one and two peaks.

(b) Unequally spaced peaks
In this case h

2
!h

1
9h

3
!h

2
9h

1
!h

3
. Then there are three peaks located

at some angles which are not equally spaced. The sizes of the peaks may also
be different. This case in which the peaks are unequal and/or are located at
three arbitrary angles is analytically forbidding, and will be explored with
a limited numerical experiment.

The problem of investigating the stability of three or more peaks in this
model appears to be extremely difficult and may or may not be analytically
tractable. This problem has a full analytic solution in the case of Models II
and III. But from previous discussion it would appear that the only stable
situation is a single peak, i.e. a stationary solution in which all cells are lined
up along a single direction.
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The equations of this system are analogous to those of case (a), but
allowing for differences in the values of K(0), K (h

1
!h

2
), K (h

1
!h

3
),

K(h
2
!h

3
), since the angles need not be equally spaced. As a specific example,

the software program Mathematica for certain parameter values was used
to investigate the stability matrix. The exact values and the resulting
stability matrix and eigenvalues in that example case are shown in Appendix
C. Two of these eigenvalues are positive, so that this situation of three
uneven peaks is unstable. One of the eigenvalues is zero since
M"M

1
#M

2
#M

3
"const.

4 The form of the peaks in Model I (weak angular diffusion)

To find out more about the form of peaks in Model I before they become
infinitely sharp (when e attains the limit e"0) consider the influence of a small
but non-zero value for the random turning rate, e90, in equations (2.1) for
the distribution of free cells.

We look only for the time-independent solutions. In this case we deduce
from equations (2.1) that

P"

C(K*C)

a!(K* C)
, (4.1)

eDhC#» (C) ·C"0 , (4.2)

»(C)"
(K* C)2

a!(K*C)
!K* A

C(K*C)

a!(K*C)B . (4.3)

The presence of a small parameter as a coefficient of the second derivative
term leads to a singular perturbation problem. (See, for example, Chang and
Howes, 1984; Smith, 1987; O’Malley, 1974.) Clearly, the presence of the
Laplacian operator will cause the sharpness of the peaks to be smoothed
somewhat, depending on the value of e. The distribution of bound cells can
also be easily found with the help of expression (4.1). (In particular, it is found
that the width of the peak of P is of the same order of magnitude as the one for
the free cells.)

The unperturbed solution is taken to be a d-like peak which is non-
vanishing in the limit eP0. The solutions are asymptotically zero except at
regularly spaced points (one point in our case). In the neighborhood of such
a point the solution has a spike of finite height.

Without loss of generality, assume a peak at h"0 and CM "1. (It will
be seen that the shape of the peak can be approximated by the form
A(e)exp(!h2/p2(e).) Then p represents the width of the peak. We are
interested in how p depends on e). Since C(h) is asymptotically zero away
from h"0, the behaviour of the function »(C) is of interest in the vicinity
of h"0.
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Rescale the angular variable x"h/e1@4, and look for the solution of
equation (4.2—3) in the form S (x)"e1@4C where S obeys the following
equation:

e1@2
L2S
Lx2

#»(e1@4x)S"0 . (4.4)

Assume that S is expanded in the following asymptotic series:

S (x)"
=
+
n/0

en@4S
n
(x) . (4.5)

and that

»(e1@4x)"
=
+
n/2

en@4»
n
(x) . (4.6)

We find only the first terms in the asymptotic series for S and ». (Finding the
next term presents serious mathematical difficulties.) The equation for the first
approximation has the form

L2S
0

Lx2
#»

2
(x)S

0
"0 ,

»
2
(x)"a

1
!a

2
x2, e1@4x;1 ,

(4.7)

a
1
"bA

2
, a

2
"

b

2
, b"!a

K (0)K@@(0)

(a!K (0))2
'0 ,

A
2
"P

=

~=

x2S
0
(x)dx .

The form of the function »
2
(x) was obtained from plugging the expansion (4.5)

into the expression (4.3). Then the kernel K (e1@4(x!x@)) was expanded in
a Taylor series. After cumbersome calculations two first terms of order
e1@2 were obtained. For given coefficients, equation (4.7) is the well-known
linear equation for the harmonic oscillator in quantum mechanics, see Morse
and Feshbach (1953). There is a unique strictly positive solution to this
equation which decreases at infinity. This solution occurs under the condition

a
1
"Ja

2
.

This condition is equivalent to the expression A
2
"1/J2b. Under this

condition, the normalized solution of the nonlinear equation (4.7) is

S
0
"A

b

8n2B
1@4

expA!S
b

8
x2B . (4.8)

Calculating A
2

using the definition (4.7), and the form of the solution (4.8), we
find that

A
2
"

1

2S
2

b
"

1

J2b
.

822 A. Mogilner et al.



Thus the condition a
1
"Ja

2
is fulfilled, and so the solution is valid. The

corresponding form of the peak in the first approximation has the form:

C
0
"

1

e1@4A
b

8n2B
1@4

exp(!h2/p2), p"(8e/b)1@4 (4.9)

where b is given in (4.9).
This means that the width of the peak p (e) in the limit of slow diffusion in

Model I is small, of order e1@4.

5 Application of the peak ansatz to Model II

In this section we consider Model II in the limiting case of zero rotational
diffusion. The equation for the dynamics of the continuous angular distribu-
tion has the form

LC

Lt
"!

L(Cv)

Lh
, (5.1)

where
v"¼ *C . (5.2)

From these equations it can be seen that the angular dynamics become purely
deterministic in this case. This fact suggests that the motion of each individual
object can be followed. This is the so-called Lagrangian approach, in the
traditional terminology of theoretical mechanics in contrast to the Eulerian
approach of following behavior at a given point. Mathematically, the non-
linear equation (5.1) is hyperbolic, and the trajectories of individual objects are
given by the equations of the characteristic curves. If the equations of these
characteristics are solved, a link can be made between the two approaches.
Unfortunately, in general, nonlinear equations for characteristics cannot be
solved in closed form (Logan, 1994). For this reason, we restrict attention to
a special case whose qualitative nature can be fully described.

Let the vector describing the state of the system at a given time, t, be

X(t)"Mh
1
, . . . , h

n
N .

Here, h
i
(t) is the orientation of the ith object at time t. The number n of objects

in the system is conserved in time. (n<1). The dynamics of the i’th object is
given by the definition of its angular velocity:

dh
i

dt
"v(h

i
(t)) . (5.3)

To ensure that the former Eulerian definition of density reduces to the
Lagrangian definition, it is necessary to define the angular velocity as follows:

v(h)"P
n

~n
¼(h!h@)C (h@)dh@ ,
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where C(h) is formally defined as:

C(h)"
n
+
j/1

d(h!h
j
) .

Then the angular velocity can be written in the form:

v (h)"
n
+
j/1

¼(h!h
j
) . (5.4)

We introduce the ‘‘potential function’’ » (h),

» (h)"!P¼(h)dh . (5.5)

(The constant of integration is irrelevant, as potentials are always defined up
to some additive constant.) We also define the Lyapunov function »M (X):

»M (X)"+
(ij)

»(h
i
!h

j
) . (5.6)

(Here the summation is taken over all pairs of objects.) Now the dynamics of
the objects is governed by the following equations:

dh
i

dt
"!

L»M (X)

Lh
i

.

(Recall, that dh
i
/dt is the angular velocity proportional to the ‘‘force’’ (5.4)

which is the gradient of the Lyapunov function (5.6).) These equations can be
written in the vector form:

dX

dt
"!

L»M (X)

LX
. (5.7)

The advantage of this approach is clear from the form of the last equation.
This is now a gradient system (Gross, Hohenberg, 1993). The behavior of such
systems is much simpler than that of general non-linear dynamics. If an
attractor X

0
can be found such that the Lyapunov function »M has a global

minimum at X"X
0
, then the dynamics of the system is just relaxation

towards this attractor.
With the definition of the interaction kernel ¼(h) (see Sect. 2), the corres-

ponding potential function »(h), (5.5) has a global minimum at h"0. Note
the analogy with the following physical description: the interaction kernel
¼ corresponds to the forces between two objects. According to the definition
of the kernel, these forces are attractive. The potential » thus has a global
minimum when the distance between two objects is zero. The Lyapunov
function»M is the total potential energy of the system. Obviously, in the present
case this total energy has a global minimum when all objects have the same
orientation.
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The global attractor for our definition of the Lyapunov function
X

0
"Mh, h, . . . , hN where h is an orientation of complete alignment (arbitrary

due to rotational invariance of the system).
The above argument proves the assertion that after large enough per-

turbation the objects converge to a unique globally stable state of complete
alignment. Note that another locally stable stationary angular configuration
may exist. The biological meaning of this fact is that in nature there may be
quasi-stationary angular patterns different from total alignment.

6 The shape of peaks in Model II (weak angular diffusion)

Consider now the situation when one globally stable peak is present and
angular diffusion is weak, but not absent. As in the case of the first model, we
look for a steady state solution in the form of a single sharp peak at h"0.

Integrating equation (2.3) once with respect toh leads to the first order ODE:

e
LC

Lh
"vC, v"¼ *C . (6.1)

(The constant of integration has the meaning of flux, and is equal to zero for
periodic solutions on the circle.) Rescale the angular variable: x"h/Je and
look for a solution in the form S"JeC, where S obeys the equation

LS

Lx
"

v (Jex)

Je
S . (6.2)

We assume that the functions v and S have the following asymptotic
expansions:

v(Jex)"!

=
+
n/1

v
n
en@2xn, S"

=
+
n/0

en@2S
n
.

Here we find the first approximation S
0
. Finding the higher approximations is

a very serious mathematical problem (Gardiner, 1985) and is beyond the scope
of the present work. S

0
obeys the equation

S@
0
"!v

1
xS

0
, (6.3)

with the solution

S
0
\expA

!v
1
x2

2 B . (6.4)

The first term in the expansion for the function v can be found as follows:

v(Jex)

Je
"

1

e P
=

~=

¼(Je (x!x@))S (Jex@)dx@

"

1

e P
=

~=

¼(Je (x!x@))S
0
(x@)dx@#O(Je)

"

1

Je
¼ @ (0) P

=

~=

(x!x@)S
0
(x@)dx@#O(Je)"¼ @ (0)CM x .
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Here we used the facts that ¼ (0)"0, that :xS
0
(x) dx"0 and the definition of

CM : CM ":C(x)dx. Thus,
v
1
"!¼ @(0)CM '0 . (6.5)

(Recall that ¼ @(0)(0.) The peak solution has the asymptotic form:

C (h)"CM 3@2S
!¼ @(0)

ne
exp(!h2/p2), p"Je/(!¼ @(0))CM . (6.6)

We have shown that in the limit of slow diffusion, the width of the peak p is
small, of order e1@2.

7 Application of the peak ansatz to Model III

We discuss Model III when angular diffusion is absent (e"0). If there are
initially n infinitely narrow peaks in the angular distribution, then the redis-
tribution of individuals over various angles (i.e. the transitions of the indi-
viduals from one peak to another) is due to the integral term in the equation

LC

Lt
"C(Q (C) *C) . (7.1)

This equation describes a set of discrete peaks (say n peaks) at constant angles,
Mh

1
, . . . , h

n
N with Mc

1
(t), . . . , c

n
(t)N individuals in each peak. None can appear

in other directions due to the form of the equations. The continuous convolu-
tion in (7.1) will be represented by a discrete sum, leading to an equation of the
form

Lc
i

Lt
"c

i

n
+
j/1

¸(c
i
!c

j
)G

ij
c
j
. (7.2)

Equations (7.2) (one equation for each peak) state that the growth and decay
rates of a peak c

i
are proportional to its size. Whether this peak actually grows

or decays depends on competition with all other peaks. The growth or decay
rate of c

i
depends on the net balance of power between the i’th peak and all

other peaks.
This model has the following properties:

1. Any steady state of (7.2) is an equal subdivision of objects among
n peaks. By this we mean that c

i
"0 or c

i
"M/n. This observation is

a consequence of the fact that G is positive and follows directly from the
steady state equation corresponding to (7.2). If the peaks are not equally
sized, they continue to ‘‘pull’’ individuals away from one another, contra-
dicting the steady state assumption.

Note that G'0 and consider the steady state equation.

0"c
i

n
+
j/1

¸(c
i
!c

j
)G(h

i
!h

j
)c

j
. (7.3)
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The equation is clearly satisfied if c
i
"0 or if c

i
"c

j
"M/n for every i, j,

since then ¸ (c
i
!c

j
)"¸(0)"0. (Without loss of generality we consider all

n peaks non-zero.) This implies that equal subdivision of objects among
n groups is indeed a steady state. To show that no other kind of steady
states exist, we use an argument by contradiction. Suppose some peaks are
bigger than others. Then we can order them according to size.

c
1
7c

2
727c

n
'0 . (7.4)

Then in the steady state equation for c
1

0"
n
+
j/1

¸ (c
1
!c

j
)G

ij
c
j
, (7.5)

¸ (c
1
!c

j
)70 (since c

1
is maximal). Then (7.5) can only be satisfied if

¸"0, i.e. c
1
"c

j
for every j. Thus the presence of peaks of different sizes is

not possible at steady state, verifying our claim.
2. The steady state of (7.2) in which the population is concentrated in one peak

is locally stable. By rotational symmetry we can take i"1 to be the
direction of the single peak without loss of generality. Then c

1
"M and

c
j
"0 for all j91. Stability of the peaks c

j
, j91, is governed by the

linearized equation (7.2) reproduced here:

ds
j

dt
"s

j
¸ (!M)G

1j
M (7.6)

where s
j
is a small positive density (a perturbation from c

j
"0). But M'0,

G
ij
'0, ¸ (!M)(0, so all perturbations decay exponentially to zero

meaning that peaks whose initial masses are quite small will not get bigger.
For the initial peak in which most of the mass is concentrated, c

1
, local

stability is governed by

dc
1

dt
"M

n
+
j/2

¸ (M)G
1j

s
j
. (7.7)

Since all s
j
j91 decay exponentially to zero, this problem has a single zero

eigenvalue, indicating that c
1
"M is a locally stable solution for any value

of the total mass M, verifying the assertion.
3. All other steady states are unstable. Consider the case of n directions each

having mass M/n for which one obtains the linearized equation

ds
i

dt
"A

M

n B
2
g

n
+
j/1

G
ij
(s
i
!s

j
) , (7.8)

where g"¸@(0)'0. Directions not represented by any peak, k such that
c
k
"0, would satisfy the linearized equations

ds
k

dt
"!s

k

M

n
¸A

M

n B
n
+
j/1

G
kj

. (7.9)
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Clearly, each of these decays to zero since G
kj
'0. Thus stability of these

steady states hinges on the behavior of equations (7.8). The matrix of
coefficients of this system is symmetric and G

ij
'0. The Gerschgorin circle

theorem (see, for example, Gantmakher, 1966; Marcus and Ming, 1964)
then states that all eigenvalues lie in the interval

06j62(M/n)2g
n
+
j/1

G
ij

. (7.10)

Since n'1, the rank of the matrix of coefficients in equation (7.8) is at
least 1, and since the matrix is symmetric, not all n eigenvalues are zero.
Thus there is at least one positive eigenvalue and the equilibrium is
unstable.

Thus, in this third model, in the case of no angular diffusion, the only
distribution which is stable is one in which all individuals are in a single
cluster, having the same orientation. The problem of the form of the peak in
Model III in the case of weak angular diffusion leads to an inherently
nonlinear singular perturbation problem. The treatment of this case is beyond
the scope of this work.

Whether the peak actually grows or decays depends on competition with all
other peaks. It is interesting to observe this in numerical solutions of this
discrete model. We simulated the equation (7.2) numerically with four orienta-
tions, h

1
"0, h

2
"n/2, h

3
"n, h

4
"!n/2. We chose the specific values

G(n/2)"G(!n/2)"1.0, G(n)"G(!n)"0.05, the function ¸(c)"c, and
the initial heights of the peaks, 1.0, 0.9, 0.5, respectively. The time behavior of
this system is shown in Fig. 1. Observe that peaks 2 and 3 decay in size quite
rapidly, while 1 and 4 have a more lengthy competition. Also note that even

Fig. 1. The evolution of four interacting peaks in Model III. The fourth peak overtakes the
others which decay monotonously
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Fig. 2. The evolution of four peaks in Model III. The first peak does not interact with the
third one. Similarly the second and fourth peaks do not interact. The first and third peaks
persist while the second and the fourth ones decay

though the first peak is higher than the fourth, initially, after some time,
the fourth peak overtakes all the others and becomes the nonzero equilib-
rium, while all others decay. We have assumed in this model that all peaks
interact with each other. If, on the other hand the peaks do not interact
at some angles, then the prediction of a single equilibrium direction no longer
holds. Fig. 2 illustrates a typical case of this sort in which G(n/2)"
G(!n/2)"1.0, G(n)"G(!n)"0. We find that peaks 1 and 3 both
persist.

8 Numerical experiments for Model I

In this section we compare the predictions of the analysis of Sections 2—4 with
a few numerical experiments, in which equations (2.1) were simulated, starting
from an initial situation in which a number of peaks were present. (A set of
three roughly equally spaced peaks, shown dashed in Fig. 3, was used.)
Simulations were carried out by methods described in (Edelstein-Keshet and
Ermentrout, 1990). Angular space 0(h(2n was discretised into 20 grid
points, and a time increment of Dt"0.05 was used. The equations were
discretized and convolutions as well as the Laplacian were formulated in
explicit (forward differencing) scheme. The results give a good qualitative
description of the model.

We started with a kernel which had a single hump and was strictly positive
for all h, K (h)"1.5#cos h. This means that there are interactions between
cells at all angles. Figure 3 shows how at weak diffusion, a single narrow peak
evolves from a set of three small peaks.

Selecting a common direction. II 829



Fig. 3a, b. We simulate the evolution of peaks for Model I. Development of an initial
distribution (dashed lines ) consisting of three small peaks under the dynamics predicted by
the model (2.1). Shown is the density of bound cells only. (The density of free cells is quite
similar, but of different magnitude.) The turning due to cell contact is here based on a strictly
positive, single humped kernel K (h)"1.5#cos h. The discretised equations were simulated
for b"c"0.3, e"0.001, Dt"0.05 for a the first 150 time units, b the next 150 time units.
A single peak forms, and stabilizes

Next, in Fig. 4, the results of a simulation using a kernel with one hump
which is nonzero for a finite range, smaller than 2n are shown. The form of the
kernel is

K(h)"G
cos h

1.11
, if !1.74(h(1.74 ,

0, otherwise .
(8.1)
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Fig. 4. As in Fig. 3 but with a single-humped kernel of the form (8.1) which is nonzero only
on a compact set. Two peaks persist. All parameters and conditions were the same as
in Fig. 3

(The range of influence was taken to be 100°.) It can be seen that two out of
the initial three small peaks are absorbed into one large peak, and the
remaining small peak separately grows into a smaller final peak. In this
degenerate situation though two unequal peaks are not stationary (see Sect. 3),
their rate of equalization becomes small. Therefore, in practice, two peaks of
unequal size can become meta-stable (non-stationary but long-lasting).

In Fig. 5, the range of the kernel was decreased to 55°. The form of the
kernel in this case was:

K (h)"G
cos h

0.61
, if !0.96(h(0.96 ,

0 , otherwise .
(8.2)

In this case, three meta-stable peaks grow in positions identical to those of
the three small peaks. The explanation for this phenomenon is that due to the
narrow kernel, the peaks have a minimal interaction with one another. This
was not true in the previous simulation, where the tails of the peaks were
separated by an angle smaller than the effective range of interaction. Note that
the peaks are not of the same height.

In Fig. 6, we explore the same situation as in Fig. 5, but with a larger
diffusion coefficient (e"1). The initial peaks apparently start to communicate
as a result of increased diffusion and, finally, a single peak evolves.

In Fig. 7 a double-humped kernel K(h)"1.5#cos(2h) is used. In the case
of small diffusion two unequal meta-stable peaks evolve at a relative angle n.
Though these peaks are non-stationary (as it was shown analytically in
Sect. 3), the diffusion is so small that exponentially small growth rate does not
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Fig. 5. As in Fig. 4, but with a kernel whose range is 55°. (See text for the exact form.) Note
that now all three initial peaks can grow and coexist, since their interaction (mainly through
angular diffusion) is very weak

Fig. 6. Same as Fig. 5, but with an increased rate of diffusion, and simulated for longer time.
e"1.0, 750 time units. Increased diffusion enhances the interactions of the peaks, and leads
to the above situation

provide a sufficiently strong equalizing effect on the two peaks, in real time.
Note, that the angle between the peaks in this experiment is as that predicted
analytically. This is the consequence of an effective communication between
the peaks during formation period.
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Fig. 7a, b. We used a double-humped kernel K (h)"1.5#cos 2h, and diffusion rate
e"0.001. a after 150 time units, b the next 150 time units. Two unequal peaks evolved.
Because the diffusion is so small, the peaks do not essentially communicate with one
another

In Fig. 8 we have the same case as in Fig. 7, but with much larger diffusion.
Evolution of two equal peaks at a mutual angle n can be clearly seen, as will be
mentioned in the discussion. Note that diffusion in this case is much larger
than in the previous cases, providing effective communication between the

Selecting a common direction. II 833



Fig. 8. Similar to Fig. 7, but with large diffusion, e"1. Two peaks at relative angle n evolve.
Their heights are gradually equalized by the rotational diffusion. (Here shown up to 750
time units)

peaks at all times. It is seen that the evolved peaks are slightly uneven as the
relaxation time is very long.

The results indicate that if the kernel is effective only at a finite range (as in
the case of Figs. 4 and 5) then in reality, a few metastable peaks will evolve at
small diffusion. The lifetime of the peaks will be larger than the timescale of
most realistic experiments. In real situations, this implies the possible exist-
ence of a few different directions of alignment.

9 Discussion

The cases considered in this paper all pertain to phenomena in which indi-
viduals achieve strong alignment with one another. This stems from the fact
that interaction terms dominate over random rotation. The alignment is an
active one, stemming from forces, rather than a result of packing constraints
due to crowding. This does not imply that all individuals align in the same
direction. They can be distributed among a few directions, depending on
symmetry features of the interaction terms. The actual directions along which
alignment occurs are arbitrary (unless we incorporate some bias due to
external influences), but the relative angles of separation of two or more peaks
result from the interactions. These results imply that mild non-homogeneities
in the angular distribution occurring close to bifurcation (see MEK, 1995)
evolve into peaks. The number of the maxima of the weakly non-homoge-
neous distribution is equal to the number of peaks in the limiting case of this
paper.
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We explored three distinct models for alignment in which turning was
instantaneous (Model I, III) and gradual (Model II). In Models I and III
a number of peaks of constant location and variable heights was found but the
only stable configuration consists of a single peak. This fact is established
definitively for Model III and in a few simple cases in Model I. For Model II,
peaks of constant heights appear, and gradually drift towards each other, and
finally converge into a single peak. To place these results into a biological
context, recall that the angular densities represent concentrations of filaments
(e.g. actin) or cells (e.g. fibroblasts) at various orientations. In Models I and III,
these objects cluster at several directions, but small fragments are exchanged,
so that one or another of the clusters grow and eventually win over the
others. In Model II, clusters are gradually ‘‘pulled’’ by one another, so that,
eventually, all have the same orientation.

It follows from the qualitative theoretical reasoning in this paper that the
case of weak angular diffusion is characterized by a hierarchy of times in the
dynamics of alignment. One may speculate that first, on a relatively short
timescale of order 1, an ‘‘initial’’ configuration of peaks evolves from the initial
distribution. Then these peaks undergo slow evolution, changing their loca-
tion and heights on an exponentially large timescale (i.e. exp(1/e)). (The proof
of this assertion is one of the goals of future research.) The important fact for
applications is that this large timescale can be comparable, or even larger,
than the characteristic biological times. In this case, the system just does not
have ‘‘enough time’’ to reach a globally stable configuration. Thus, it may
happen that the system aligns, but that the type of alignment seems to depend
on initial conditions. There is an analogue to this scenario in small noise
perturbation theories (Gardiner, 1985). There, also a hierarchy of relaxation
times in the system appears. The connection is that the Fokker-Planck
equation with small diffusion is considered there, and the smallness of the
diffusion results in this hierarchy.

The nonlinearity of the problem results in great difficulty in preforming
a full treatment of the singular perturbation problem. Even the enumeration
of all possible equilibria in the non-perturbed model is challenging. For this
reason, we do not try to construct the full perturbational expansion and
consider only the first approximation. In this approximation we have esti-
mated the width of the peaks (see (4.9, 6.6)). We are not aware of theorems on
the existence and uniqueness of solutions (or of Lyapunov functions) for
Models I and III.

This nonlinearity makes the problem of the stability of the peak ansatz
solution problematic. It is not clear how to prove global stability. Moreover,
analytically only the local stability to shifts of the peaks, and their splitting can
be checked. Theoretically, other perturbational modes may exist, breaking
the stability of the peaks. However, there is a posteriori strong evidence
for the stability of the peak solutions from numerical experiments. Further,
there is no proof that the peak solutions are in a basin of attraction (with
respect to most initial conditions), but again, numerical experiments point to
this fact.
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Finally, we briefly describe expected results on first, parallel alignment due to
a double-humped kernel and, second, orthogonal alignment that occurs in Model
I for kernels representative of the alignment of actin filaments in the cytoskelleton
of the cell (see Civelekoglu and Edelstein-Keshet, 1994; MEK, 1995).

Case a: Parallel alignment. In this case we expect that the only stable
situation is two equal peaks at relative angle of n in 2D (see Fig. 8) and
similarly antiparallel in 3D.

Case b: Orthogonal alignment. It is natural to assume, based on our
experience with the single and double humped kernels, that an even, non-
negative double humped kernel having humps at !n/2 and n/2 leads to
orthogonal alignment. (Alignment occurs along angles where the kernel has
maxima). We expect in this case the formation of four equal and mutually
orthogonal narrow peaks. In the 3D case, in the limiting case of weak
diffusion, eP0, six equal, mutually orthogonal narrow peaks evolve from the
corresponding bumps. In the most convenient case, when one of the peaks is
located at the pole, their location is given by the set of coordinates M/"0N,
M/"nN, M/"n/2; h"0, n, !n/2, n/2N.

It is plausible that the stable configurations of peaks in 2D and 3D
situations described above in the weak diffusion limit are the only stable ones.
The stability analysis of the other configuration, however, is too complicated.

Appendix A: calculations for the peak ansatz

Derivation of equations (3.2). Plugging the expression P"(M!C) into the
dimensionless equation for C (the first equation in (2.1)) and assuming e"0,
we obtain

LC

Lt
"!C(K*C)!C(K* M)#C (K* C)#a (M!C)

"C(a#(K* M))#aM . (A.1)

Plugging P"(M!C) into both equations (2.1) and adding leads to

LM

Lt
"

LP

Lt
#

LC

Lt

"P(K* C)!C(K*P)

"M(K*C)!C(K*C)!C(K* M)#C (K* C)

"M(K*C)!C(K*M) . (A.2)

Proof that F(h) is constant. The aim now is to show that F (h) defined in (3.3) is
a constant, i.e., that F(h

1
)" . . ."F (h

n
) where h

1
. . . h

n
are the angles at

which M90. We argue by contradiction: Suppose that F (h) is not constant.
Then there is some angle h

1
such that

F
1
,F (h

1
)'F (h) , (A.3)
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for all h9h
1
. Then from equation (3.8), it follows that

F
1
"

n
+
j/1

a#F
1

a#F (h
j
)
K (h

1
!h

j
)M(h

j
) . (A.4)

But on the right hand side, the ratio

a#F
1

a#F(h
j
)
'1, j91 . (A.5)

But then since
K (h!h

j
)'0 ,

(A.6)
M(h

j
)'0 ,

the right hand side of the above sum is greater than the expression

n
+
j/1

K(h
1
!h

j
)M (h

j
),(K* M) (h

1
),F

1
. (A.7)

Thus we have F
1
'F

1
which is a contradiction, and therefore it must follow

that F (h) is constant at the steady state.

Appendix B: stability of two peaks

The linearized system of equations for the perturbations c
1
, c

2
, m has the form:

G
mR "2K

1
CM m!

K
1
M

2
c
1
#

K
1
M

2
c
2
,

cR
1
"(a#CM (K

1
!K

0
))m!Aa#

MK

2 B c
1
,

cR
2
"!(a#CM (K

1
!K

0
))m!Aa#

MK

2 B c
2
,

(B.1)

where CM "CM
1
"CM

2
. We rewrite the system of equations (B.1) in the vector

form
qR "Aq . (B.2)

where

q"A
m

c
1

c
2
B , A"A

b !d d

f e 0

!f 0 e B (B.3)

and where
b"2K

1
CM ,

d"
K

1
M

2
,

(B.4)
f"(a#CM (K

1
!K

0
)) ,

e"!Aa#
KM M
2 B ,
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Then a simple calculation reveals that the characteristic equation
associated with the above matrix is

detMA!jIN"(b!j) (e!j)2#df (e!j)#df (e!j)

"(e!j) [(b!j) (e!j)#2df ]

"0 . (B.5)

Thus one of the eigenvalues, j
1

is simply j
1
"e"!(a#KM M

2
)(0 and the

other two satisfy the quadratic equation

[(b!j) (e!j)#2df ]"0 . (B.6)

An elementary calculation reveals that

j
'

"

1

2l
(k!l2#J(k!l2)2!4kl@l ) , (B.7)

where

k"K
1
aM, l"a#

KM M
2

, l@"
(K

1
!K

0
)M

2
. (B.8)

Since K
1
(K

0
, l@(0, and !kl@l'0, it follows that at least one of the

eigenvalues is positive. Thus, small deviations from the stationary steady state
grow exponentially and two peaks are hence unstable.

Appendix C: stability of one peak

We now consider the stability of one peak. The linearized system of equations
for the perturbations mJ , c

1
, c

2
has the form:

G
mJQ
cR
1

cR
2

"K
1
CM mJ #K

1
Mc

2
,

"(a#CM (K
1
!K

0
))mJ !(a#K

0
M)c

1
,

"!amJ !(a#K
1
M)c

2
.

(C.1)

If we rewrite these in the vector form

qR "Bq ,

where q is the column vector (mJ , c
1
, c

2
) then the matrix B is

B"A
b 0 d

e g 0

f 0 h B . (C.2)

Here

b"K
1
CM ,

d"K
1
M ,

e"a#CM (K
1
!K

0
) ,

g"!(a#K
0
M) ,
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f"!a ,

h"!(a#K
1
M) . (C.3)

We now find that the characteristic equation is

detMB!jIN"(b!j) (g!j) (h!j)!df (g!j)

"(g!j) [(b!j) (h!j)!df ]

"0 . (C.4)

Thus j
1
"g(0 is one eigenvalue, and the others are solutions of the quad-

ratic equation
j2!(b#h)j#(bh!df )"0 . (C.5)

This leads to

j"1
2
((b#h)$J((b#h)2#4(df!bh))"1

2
[!c$Jc2#4m] , (C.6)

where

c"#a#
K

1
K

0
M2

(a#K
0
M)

'0 , m"
aK

1
M2

(a#K
0
M)

(K
1
!K

0
)(0 . (C.7)

As c'0, and m(0, both eigenvalues are negative. So one peak is stable to
small perturbations which would tend to decrease it in favour of another peak.

Appendix D: stability of three peaks

The masses at the three peaks satisfy the system of equations:

G
MQ

1
MQ

2
MQ

3
CQ

1
CQ

2
CQ

3

"K
1
(M

1
(C

2
#C

3
)!C

1
(M

2
#M

3
)) ,

"K
1
(M

2
(C

1
#C

3
)!C

2
(M

1
#M

3
)) ,

"K
1
(M

3
(C

1
#C

2
)!C

3
(M

1
#M

2
)) ,

"!C
1
(a#K

0
M

1
#K

1
M

2
#K

1
M

3
)#aM

1
,

"!C
2
(a#K

0
M

2
#K

1
M

1
#K

1
M

3
)#aM

2
,

"!C
3
(a#K

0
M

3
#K

1
M

1
#K

1
M

2
)#aM

3
.

(D.1)

A stability calculation in the case of these equations now leads to the 6]6
matrix

A
2b !b !b !2f f f

!b 2b !b f !2f f

!b !b 2b f f !2f

d !b !b !e 0 0

!b d !b 0 !e 0

!b !b d 0 0 !e
B (D.2)
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where

b"K
1
CM ,

f"K
1
M/3 ,

d"a!K
0
CM ,

e"a#KM M/3 ,

(D.3)

and where KM "K
0
#K

1
#K

1
, CM "(aM/3)/(a#KM M/3). Observe that this

matrix has a block structure,

A
2b !b !b !2f f f

!b 2b !b F f !2f f

!b !b 2b f f !2f

2 2 2

d !b !b !e 0 0

!b d !b F 0 !e 0

!b !d d 0 0 !e
B (D.4)

or,

A
A F B

2 2 2

C F D B (D.5)

where A, B, C, D are 3]3 matrices and D is diagonal. This fact is useful since it
permits us to use a fact from matrix theory, namely that

det A
A F B

2 2 2

C F D B"det(AD!BC) . (D.6)

The eigenvalues of the block matrix can then be calculated by letting

A@"A!jI ,
(D.7)

D@"D!jI ,

in the matrix (A@D@!BC), with the result

(A@D@!BC )"A
s k k

k s k

k k s B , (D.8)

where
s"!(e#j) (2b!j)#2f (d#b) ,

(D.9)
k"(e#j)b!f (d#b) .
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This leads to

det(A@D@!BC )"(k!s) [2k2!ks!s2] . (D.10)

The equation
2k2!ks!s2"0 , (D.11)

has four roots, and the case (k"s) gives two roots. An expanded form of this
last equation is

j2#(e!3b)j#3( fb#fd!eb)"0 . (D.12)

The roots of this equation are given by the expression:

j"1
2
(!(e!3b)$J(e!3b)2#4q (D.13)

where q"K
1
MCM (K

0
!K

1
)'0. Thus at least one of the eigenvalues is

positive, and three equal, evenly spaced peaks are unstable.

Three unevenly spaced peaks
As a specific example, we took the following arbitrary values, for the param-
eters: K(0)"6, K(h

1
!h

2
)"2, K (h

1
!h

3
)"3, K(h

2
!h

3
)"4, MM

1
"10,

MM
2
"9, MM

3
"4. Then KM"90. We assume a"10, then CM

1
"1, CM

2
"0.9,

CM
3
"0.4. Using the software Mathematica we found that in this case the 6]6

stability matrix has the form

A
3 !2 !3 !30 20 30

!1.8 3.6 !3.6 18 !36 36

!1.2 !1.6 6.6 12 16 !66

4 !2 !3 !100 0 0

!1.8 4.6 !3.6 0 !100 0

!1.2 !1.6 7.6 0 0 100
B .

Further, the six eigenvalues of this matrix are:

j
1
"

j
2
"

j
3
"

j
4
"

j
5
"

j
6
"

!92.74 ,

!96.92 ,

2.05 ,

0.00 ,

0.81 ,

!100.0 .

(D.14)

Two of these eigenvalues are positive, so that this situation of three uneven
peaks is unstable. Notice that one of the eigenvalues is zero since
M"M

1
#M

2
#M

3
"const.
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