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Abstract. We investigate the polymerization kinetics of rod-like poly-
mer "laments interacting with a distribution of monomer in one spatial
dimension (e.g. along a narrow tube). We consider a variety of possible
cases, including competition by the "lament tips for the available
monomer, and behaviour analogous to &&treadmilling'' in which the
polymer adds subunits to one end and loses them at the other end so as
to maintain a constant length. Applications to biological polymers
such as actin "laments and microtubules are discussed.
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1. Introduction

The mathematical models described here arose as a result of our
investigations into the polymerization kinetics of rod-like biological
polymers such as actin and microtubules. Elsewhere, we have discussed
how the addition or loss of monomers can in#uence the length distri-
bution of a collection of polymer "laments (Edelstein-Keshet and
Ermentrout, 1998; Ermentrout and Edelstein-Keshet, 1998). This pa-
per focuses on how polymerization can in#uence the spatial distribu-
tion of the "laments.

For simplicity, we focus on a one-dimensional situation, in which
all the polymers are aligned. Di!usional motion of the "laments



decreases rapidly as the "laments grow. Further, in biological exam-
ples, "laments are often tethered to each other or to other structures.
Thus, we will ignore any relative motion of "laments and consider only
polymerization and monomer di!usion in one dimension.

In many of the biological polymers, actin and tubulin included, the
two ends of the polymer have distinct polymerization kinetics. Gener-
ally, one end grows considerably faster than the other. In actin, the
barbed end (also called plus end) has faster kinetics than the pointed
end (minus end). A similar situation holds for microtubules. Generally
these biological polymers are oriented with the fast growing end
pointed towards the membrane of the cell. This discrepancy in the
kinetics is taken into account in our models.

To investigate the behaviour of the rod-like polymer in the pres-
ence of monomer we consider a variety of limiting cases, including
those in which di!usion of the monomer is very fast. It is found that the
presence of boundaries and conditions at the boundaries can a!ect the
type of behaviour that is seen. Interpretation for the biological cases is
considered.

Much of the discussion would apply in the general case of 1-D
rod-like polymers. We have adopted some of the terminology used for
actin for convenience of the notation, which is summarized below.

2. Glossary of parameters

A Total amount of polymer in all forms
a(x, t) The concentration of monomer at position x and time t
k`
b

Polymerization rate constant for the fast growing &&barbed'' end
of "lament

k~
b

Depolymerization rate for the fast growing &&barbed'' end of
"lament

k`
p

Polymerization rate constant for the slow growing &&pointed''
end of "lament

k~
p

Depolymerization rate for the slow growing &&pointed'' end of
"lament

a
b

"k~
b

/k`
b

Critical concentration for barbed end
a
p

"k~
p

/k`
p

Critical concentration for pointed end
l The incremental length of a polymer added by a single mono-

mer
c The change in monomer concentration resulting from growth

of a "lament
n Number of "laments in a "lament bundle
x
b
(t) Position of a barbed end of a "lament
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Fig. 1. The 1D geometry assumed in the models below: all polymer "laments are
assumed to be rod-like, aligned along a common axis, and with the fast-growing ends
of the polymer (represented as &&barbed ends'' in the diagram) pointing towards the
positive x axis. (The barbs are only meant to distinguish front from back; we are not
considering branched polymers.)

x
p
(t) Position of a pointed end of a "lament

l(t) Length of a polymer "lament
x
c
(t) Position of the center of mass of a polymer "lament

r
b
(t) Net rate of polymerization at the barbed end of a "lament

r
p
(t) Net rate of polymerization at the pointed end of a "lament

v
b
(t) Apparent rate of motion of the barbed end of a "lament

v
p
(t) Apparent rate of motion of the pointed end of a "lament

3. The model equations

Consider a single "lament or a bundle of n "laments with their ends at
the same position along the tube axis. (See Fig. 1, but consider the case
that the pointed ends have the same x coordinate, and similarly for the
barbed ends.) Let x

b
(t) and x

p
(t) be the spatial coordinates of the barbed

and pointed ends, respectively, at time t. The ends will appear to move
as monomer polymerization or dissociation occur. The apparent velo-
city (v

b
, v

p
) of these ends will be:

dx
b

dt
"v

b
"lr

b
"l (k`

b
a (x

b
, t)!k~

b
), (1)

dx
p

dt
"v

p
"!lr

p
"l (k~

p
!k`

p
a(x

p
, t)) , (2)

where a stands for the concentration of monomer at the prescribed
position. A convenient unit to use for distances such as x

i
is the

micron (k). To convert number of monomer subunits added or lost to
the net elongation or shortening by a physical distance, we use the
factor l, which represents the length per monomer.
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When the monomer concentration is "xed, the equations describ-
ing the motion of the polymer ends are uncoupled and can be solved
independently. When this is not the case, the equation for the monomer
is a di!usion equation with sources and sinks at the ends of the
polymer bundle.

La
Lt

"D
L2a
Lx2

!cn [d (x!x
p
)v

p
#d (x!x

b
)v

b
]. (3)

Here n is the number of "laments in the bundle (so that n d (x) has
dimensions of tips per unit length) and c is a constant that converts
elongation of the "laments to a corresponding net change in the
monomer concentration. c depends on the dimensions of the tube since
this a!ects how much monomer is available per unit length of the tube.
It also depends on the size of the monomers, since we need to convert
lengths of polymerization to number (and thus concentration) of
monomers. For a tube of cross-sectional area A,

c"
1

glA
. (4)

where g converts the concentration (given in lM) to monomers per k3.
(One "nds that g"602.) See the Appendix for the details and dimen-
sional consistency of this formulation. Since polymerization is assumed
to occur at the ends, the "laments only interact with the monomer
pro"le at x

p
and x

b
.

There are other equivalent ways of presenting the model. From the
units for the polymerization rate constants, it is apparent that certain
ratios of parameters play a role in determining the balance between
growth and shortening of a polymer. The following ratios have units of
concentration

k~
b

k`
b

"a
b
,

k~
p

k`
p

"a
p
.

These are called the critical monomer concentrations for the barbed
and pointed ends, respectively. We observe that equations (1) and (2)
can be rewritten in terms of these as follows:

dx
b

dt
"lk`

b
(a(x

b
, t)!a

b
), (5)

dx
p

dt
"lk`

p
(a

p
!a (x

p
, t)). (6)
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We also note that the problem can be treated from the point of view
of the "lament as a whole, namely its length, l(t) and the position of
its center of mass, x

c
(t). The formulation of the model in terms of

(x
b
(t), x

p
(t)) or (x

c
(t), l(t)) is interchangeable, but the equations are

simpler in the former variables. We discuss the alternate formulation in
the Appendix.

4. Fixed monomer distribution

As a "rst step, consider what happens if the monomer pro"le is
arti"cially held "xed, with time-independent pro"le a (x). Suppose
a single "lament is caught in this monomer pro"le. Then the equations
for the positions of the "lament ends can be solved in closed form.

4.1. Conditions for an immobile, static xlament

The "lament will appear to be "xed if the net rates of growth at each of
the ends is zero (r

b
"r

p
"0) i.e., if the monomer concentration at each

end matches the given critical concentration at that end,

a(x
b
)"a

b
,

a (x
p
)"a

p
.

For the above conditions to be satis"ed, the graph of the function
a(x) must intersect the values a"a

p
and a"a

b
. With the given choice

of coordinate system (barbed end towards the positive x axis), the
intersection of a(x) with the value a

b
must be to the left of its intersec-

tion with a
p
. For a "xed stable "lament we must also impose conditions

on the slope of the function a(x) at the two endpoints. Consider a small
perturbation which adds monomers to one of the ends of the "lament.
If this now places that end in a higher concentration, it will leave its
equilibrium position and grow in length. The "lament will be both
"xed and stable, provided:

a@(x
b
)(0,

a@ (x
p
)'0.

(The inequalities are opposite because polymerization at the pointed
end leads to elongation in the negative x direction.) See Fig. 2 for
a sketch of the appropriate con"guration. For a smooth pro"le, the
above conditions imply that a stable "lament whose length and posi-
tion are "xed would exist in a region in which the monomer pro"le has
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Fig. 2. A monomer pro"le which gives rise to a "xed "lament length. The barbed ends
and pointed ends must each be centered at their respective critical monomer concen-
tration and the slope of the monomer gradient must be such that each tip is stable.

a local maximum. The length of the "lament is then determined by the
positions at which the monomer pro"le intersects the two critical
levels.

4.2. Conditions for an elongating xlament with xxed center of mass

A "lament will appear to grow (or shrink) from a "xed center of mass
when the rates of polymerization at the two ends are identical, i.e.

r
b
"r

p
.

Letting l"x
p
!x

b
, (and taking the center of mass of the "lament to

be at the origin, x
p
#x

b
"0, without loss of generality), we "nd

k`
b

a(l )!k~
b
"k`

p
a(!l)!k~

p
. (7)

In the Appendix we show that if this is to hold for all l, and if the
monomer pro"le is &&very smooth'' (i.e. the function a(x) is analytic)
then this situation can only occur in a spatially uniform monomer
distribution whose level is

a"A
k~
b
!k~

p
k`
b
!k`

p
B . (8)

(In the case of actin, whose rate constants are given in a later sec-
tion, this level is roughly 0.06 lM, which is smaller than the critical
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concentrations for both ends, so that the "lament will be depolymeriz-
ing, and will disappear.)

4.3. Conditions for treadmilling

&&Treadmilling'' refers to the situation in which monomers are added at
one end (the fast growing end) at the same rate as they are lost at the
other (slow growing end). The length of the "lament does not change,
but the "lament appears to move forward. This happens when

r
b
"!r

p
.

Two cases can be considered:

1. Filaments of every length treadmill: In this case, equation (7) must
hold for every length l. By using a Taylor expansion, we show in the
Appendix that this situation can occur only if the monomer pro"le
is uniform, and has the level

a"A
tread

,A
k~
b
#k~

p
k`
b
#k`

p
B . (9)

This constant monomer pro"le is the so-called treadmilling concen-
tration (Wegner, 1982; Wanger et al., 1985; Kirschner, 1980; Selve
and Wegner, 1986).
The treadmilling rate is then given by

v
tread

"k`
b

A
tread

!k~
b
"k~

p
!k`

p
A

tread
"A

k`
b
k~
p
!k~

b
k`
p

k`
b
#k`

p
B . (10)

2. Only a speci5c length 5lament would treadmill: In this case, we ask
whether for some speci"c value of l and corresponding monomer
pro"le, a treadmilling solution is possible. The answer is positive,
and we give further details of the monomer pro"le that results in the
Appendix. We "nd an analytic expression that connects the "lament
length to the speci"c monomer pro"le that permits it to treadmill.

4.4. Treadmilling xlament in equilibrium with xxed total pool

Now suppose that the total amount of the substance in all forms
(monomers plus polymer) is "xed, and the monomer di!uses so rapidly
that its spatial distribution is uniform. (This is a spatially independent
case.) The connection between the monomer concentration a, (in
micromolar concentration units, kM), the total amount of substance
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in all forms, A (in kM) and the total length of polymer (expressed in
micrometers, k), is then given by the following conversion factor:

a"A!cl,

where c is the conversion factor previously de"ned in equation (4). The
total length l of the "lament (or bundle) satis"es

dl
dt

"l ( (k`
b
#k`

p
)a!(k~

b
#k~

p
))

"l((k`
b
#k`

p
) (A!cl )!(k~

b
#k~

p
)) .

Setting dl/dt"0 and solving for l we "nd that the steady state length
of polymer is

l
ss
"

1
c AA!

k~
b
#k~

p
k`
b
#k`

p
B"

1
c

(A!A
tread

).

For the treadmilling steady state to occur, we must have A'A
tread

.
Further, it can be seen by simple substitution that a"A!cl

ss
"

A
tread

, i.e., the monomer level adjusts to match the treadmilling concen-
tration. The rate of motion is then the treadmilling velocity, given
previously in equation (10).

Based on the above, we can make the following observations:

f The rate of motion is independent of the total amount of
substance, A.

f The total amount does, however, select the stable length of the
treadmilling "lament or "laments.

f Free monomers equilibrate at the treadmilling concentration. Any
surplus of monomer is captured inside the "lament.

f The rate of treadmilling can be a!ected by changes in the rate
constants. Increasing k`

b
or k~

p
will increase the speed of motion.

f Exactly the same results are obtained if there are n "laments in some
bundle whose total length is l rather than just one "lament. The rate
of motion is the same as before, the monomer concentration is the
same, and the calculations hold exactly as before.

5. Treadmilling polymer bundle using up monomer

Dropping the assumption of a static monomer pro"le, we consider the
dynamics of a single "lament (or a "lament bundle consisting of
n "laments with tips together), &&swimming'' in a long 1D tube of
monomer &&fuel''. The di!usion of monomer along the tube and its
decay and production at the tips of the polymer is explicitly considered.
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We assume that the tube is &&in"nitely long'' with monomer held
at a "xed concentration, a, at the two ends of the tube. We ask under
what conditions the "lament can treadmill at constant velocity, v,
and how it would use up the monomers around it. Essentially, we look
for a travelling wave solution to the full model, given by equations
(1), (2), and (3).

As described above, the treadmilling case in which barbed and
pointed ends are moving in the same direction with the same speed, i.e.
v
b
"v

p
"v corresponds to a "lament of constant length (say l ) moving

at constant velocity, v. We do not a priori specify the length of the
"lament or the treadmilling rate: these are to be predicted by the
model. The boundary conditions are

a (x, t)Pa for xP$R.

We look for travelling wave solutions with speed v. Transform coordi-
nates by setting z"x!vt. Note that if we start with x

b
"0 at t"0,

we get from the last two equations above:

x
b
"vt,

x
p
"vt!l.

Thus,
x!x

b
"x!vt"z,

x!x
p
"x!vt#l"z#l.

Letting A(z)"a(x, t) be the monomer pro"le in the moving coordi-
nate system, and using the above identities in the equation for the
monomer concentration, we arrive at:

!vA
z
"DA

zz
# cn[vd (z#l )!vd (z)].

Integrating once, we obtain

!vA"DA
z
# cn[vH (z#l)!vH(z)]#C,

where H is the Heaviside step function, and C is a constant of integra-
tion. In order to satisfy the boundary conditions, (APa , A

z
P0 for

zP$R) we set C"!va. The resulting equation is

DA
z
"ncv (a!A)#ncv (H(z)!H(z#l )).

This is a "rst order, linear ordinary di!erential equation with a discon-
tinuous forcing term that turns &&on'' at z"!l and turns &&o! '' again
at z"0. We can solve this equation by integrating separately over
each of the three regions z(!l, !l(z(0, z'0 and matching
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Fig. 3. A typical monomer pro"le in the case of a treadmilling "lament consuming the
monomer as it moves in one dimension. The explicit solution given by equations (11) is
shown here with all constants set to unity (v"D"a"l"c"1). The barbed end of
the "lament is at z"0 and the pointed end at z"!1. The "lament would move in the
positive x axis, carrying with it this monomer pro"le.

the three solutions by imposing continuity at the points z"!l, z"0.
When this is done, we arrive at the solution

A(z)"G
a z(!l,

(a!1)#e~ncv (z`l)@D !l(z(0,

a!(1!e~ncvl@D ) e~ncvz@D z'0

(11)

The above solution reveals that the monomer pro"le is essentially
&&#at'' at the back of the "lament: the pointed end replenishes mono-
mers by continual depolymerization. At the barbed end, there is
a depression in the level of monomers due to consumption. The
predicted monomer pro"le is shown in Fig. 3.

We can determine the velocity and length of the "lament from the
values of the monomer concentration at the ends of the "lament:
A(!l )"a, and A(0)"a!(1!exp (!ncvl/D)). The velocity of
treadmilling is given by the following two expressions, which must
match to produce equal velocities at these two ends:

v"v
p
"(k~

p
!k`

p
A(!l))l"(k~

p
!k`

p
a)l, (12)

v"v
b
"(k`

b
A (0)!k~

b
)l"(k`

b
(a!(1!e~ncvl@D ))!k~

b
)l. (13)

From the "rst expression, we obtain a formula for the speed of
treadmilling as a function of the supplied actin monomer level (but see
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the restrictions on this level below). Setting the two expressions equal
and solving for the length l, we "nd that

l"
D
ncv

ln U, (14)

where

U"A
k`
b

k`
b
#(k~

p
#k~

b
)!a(k`

p
#k`

b
)B . (15)

Since the expression U is inside a logarithm, we must impose the
condition

U'1,

in order for the length l to be a real, positive quantity. This is
equivalent to the condition

(k~
p
#k~

b
)!a(k`

p
#k`

b
)(0

and leads to the inequality

a'
(k~

p
#k~

b
)

(k`
p
#k`

b
)
"A

tread
.

¹he supplied monomer concentration must then, as expected, be greater
then the concentration that permits treadmilling to occur.=e also have
the condition that the ,lament moves toward the positive x axis, thus

v"(k~
p
!k`

p
a)l'0

which implies that

a(
k~
p

k`
p

"a
p

so that the level of monomer supplied at the boundaries must be lower
than the critical concentration for the pointed end of the "lament. This
is reasonable, since we are expecting that the pointed end will be losing
monomers in the treadmilling case.

From the above calculations we can draw the following
conclusions:

f A treadmilling solution in which monomers are consumed by a "la-
ment moving at steady velocity, v can only exist if the &&supplied''
monomer concentration (at the ends of the tube) is in a narrow
range, above the treadmilling concentration and below the critical
pointed end concentration. Outside of this range, no treadmilling
solution can exist: either the "lament elongates at both ends, or else
it shrinks and disappears.

f The speed of the "lament is proportional to the di!erence between
the pointed end critical concentration and the supplied monomer
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level. The greater the supplied monomer level (so long as it is still
below a

p
), the slower the speed of motion, since the required ten-

dency towards depolymerization at the back of the "lament is
inhibited as the monomer level increases.

f The speed of the "lament is further proportional to the pointed end
depolymerization rate, which is a slow rate. Thus, as predicted in
many papers in the literature, the treadmilling speed is limited by
properties of the pointed end.

f The total length of the "lament bundle is inversely proportional to
the speed of motion. This would imply that a rapidly moving
"lament would tend to be shorter than a slow "lament.

f The length of the "lament that can treadmill in a given monomer
level is proportional to the monomer di!usion rate. Since monomer
di!usion is rapid, this would tend to favor very large "lament
lengths unless the treadmilling speed is very small.

f If a"a
p
, the velocity is zero and there is no treadmilling.

f if a"A
tread

the above problem is also ill-de"ned, because any
extension of the "lament will drive the monomer level below
A

tread
and it will be unable to continue moving.

6. Competition of tips for monomer

In previous sections we investigated the case that one or more polymer
"laments grow along a tube with their tips initially aligned. By assump-
tion on the monomer di!usion, such tips feel the same level of mono-
mer, and thus grow at the same rate. Hence, these tips stay together.
We now consider what happens when several "laments are growing in
the same tube, but with tips that start out at di!erent positions. We ask
how the interaction with the monomer distribution in#uences the
relative positions of these tips, speci"cally, we want to determine
whether the tips will get closer or further apart as a result of competi-
tion for the monomer.

We consider n "laments polymerizing inside a tube of constant,
"nite length, ¸, with the concentration of the monomer held "xed at
the two ends of the tube. We will here investigate "rst the growth of
barbed ends only, assuming that the pointed ends are held immobile at
x"0. At the boundaries, we assume that

a(0)"a (¸)"aN .

The case of unequal concentrations at the two ends can be treated
similarly. The question we investigate is whether, and under what
conditions, barbed ends that are initially at di!erent locations will get
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closer or further apart from one another, and whether this will cause
them to synchronize their motion. We show that the attraction/repul-
sion of tips depends both on the boundary conditions and the distance
from the edge of the domain.

6.1. Monomer diwusion

For the monomer di!usion and polymerization/depolymerization at
the "lament ends we will assume that di!usion is su$ciently rapid
compared to the other processes (tip growth) that we can consider the
stationary form of the monomer di!usion equation:

0"Da
xx
!c f (x),

where the function describing the depletion of monomer has the
form

f (x)"
n
+
j/1

d (x!x
j
) (k`

b
a (x

j
)!k~

b
),

(i.e. we have set a
t
"0 in the di!usion equation). Note that we now

distinguish the positions of the tips, unlike our approach in equation (3)
in which all the tips were assumed to have the same x coordinate.

The above equation describes the monomer pro"le resulting from
rapid equilibration with the barbed ends using up monomers at posi-
tions, x

j
, j"12m. The motion of the barbed ends, assumed slow in

comparison with the monomer di!usion, follows the equation

dx
j

dt
"l(k`

b
a(x

j
)!k~

b
) . (16)

By letting a (x)"aN #aJ (x) we obtain simpler equations with homo-
geneous boundary conditions

a(0)"a (¸)"0,

and with a in equation (16) replaced by aN #aJ .
If the positions of the barbed ends are known at a given time, then

the equation for monomer can be solved. The Green's function method
proves to be suitable, since tips act as point-like sink singularities. We
show in the Appendix that the appropriate Green's function for the
problem with the given boundary conditions is:

G(x, y)"
c
D CA

y
¸

!1B x#H(x!y) (x!y)D .
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Fig. 4. Relative positions of two barbed ends polymerizing in a tube containing
monomer with "xed monomer concentration at the ends of the domain. The shorter
"lament is predicted to move faster, and start to catch up with the longer one if the
barbed ends both start out to the left of ¸/2.

Then by the Green's function method, we have the solution

a (x)"P
L

0

G (x, y) f (y) dy"P
L

0

G(x, y)
n
+
j/1

d (y!x
j
) (k`

b
a(x

j
)!k~

b
) dy.

The only contributions to the above integral occur when y"x
j
, and

this results in

a(x)"
n
+
j/1

(k`
b

a(x
j
)!k~

b
)G(x, x

j
).

Plugging in the form for the Green's function, and including the
superimposed homogeneous solution, we "nd that the monomer distri-
bution is given by:

a(x)"
c
D

n
+
j/1

(k`
b
a (x

j
)!k~

b
) CA

x
j

¸

!1Bx#H(x!x
j
) (x!x

j
)D#aN .

In order to determine whether the tips that are ahead move faster or
slower than those behind them, we would need to determine the
monomer level at the position of the tip, i.e for the j'th tip at x

j
we

should compute a (x
j
) and compare to the levels felt by the other tips.

We now explicitly consider the case of two, three, or more barbed
ends and make a further approximation to understand the relative
velocities of the tips.

6.2. Two interacting xlaments

Letting the number of "laments be n"2 and using the form of the
solution for the monomer distribution, we can determine a(x

j
), and

hence also the velocity of growth (k`
b

a(x
j
)!k~

b
), for each of the barbed

ends shown in Fig. 4. In this case, the problem consists of a set of two
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coupled linear algebraic equations for the unknown monomer concen-
trations a(x

1
), a(x

2
). These equations can be solved fully in closed form.

However, the precise values of a(x
1
), a(x

2
) are not particularly illumi-

nating, since we are only interested in predicting which tip moves
faster, i.e. in comparing their magnitudes. To do this, we can take
a shortcut by assuming that the factors (k`

b
a(x

j
)!k~

b
) in the equations

are of a similar order of magnitude, +(k`
b

aN !k~
b

)"K. This is equiva-
lent to assuming that the monomer level is only changed a little by the
presence of the tips, and that their relative positions contribute more
heavily to the expressions in the large square brackets. Although this is
only a "rst approximation, it is a convenient shortcut in comparing
monomer concentrations at the tips.

Using this approximation, the concentration of monomer felt by
the ith barbed end is

a(x
i
)+

Kc
D

n
+
j/1
CA

x
j

¸

!1Bx
i
#H(x

i
!x

j
) (x

i
!x

j
)D#aN .

In the case of two 5laments at positions x
1
, x

2
with x

1
!x

2
"d'0,

we "nd that:

a
1
"a(x

1
)+

Kc
D CA

x
1
¸

!1Bx
1
#A

x
2
¸

!1Bx
1
#dD#aN

"

Kc
D CA

x
1
#x

2
¸

!2Bx
1
#dD ,

a
2
"a(x

2
)+

Kc
D CA

x
1
¸

!1Bx
2
#A

x
2
¸

!1Bx
2
#dD#aN

"

Kc
D CA

x
1
#x

2
¸

!2Bx2D.
The tip at the back, i.e., at x

2
will catch up with the one at the

front whenever it feels a slightly larger monomer concentration, i.e.
when

a
2
'a

1
this occurs when

A
x
1
#x

2
¸

!2Bx
2
'A

x
1
#x

2
¸

!2Bx
1
#d

The inequality can be manipulated to yield

A2!
x
1
#x

2
¸ B (x

1
!x

2
)'d
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Fig. 5. Relative positions of three barbed ends. The distances between the tips are
d
12
"x

1
!x

2
and d

23
"x

2
!x

3
.

Using the fact that x
1
!x

2
"d above, and simplifying, we "nd that

x
1
#x

2
(¸

This inequality predicts that the tips will approach one another (so that
the tip in the back will grow faster and get closer to the one in front)
whenever the sum of the tip coordinates is smaller than ¸ (or equiva-
lently, the average of the tip coordinates is to the left of the domain
midpoint.) Once the tips pass the midpoint of the domain, the leading
tip should grow faster and leave the other behind.

6.3. Three or more xlaments

The case of three "lament ends can be handled similarly. Making
the same approximation leads to a set of three expressions relating
the concentrations felt by the tips at x

i
to their positions as

follows:

a(x
1
)"KCA

x
1
#x

2
#x

3
¸

!3Bx
1
#2d

12
#d

23D ,

a(x
2
)"KCA

x
1
#x

2
#x

3
¸

!3Bx
2
#d

23D ,

a(x
3
)"KCA

x
1
#x

2
#x

3
¸

!3Bx
3D ,

where d
12
"x

1
!x

2
and d

23
"x

2
!x

3
are the distances between the

tips, assumed positive. (See Fig. 5.) It can be shown in a similar manner
that the inequality a (x

2
)'a(x

1
) is satis"ed whenever

x
1
#x

2
#x

3
(¸.
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Fig. 6. The positions of two "lament barbed ends x
1
(t), x

2
(t) (vertical axis) as

functions of time, t, (horizontal axis) are shown here as they grow in a domain of
(dimensionless) length ¸"1 starting with initial values x

1
(0)"0.2, x

2
(0)"0.1. Param-

eter values used were /)"0.00065, b"4.2, typical of actin polymerization dynamics}
see Sect. 9. The monomer concentration at the boundaries was "xed at aN "10. The
domain was discretized with N"100 points (grid spacing h"0.01) for the PDE
governing the monomer distribution. The "laments at "rst get closer to each other, but
later recede, as shown magni"ed in the next "gure.

(When this is satis"ed we also have a (x
3
)'a(x

2
), so that the third tip

catches up to the "rst two.)
Based on the above two examples, and using the same procedure,

it follows that in the case of n "laments with barbed ends at
x
1
'x

2
'2'x

n
, the tips will attract as long as

x
1
#x

2
#2#x

n
(¸ .

The calculations are identical, but more cumbersome in the general
case. The conclusions from this analysis can be summarized as follows:

f In a "nite tube of constant length with "xed monomer concentration
at the two ends, the behaviour of a group of "laments is sensitive to
their positions relative to the boundaries of the tube.

f If the n "lament barbed ends are positioned so that their mean
x coordinate is in the "rst ¸/n portion of the tube, the tips will get
closer together and the "laments will appear to synchronize spa-
tially.
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Fig. 7. The distance between the two barbed ends (dx"x
1
!x

2
, vertical axis) is

shown here as a function of time (horizontal axis). The positions of these tips was
shown in Fig. 6. At "rst, the tips approach each other but as they cross the midpoint of
the domain, they start getting further apart, as predicted by the steady state approxi-
mation. The parameter values are as in Fig. 6.

f As soon as the mean x coordinate falls outside this region, the
leading tip will speed up and leave the other tips behind.

f The precise positions, speed, and dynamics of the tips is best seen
with numerical simulations. See Figs. 6}8 for an example.

6.4. Numerical simulations of competing tips

To visualize the detailed dynamics of tip competition in the full model,
and to test if our steady-state approximation for monomer is reason-
able, we carried out simulations using the software xpp (which can be
obtained free of charge from G.B. Ermentrout).

We considered the case of two tips, and used the full model,
consisting of the following set of equations:

La
Lt

"D
L2a
Lx2

#+
i

k`
b
lc (a(x

i
, t)!a

b
) d(x

i
) ,

dx
i

dt
"lk`

b
(a(x

i
, t)!a

b
), i"1, 2
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Fig. 8. A typical example of the monomer pro"le for the same conditions is shown at
several times. Note that the boundary conditions are "xed at a"aN "10 and the
monomer concentration is initially a (x, 0)"aN "10. The monomer distribution reveals
a sink at the continually advancing positions of the two tips. This simulation can be
interpreted as the polymerization dynamics of actin in a thin cellular appendage such
as a "lopodium } see Sect. 9 for details.

The equations were rewritten in dimensionless form by using the length
of the domain, ¸, as the distance unit, the time to di!use this distance,
¸2/D as the time unit, and the critical concentration at the barbed end,
a
b
"k~

b
/k`

b
, as the concentration unit. Using these rescalings, it may be

shown that the equations can be written in the form

La
Lt

"

L2a
Lx2

#+
i

b(a (x
i
, t)!1)d(x

i
),

dx
i

dt
"/K (a(x

i
, t)!1), i"1, 2

where

b"
¸k`

b
(c¸)l
D

, /K "
¸k~

b
l

D
.

with c, l as previously de"ned. The values used in the simulations for
the dimensionless parameters were derived from details of dynamics
and geometry of structures associated with the polymer actin, leading
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to b+4.2, /K "0.00065 for a tube of length ¸"10 l and radius about
r"1.5 l. The domain (dimensionless size"1 unit) was discretized
with h"0.01. The monomer concentration was assumed "xed and
equal at the two boundaries, and the equations were solved numer-
ically using the cvode option of xpp.

Results of these simulations are shown in Figs. 6}8. In Fig. 6, the
positions of two barbed ends are shown traversing the domain. An
enlarged view of the di!erence in their x coordinates in then shown in
Fig. 7. It is evident from this "gure that the tips get slightly closer to
each other until they cross the midpoint of the domain, and thereafter
get further apart, as predicted by our analysis using the steady state
approximation for monomer. (The magnitude of the e!ect is not,
however, large.)

We also show a pro"le of a typical monomer distribution which
occurs for tips moving across a domain in Fig. 8. This pro"le shows
how the tips of the "laments deplete monomer around them, and thus
interact with other tips.

6.5. Growth on a semi-inxnite domain

We consider a very long tube, and take as boundary conditions
a(0, t)"aN and a(x, t)(R. The equations are as before, but the
Green's function is now:

G (x, y)"aN #
c
D

[!x#H(x!y) (x!y)].

The problem is similar to the previous one, since we can solve for the
monomer concentrations at the tips, or make a similar approximation
to compare the magnitudes of monomer fuel concentration at the tips.
This case is essentially parallel to the previous case, but with ¸PR.
Thus, it is not surprising to discover that the tips always attract and
synchronize with one another, since their coordinates always satisfy

x
1
#x

2
#2x

n
(R.

7. Polymerization from monomer pool at one end

We have used a steady-state form of the monomer di!usion equation
to investigate the behaviour of a "lament or bundle of "laments under
various polymerization conditions. In this section we consider one last
example, in which a similar approach is applied.
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In this example, monomers are supplied in concentrated form at
x"0, di!use along the length of the tube, and polymerize at the
barbed ends of a growing "lament bundle. We assume, again, that the
slow growing pointed ends are kept tethered at x"0 and do not grow
or use up monomer. This example bears similarity to the polymer-
ization of actin in the acrosomal process of the sea cucumber, ¹hyone
described experimentally by Tilney and Inoue (1982) and modelled in
Oster et al. (1982) Oster and Perelson (1987) Perelson and Coutsias
(1986). The mathematical analysis of this problem was discussed in
Perelson and Coutsias (1986) and solved as a moving boundary Stefan
problem. By using our simpli"ed steady state approximation we can
arrive at similar mathematical conclusions.

We let a (x, t) denote the monomer concentration, ¸ the length of
the "lament, and a

0
"aN the concentration at the origin. The equations

we consider are:
a
t
"Da

xx
!cnvd(x!¸)

where
d¸
dt

"v"lk`(a(¸, t)!a
b
).

Following the method applied elsewhere in this paper, we assume the
growth is slow compared to the di!usion so that the monomer distri-
bution reaches steady state:

0"Da
xx
!cnvd(x!¸).

This equation can be integrated and solved yielding:

a (x)"G
aN !(cnv/D) x for x(¸,

aN !(cnv/D) ¸ for x7¸

Setting x"¸ and using the de"nition of v we "nd that

a(¸)"aN !CI ¸ (a(¸)!a
b
),

where

CI "
cnk`l

D

which we solve for a (¸) to get:

a(¸)"
aN #CI ¸a

b
1#CI ¸

.

Substitute this into the di!erential equation for ¸:

d¸
dt

"lk`A
aN #CI ¸a

b
(1#CI ¸)

!a
bB
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After simpli"cation, this leads to

d¸
dt

"lk`
(aN !a

b
)

(1#CI ¸)

This can be solved using separation of variables, with the result

¸(t)#
CI
2
¸2(t)#constant"k`l (aN !a

b
) t. (17)

By using the fact that ¸(0)"0 we see that the constant in the above
equation is just zero. Further, for large t (which implies large ¸), the
quadratic term dominates on the left hand side so that. For t large,

¸ (t)2
t

\
2
CI

k`l(aN !a
b
)"

2D
cn

(aN !a
b
)

so that the growth rate is dependent on the concentration di!erence,
the number of tips, n, and the di!usion coe$cient, but not on the rate
constant. Estimation of various parameters in the case of the acros-
omal process lead to the conclusion in the literature (that we also
con"rm) that di!usion is too slow (by a factor of about 10 according to
Oster et al. (1982) and Oster and Perelson (1987) to account for the
explosive growth of the actin bundle observed experimentally. (We do
a similar calculation in the Appendix, and show that for a structure of
diameter 0.05 l and containing about 20 barbed ends at their tips, the
ratio of ¸2/t is roughly 30 l2/s). Recent personal communication with
L. Tilney suggests that the number of barbed ends could be smaller }
say about 20, that the diameter of the process may be up to 0.1 l at its
base, and that "laments may move relative to one another. This may
account for part, (but perhaps not all) of the discrepancy between
observed and di!usion-limited theory for ¸2/t. (If the concentration of
actin at the actomere is being underestimated by a factor of 2, the
predictions would be in agreement with the observed rate of
¸2/t+700 l2 s~1, but this may be unlikely.) The hypothesis presented
to account for the observed behaviour in the previous cited works was
osmotic pressure.

8. Application to actin

In this section we describe one instance in which ideas presented in this
paper could be applied, that of actin, a biological polymer and one of
the major components of the cellular cytoskeleton (Alberts et al., 1989;
Stossel, 1984). Actin is implicated in cell shape, motility, cell division,
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Table 1. Typical values of parameters including polymerization rate constants and
critical concentrations for actin "lament

Parameter Units Value Source

k`
b

lM~1 s~1 11.6 Pollard, 1986
10 Carlier and Pantaloni, 1997

k`
p

lM~1 s~1 1.3 Pollard, 1986
0.5 Carlier and Pantaloni, 1997

k~
b

s~1 1.4 Pollard, 1986
k~
p

s~1 0.8 Pollard, 1986
a
b

lM 0.12
0.08 Carlier and Pantaloni, 1997

a
p

lM 0.60
0.5 Carlier and Pantaloni, 1997

A
tread

lM 0.17
0.1 Carlier and Pantaloni, 1997

v
tread

s~1 0.57
0.2 Carlier and Pantaloni, 1997

l l 2.7]10~3 Spiros and Edelstein-Keshet, 1998
D l2 s~1 50.0 Oster and Perelson, 1987

90.0 Spiros and Edelstein-Keshet, 1998
g l~3 lM~1 620 Spiros and Edelstein-Keshet, 1998

and other vital functions. As assumed in this paper, an actin "lament is
rod-like for lengths up to a few microns; it is asymmetric, with ends
having di!erent polymerization kinetics. The barbed end (also called
plus end) is most commonly associated with the membrane of the cell,
while the pointed end (also called minus end) points into the interior of
the cell (Tilney et al., 1981). The implications of this fact to treadmil-
ling has been discussed in the literature (Kirschner, 1980; Selve and
Wegner, 1986; Wanger et al., 1985; Wegner, 1982; Wang, 1985; Coluc-
cio and Tilney, 1983).

Typical values for the rate constants associated with polymer-
ization of actin are shown in Table 1. The critical concentrations at the
two ends of an actin "lament are: a

b
"k~

b
/k`

b
+0.12 lM, at the barbed

end and a
p
"k~

p
/k`

p
+0.6 lM, at the pointed end.

In the literature, models for actin polymerization deal largely with
total actin in polymerized versus monomeric form (Carlier and Panta-
loni 1997) but see Oster et al. (1982), Oster and Perelson (1987), Oster
and Perelson (1985) and, more recently, models in which actin-based
polymerization ratchets provide the force driving motility (Mogilner
and Oster 1996a, b). Many of these models include detailed considera-
tion of mechanical forces and the interplay of chemistry with such
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forces. In growing one-dimensional protrusions such as spikes, micro-
villi, stereocilia, and "lopodia, the forward motion of the cytoskeleton
in response to certain stimuli (e.g. Rehder and Cheng, 1998), or during
developmental processes (Tilney and DeRosier, 1986; Tilney et al.,
1991) implies that actin polymerization is taking place in a spatially
controlled way. Similarly, intracellular parasites such as ¸ysteria
monocytogenes see (Marchand et al., 1995), exploit actin polymeriz-
ation to move through the cell. There are many features of the biolo-
gical case which make the situation considerably more complex than
has been described in this paper. In particular, actin interacts with
many other proteins such as capping, fragmenting, sequestering, and
bundling proteins that a!ect the way that it polymerizes.

For the purposes of the simpli"ed models here, conversions from
actin "lament lengths to number of actin monomers are made as
follows: There are 370 monomers in a 1 l long "lament. This implies
that the parameter called l has the value l"1/370 l"2.7]10~3 per
monomer.

There are many cellular structures that act like the &&thin tubes''
discussed in this paper, so that the one dimensional geometry is
suitable for such cases. Typical one-dimensional structures that con-
tain actin "laments are cylindrical in shape with roughly the following
dimensions: for stereocilia, which are appendages on hair cells in the
auditory system, the diameter is 0.1!0.2 l and the length is 1!5 l
(Tilney and DeRosier, 1986). For "lopodia in neural growth cones,
typical lengths are 10!25 l (Rehder and Cheng 1998). For the acros-
omal process of the sea cucumber, ¹hyone, the diameter is roughly
0.05 l and the length is up to 90 l (Oster and Perelson, 1987). A &&typi-
cal'' length for cellular appendages containing actin is therefore 10 l
and a typical diameter is 0.1 l; this leads to a crossectional area of
A+n(0.05)2"0.00785 l3. We also need the conversion between con-
centrations (quoted typically in lM) and monomers per l3. It can be
shown (Spiros and Edelstein-Keshet, 1998) that 1 lM actin is equiva-
lent to 602 monomers per l3. With these we "nd that

c"
1

602 lA
+78.

For the parameters used in the numerical simulations, we compute

b"
¸2k`

b
cl

D
"4.2,

/K "
¸k~

b
l

D
"6.5]10~4.
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We see from the simulations in Figs. 6 to 8 that for structures on the
order of 10 l, with parameters typical of actin polymerization, the
phenomenon predicted in our analysis is apparent: namely, the barbed
ends compete for monomer so that their relative speeds depends on
their positions in the domain. This, of course, depends on the detailed
boundary conditions and assumptions about the actin monomer that
we have made: namely "xed concentration at the end of the domain,
and level of monomer that can get depleted to some extent by the tips.
The situation in vivo, i.e. in "lopodia and stereocilia may not be the
same in detail. It is still not known exactly how monomers are seques-
tered, and supplied. Moreover, it is unlikely that the boundary condi-
tions we have used are appropriate for the biological situation. Thus,
the simulations can not, at this stage, be considered as a model of the in
vivo growth of "laments. Rather, they allow us to conclude that for
lengths and parameters typical of actin "laments, the approximations
made in the analysis hold fairly well in describing possible phenomena.
Similar results (though not shown here) were obtained with domain
size of 100 l, the upper limit of the size of cellular appendages (e.g. the
acrosome).

Treadmilling concentration: The possibility of treadmilling, and the
treadmilling concentration for actin has been described throughout the
literature (Wegner, 1982; Wanger et al., 1985; Kirschner 1980; Selve
and Wegner 1986). For the typical parameters in Table 1, the treadmill-
ing concentration is 0.17 lM using (Pollard, 1986) parameters, but
0.1 lM in (Carlier and Pantaloni, 1997). The treadmilling rate is given
in Carlier and Pantaloni (1997) as 0.2 s~1, whereas it is 0.57 s~1 using
rate constants from (Pollard 1986). The controversy in the literature
about the relevance of treadmilling stems from the fact that these rates
are much slower than could account for the motility of a typical cell.

Treadmilling in an in5nite tube: The di!usion coe$cient of an actin
monomer is roughly D"5]10~7 cm2 s~1"50 l2 s~1. For an actin
"lament or bundle to treadmill in an &&in"nite tube''we must restrict the
concentration of monomers in the tube to the range:

0.1(a(0.5

For a typical value of a"0.4 lM, we "nd that v"(k~
p
!k`

p
a)l"

7.6]10~4 l s~1"2.7 lh~1. We also calculate that the value of U in
equation (15) is roughly 1.3, so that the total length of polymerized
actin in the treadmilling strand would be l+76.9/n from equation
(14). For example, a strand consisting of 20 aligned actin "laments of
length 3.8 l each would undergo stable treadmilling in this actin
concentration according to the predictions of the model. Methods of
increasing "lament growth rates (but not in the treadmilling case) have
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Table 2. Typical rates of polymerization for
microtubules as cited in (Walker et al., 1988).
The subscripts &&plus'' and &&minus'' refer to the
fast and slow ends, respectively, of the micro-
tubule.

Parameter Units Value

k`
plus

lM~1 s~1 8.9
k`
minus

lM~1 s~1 4.3
k~
plus

s~1 44
k~
minus

s~1 23
k~*
plus

s~1 733
k~*
minus

s~1 915
a
plus

lM 4.94
a
minus

lM 5.35
A

tread
lM 5.075

v
tread

s~1 1.167

been suggested in the recent literature (Carlier and Pantaloni 1997;
Carlier et al., 1997; Dufort and Lumsden, 1996)

9. Application to microtubules

Microtubules, which are also components of the cytoskeleton are
larger and sti!er than actin "laments, and have the shape of a hollow
tube made up of a, b tubulin dimers, arranged in 12}16 proto"laments.
For a review see (Walker et al., 1988; Hyams and Lloyd, 1994). The
ends of a microtubule are called the plus (fast growing) and minus (slow
growing) end. The polymerization kinetics of microtubules is some-
what more complex than that of actin. Aside from the usual addition
and loss of monomers at each end, there is a rapid shortening state
(represented below by k~*) in which the polymer unravels very quickly.
The transition from the normal state to the rapid shortening state is
called catastrophe, and depends on the monomer concentration. The
reverse transition, called rescue, is similarly monomer dependent.
Parameters values typical for microtubule polymerization are given in
the following table (Table 2).

Parameter values for microtubules polymerization: For the above
parameters, if the microtubule is in the normal growth state, the
treadmilling concentration is 5.075 lM. There are 1600 tubulin dimers
per 1 l in a microtubule. This implies that the treadmilling rate
in length units is: v"7.3]10~4 l s~1"2.6 lh~1. A model which
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describes the polymerization of microtubules would have to take into
account the transitions that occur between the normal and the rapidly
shortening states. A complete characterization of these transitions has
been given in Walker et al. (1988).

10. Appendix

10.1. Dimensional considerations and units

Equations (1) and (2) are formulated in terms of length per unit time.
The terms in brackets on the right hand sides have units of t~1, and so
the factor l carries dimensions of length. Equation (3) is formulated in
terms of concentration per unit time, i.e. carries dimensions of lMt~1.
The terms nd(x!x

i
) have dimensions of a density per unit length. This

follows from the observation that

P
=

~=

d (x!x
i
) dx"1

is dimensionless. Since v
i
has units of l/s, this implies that the conver-

sion factor c carries dimensions of concentration, i.e lM. To under-
stand the detailed form of the conversion factor, note that nd (x!x

i
) is

number of tips per unit length of the structure, v
i
*t is the distance these

move in time Dt and thus the total length of actin added per unit length
of the structure. A factor of 1/l converts a "lament length to the
number of monomers added, a factor of 1/A converts this to a concen-
tration of monomers polymerized per unit volume. Finally, a factor of
g converts to a concentration in lM. This results in the expression
(1/l) (1/g) (1/A) nd(x!x

i
) v

i
. Collecting the "rst three coe$cients, we

de"ne the parameter c as in equation (4). It can be veri"ed that, thus
de"ned, c has units of lM.

10.2. Connection between coordinates of xlament ends and
xlament properties

For x
c
(t) the center of mass (midpoint) of a "lament and l(t) its length,

the positions of the two ends of the "lament are

x
b
(t)"x

c
#

l

2
,

x
p
(t)"x

c
!

l

2
.
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The &&position'' x
c
and the length l satisfy the di!erential equations

dl
dt

"r
b
#r

p
,

dx
c

dt
"r

b
!r

p
.

where

r
b
(t)"k`

b
aAxc

#

l

2B!k~
b

,

r
p
(t)"k`

p
aAxc

!

l

2B!k~
p

.

i.e.,
dl
dt

"k`
b
aAxc

#

l

2B!k~
b
#k`

p
aAxc

!

l

2B!k~
p

,

dx
c

dt
"k`

b
aAxc

#

l

2B!k~
b
!k`

p
aAxc

!

l

2B!k~
p

.

10.3. Conditions for an elongating xlament with xxed center of mass

Equation (7) can be restated in the form:

G(a(l )!a
b
)"a (!l)!a

p

where the dimensionless parameter G is given by

G"

k`
b

k`
p

.

If the "lament is to continue growing (or shrinking) uniformly, this
equation must hold for all l. Assuming that the monomer pro"le is
analytic, we can expand a (l) and a (!l ) in Taylor series about x"0,
obtaining

GAa0#a
1
l#

a
2

2!
l2#

a
3

3!
l3#2!a

bB
"A(a0!a

1
)l#

a
2

2!
l2!

a
3

3!
l3#2!a

pB ,

where a
j
"a( j )(0) is the j'th derivative of a(x) at the origin. Equating

term by term in the above expansion we obtain
f Zeroth order:

G (a
0
!a

b
)"(a

0
!a

p
).
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f jth order:
(G!(!1) j )a

j
"0.

Together these equations imply that in the &&"xed "lament center''
case, if the monomer pro"le is analytic, then it must be spatially
uniform i.e.

a(x)"a
0
"A

Ga
b
!a

p
G!1 B.

In terms of original parameters, this monomer concentration level is

a"A
k~
b
!k~

p
k`
b
!k`

p
B .

10.4. Conditions for treadmilling

The condition for treadmilling is equivalent to dx
p
/dt"dx

b
/dt. Assum-

ing x
b
'x

p
, and setting x

b
"x

p
#l where l'0 is "xed, this implies

that
G (a(x

p
#l)!a

b
)"!(a(x

p
)!a

p
) (18)

10.4.1. Filaments of every length treadmill
In this case the equation (18) must hold for every length l. A Taylor
expansion of the equation about x"x

p
leads to

GAa0#a
1
l#

a
2

2!
l2#

a
3

3!
l3#2!a

bB"!(a
0
!a

p
),

where a
0
"a (x

p
), a

j
"a( j ) (x

p
). Following steps as in the previous

section, we "nd that

a (x)"a
0
"A

Ga
b
#a

p
G#1 B ,

or simply

a"A
tread

,A
k~
b
#k~

p
k`
b
#k`

p
B .

This treadmilling concentration will result in "laments of any length
moving at constant speed.

10.4.2. Only a specixc length xlament would treadmill
In this case, the mathematical problem is to determine a function a(x)
such that, given a "xed value of l, the following equation is satis"ed:

a (x#l)"a!Ba(x),
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where

a"A
k~
b
#k~

p
k`
b

B , B"A
k`
p

k`
b
B.

For a given l, this is similar to a linear di!erence equation (but with
terms along the x axis speci"ed at discrete points separated by mul-
tiples of l. We can "nd bounded solutions if we restrict the domain to
the positive x axis. While this suggests looking for exponential solu-
tions of the form

a(x)"a
0
#a

1
e~jx,

this form leads to complex values of j. We therefore take the alternate
assumption that

a(x)"a
0
#a

1
e~kx cosux,

where k, u are real. By plugging into the equation (18), we "nd that

a
0
"A

tread

and that, in order for a "lament of a speci"c length l to treadmill, the
precise actin pro"le must be of the form

a (x)"A
tread

#a
1A

k`
p

k`
b
B
x@l

cos A(2m!1) n
x
l B

This means that the monomer concentration varies about
A

tread
sinusoidally, decaying with distance from the origin (since

k`
p
/k`

b
(1). The period of the monomer variation is related to the

length of the treadmilling "lament. We must select the parameter a
1

so
that A

tread
#a

1
(a

p
and A

tread
!a

1
k`
p

/k`
b
'a

b
so that the "lament

will continue to move in the positive x direction. The speed of tread-
milling will vary with position.

11. Green:s function solution

The Green's function used in Sect. 6.1 is arrived at as follows:
Consider the steady state di!usion equation with a point source

a
xx
"d(x!y),

Integrate the equation twice:

a
x
"C#H(x!y),

a"Cx#d#(x!y)H(x!y),
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where H is the Heaviside step function. Use the homogeneous bound-
ary conditions a(0)"0, a(¸)"0 to conclude that

d"0,

C"!

(¸!y)
¸

H (¸!y).

With the appropriate scaling to include the constants, the Green's
function is then as described in Sect. 6.1.

11.1. Diwusion limited growth and acrosomal process

In Sect. 7 we found that the growth of length over time was governed
by the equation (17). Since the concentration of actin in the periac-
rosomal cup (at the source, i.e. at x"0) is very large, (estimated
to be aN "160]1.3]104 monomers per cubic micron) we can neglect
a
b
. We use D+80 l2 s~1, n"60 tips, and a diameter of 0.05 l for

the acrosome to conclude (after suitable conversion to appropriate
units) that

¸2

t
"2 ]80 A

k2

s B]2.7]10~3(k)]
1

60 tips
]n0.0252

]160]1.3]104A
monomers

k3 B+30
k2

s

This is short by a factor of about 20 from the speed observed by Tilney
and Inoue (1982). Changing the number of tips to 20 and the diameter
to 0.1 l accounts for a factor of 12, but does not quite cure the problem
with the di!usion-limited theory.
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