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We review a number of biologically motivated cellular automata {CA) that arise in
models of excitable and oscillatory media, in developmental biology, in neurobiology,
and in population biology. We suggest technical and theoretical arguments that
permit greater speed and enhanced realism, and apply these to several classical
examples of pattern formation. We also describe CA that arise in models for fibro-
blast aggregation, branching networks, trail following, and neuronal maps.

1. Introduction

Modeling complex physical phenomena through computer simulations has become
a common tool for understanding the natural world. Realistic models based on
physical laws generally result in large systems of non-linear integro- and partial-
differential equations. This is particularly true for biological phenomena. The “bot-
tom-up” approach to modeling has many advantages, such as the ability to reproduce
in quantitative detail the results of an experimental procedure. However, there is a
price paid for such detail. It is often difficult to extrapolate the behavior of the
“realistic”” model to different experimental and natural conditions. These models
sometimes obscure the basic physical principles underlying the modeled phenomena.
A majority of complex biological systems cannot be precisely quantified so that
detailed models may be premature. Finally, such models lead to formidable numerical
problems that require huge memories on fast computers. Thus it becomes very diffi-
cult and time consuming to parametrically explore the system. One technigue for
simplifying these often numericaily intractable systems is to mimic the physical laws
by a series of simple rules that are easy to compute quickly and in parallel. We
loosely call these simple systems cellular automata (CA). More properly, a cellular
automaton consists of a simulation which is discrete in time, space, and state,

All results of computer experiments are in fact CA, since all computers operate at
finite precision on numerical discretizations of the time and space domains. However,
most CA simulations reduce the state space to only a few states (often as few as two)
and subdivide time into discrete steps in a very simple fashion. Although there may
at times be a fine line between a numerical simulation and a CA, the features which
stem from the discrete nature of the system are not disguised in the latter. In contrast
is the great care taken in many numerical algorithms (for solving ordinary differential
equations, for example) to overcome the ‘““artifacts” or spurious behavior owing to
discretization.
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CA have stirred great interest in physics, particularly in computational fluid
dynamics (CFD). Two recent issues of Physica D (Farmer et al., 1984, Gutwitz,
1990) have been devoted to CA with particular emphasis on abstract dynamics and
physical applications, A recent book edited by Wolfram collects many articles from
diverse sources on the behavior and applications of CA (Wolfram, 1986). At least
one journal, Complex Systems, is primarily devoted to CA research. Rucker (1989)
has created software for exploring a large variety of CA as well as producing new
ones; he provides a nice historical introduction and many references to the field.
Tofolli & Margolis (1988) have developed a hardware device for rapidly exploring
simple two-dimensional rules. Most of the work by physicists has been to view the
automata as abstract dynamical systems and then to characterize their behavior via
calculation of entropy, complexity, and other quantitative measures of dynamics,

Biological systems are ripe for modeling with CA methods; the spatial and tempo-
ral patterns are diverse and fascinating, Our knowledge of.the details of a particular
mechanism is often full of gaps and, unlike physics, there are few “laws’ such as the
Navier-Stokes equations or Newton’s laws. Thus, simplified models can be useful in
precluding certain mechanisms as being impossible or at least unlikely. The speed by
which calculations can be made allows the investigator to examine a huge number
of parameter ranges that would be otherwise impractical for more “realistic” simula-
tions. Because of their simplicity, it is often feft that CA models are nothing more

than glorified computer games which are unable to provide any real insight into the

biological phenomenon. We believe that this view is incorrect and in fact, quahtat.ve
fand sometimes quantitative) agreement between these simple models and experi-
mental results can be had.

The purpose of this paper is to present some recent CA models that have arisen
in our efforts to understand biological self-organization. We have complemented
analytic partial differential equation models with a number of biologically motivated
automata, Typically, our continuum models involve averaging out the spatial organi-~,
zation in order to obtain simplified and tractable equations. We describe a number
of different approaches and compare these to approaches taken by other authors.
Qur main interest lies in using CA to examine spatial and temporal pattern formation,

We divide CA models into three broad classes: (i) deterministic or “Eulertan”
automata; (ii) “lattice gas” models; and (iii) “‘solidification” models.

In a deterministic automaton, the spatial domain of the model is divided into a
fixed lattice and each lattice point has a state associated with it. The state at the next
time step is determined solely from earlier states of the cell and its neighbors. This
type of automaton most closely resembles an evolution equation such as a partial
differential equation or an integral equation. In section 3 we describe a number of
such automata and how they mimic the real partial differential equations. Examples
where this type of model is applicable include waves in excitable and oscillatory
media, predator-prey models, and spatial pattern formation. We end section 3 with
some recipes for constructing CA models from differential equations and apply these
methods to an activator-inhibitor model. '

Lattice gas models are also called particle systems and consist of a discrete spatial
grid on which particles move about and interact in some prescribed fashion. Unlike
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the deterministic automata above, these systems are usually driven by random events.
Thus, the same initial conditions will not yield identical final states except in some
average sense. These models, by virtue of their probabilistic nature, suggest a mean
field theory and certain differential equations that are themselves tractable. In section
four, we describe models for fibroblast aggregation, self-organization of ant trails,
and topographic neural maps.

A “solidification” model is much like a lattice gas model except that once a particle
is in 2 “bound” state it can never move or disappear again. This type of model
has been used to model phase-transitions (hence the name “solidification”) and
precipitation (Packard, 1986). We describe applications of this type of model to
biological systems in section 5. Examples of behavior for which “solidification”
models are appropriate include branching structures such as growth patterns of fungi,
angiogenesis (formation of vascular networks), and growth of immotile colonies of
bacteria under conditions of nutrient limitation.

2. Biological Cellular Automata

CA have sporadically appeared as simplified models for a variety of biological
situations. A majority of these represent abstractions of partial-differential equations
that purport to model the spatial and temporal patterns of the given phenomenon.
Thus they fall under our classification of deterministic CA. We describe some of the
applications for these models.

2.1. ACTIVE MEDIA

The best known examples of CA in biological or physiological literature are the
“excitable media” which mimic the behavior of nerve cells, muscle cells, cardiac
function, and chemical reactions. An excitable medium is one in which there is a
unigue stable rest state and such that small perturbations relax to this state. Sufficient
perturbations (above threshold) lead to a large transient increase (the excited state)
in some of the components before relaxing to the rest state (recovery). For a certain
amount of time during the recovery period, the medium is unable to be re-excited
regardless of the size of the perturbation (the refractory period.) Examples of this
type of phenomena include axonal excitability, cell signaling, cardiac fibers, and
many other physiological events.

Excitable CA attempt to reduce an excitable medium to its simplest possible form.
Each cell in an excitable CA is connected to some fixed number of neighbors. The
simplest excitable rule has three states 0, E, and R, representing the resting or zero
state, the excited state, and the refractory state, respectively. If a cell is in £ then at
the next time step it becomes R and after that it is returned to 0. If a cell is in state
0 and at least one neighbor is in state E then at the next time step, the cell is put in
state E. ANl modifications of excitable CA are based on this simple conceptual rule.
One of the first examples of this type of automaton (and for that matter, any CA)
is described in the paper by Wiener & Rosenbleuth (1946). Greenberg et al. (19784, b)
classified all initial states that could lead to persistent behavior for excitable CA in
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which there are kz excited states and kg refractory states. Typical patterns seen in
this type of model are shown in Fig. 1 and consist of square-rotating spiral waves.
Multi~armed spirals, spiral pairs (Madore & Freeman, 1983), and three-dimensional
waves such as twisted scrolls have also been noted in these simple models (Winfree
et al., 1985).

Numerous authors have explored different and increasingly complex rules in an
effort to get quantitative agreement between the simulations and the experimental or
more realistic numerical phenomena. Kaplan ef af. (1988) study the dynamics of
cardiac conduction in spatially inhomogeneous media with an excitable CA model.
Fisch et al. (1990} characterize the behavior of numerous variants in which more
than one excited neighbor is necessary or larger neighborhoods are considered. They
have made available a CA simulator for personal computers. Gerhardt et ol
{19904, b, ¢} and Markus & Hess {1990) create excitable rules with quite different
techniques that allow them to obtain quantitatively coresct dispersion relations and
spiral curvatures. The idea in Gerhardt is to let each cell consist of two components,
corresponding to an “activator” and an “inhibitor™ in a chemical reaction. By introd-
ucing many states and atlowing spatial averaging over more than one celt distance
away, they produce convincingly realistic pictures very rapidly on a small computer.

Fic. 1. “Spiral” wave pair tn an excitable antomata. There are six states, 0,1, 2,3,4, 5. i any cell is
in state 0 and at least ane of its four neighbors is in state 1, it becomes state 1 at the next time step. it -
hes a non-zeto state then it advances by one at the next time step untif it is at state 5 wherse it retums to
state 0. If at state ¢ and no neighbors are in gate 1, it remaing at state 0. White corresponds to state 0
and dark grey to state 5.
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Tyson and colleagues have devised increasingly more realistic models based on better
discrete approximations to the Laplacian (Weimar ef al., 19914, b). Markus & Hess
(1990) obtain similarly curved spirals without resorting to such complex rules by
allowing long distance interactions on a random spatial grid. They also simulate
twisted scroll rings in three-dimensions.

While the rules used by these authors vary greatly, the mechanism for formation
of spirals remains transparently similar; a recovery period, excitation of neighbors,
and a threshold lead to spiral wave formation. These recent models have not been
analyzed; indeed even the simplest rules which require, say, at least two excited cells
to cause excitation have defied rigorous analysis.

2.2, DEVELOPMENTAL BIOLOGY

CA models have found use in some aspects of developmental biology. Young
(1984) derives a simple model which uses the concept of lateral inhibition and thresh-
old to create spatial two-dimensional patterns mimicking animal coat markings. In
his rule, cells are in one of two states; the new state is found by spatially averaging
over a circular neighborhood and applying a threshold function:

C'.’j'—‘H( Z W(i—i',j—f')Cr.f),
(. )N

where w is a matrix of weights or “mask” in the language of Tyson, N is a circular
neighborhood, and H(x) is the Heaviside function which is I for #>0and 0 for u <0,
A variety of coat markings are possible by varying the weights, the threshold, and
the size of the neighborhood. In Fig. 2, we show the steady-state behavior for Young’s
model for two different weight functions. (See legends for details.) Spots and stripes
occur as the “inhibition” is varied.

Swindale (1980} applies a similar rule to produce patterns of occular dominance
in the visual cortex. Cocho ef al. (19874, b) use simple one-dimensiona} automata
and transition rules to model the coat markings of fish, reptiles, and mammals.
Models that allow for cell movement and some random factors have been proposed
to mimic cell rearrangement and sorting. Bodenstein (1986) incorporates cell division
and displacement to show how mixtures of two cell types can separate into distinct
layers. Goel & Thompson (1988) also use antomata models for cell sorting. A volume
edited by Mostow (1975) contains numerous other models for cell rearrangement
based on CA. Smith er al. {1984) derive a complicated set of CA rules to model the
formation of microtubule arrays on the cell membrane. Hammeroff and coworkers
have derived models of similar phenomena (Hammeroff ¢f al., 1986; Rasmussen et
al., 1990). Nijhout er af. (1986) propose a model for differentiation and mitosis which
uses simple rules incorporation cell division, displacement, morphogens, ditferentia-
tion, and mutations. By selecting different mutations, they derive a phylogenetic tree
for abstract organisms. Dawkins [see the volume edited by Langton (1989)] has
developed a similar simulation in which the software user selects organisms from a
series of mutations at each step.
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Fic. 2. §tcady solutions to the Young model. White represents state 0 and black, state 1. The weights
have a value of w, for (i—i")>+ (j—j")*=R<r, and w, for r,< R<r,. For R>r,, there ate no interactions
In this figure, #,= 35, r,=36, and w,= L. (a) w,=~0-34, (b) w,=—0-24. ; :

- i
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2.3. ECOLOGY AND POPULATION BIOLOGY

There are a number of recent examples of models for predator-prey and ecology
that use CA. WATOR is a family of ecological simulations involving sharks and
fishes moving about on toroidal grid. The rules vary greatly (there is a newsletter
available describing various situations—see Dewdney, 1988) but the model is basi-
cally a spatially distributed predator-prey system. The implementation of the model
puts it under the category of a particle system. A typical WATOR simulation includes
fish and sharks which randomly move around a grid. Sharks will starve after a certain
number of generations, Ts, unless they find fish and reproduce after Ty generations.
Fish reproduce after Tr generations and are destroyed when they encounter sharks.
The behavior of this simple automaton is like that of the Lotka-Volterra predator-
prey model.

Another particle system has recently been developed for the plant ecology in the
Jasper Ridge Biological Preserve (Moloney et al.,, 1991). There are two or more
species of plants that produce seeds with random dispersal and random probabilities
of germinating. Interspecific competition is allowed. The results of these simulations
seem to explain some of the small and large scale patchiness in real ecologies.

Camazine (1991) describes a particle system or lattice gas automata for the forma-
tion of banded rings in honey bee combs. The model allows for random egg laying
in empty cells that are close enough to other brood. Honey and pollen are randomly
placed in cells and removed randomly at a rate proportional to the number of
neighboring brood cells. These simple rules are sufficient to produce a very close
approximation to the experimentally found patterns.

By simplifying a discrete time host-parisitoid maodel and placing the resultant
system on a grid, Hassell et al. (1991) have been able to study spatial effects in these
models. The form of the model is deterministic and is somewhat reminiscent of the
excitable CA above. There are nine states, 4, B, ..., I and each state goes to the
next state (I-A) with two exceptions. State 4 goes to B only if there is one B
neighbor. B represents a mature host colony. State D goes to state E only if one of
the four neighbots is in state F which is the mature parasitoid. The automaton
compares favorably with continuous state simulations of a spatial model. Figure 3
depicts output for this automata at a particular time; white is the absence of organ-
isms, light stippling is host, and darker stippling represents parasitoids. The basic
pattern slowly changes but stays qualitatively like that shown in the figure.

2.4, OTHER MODELS

The complexity of the nervous system and the difficulties with realistic models
have led to some applications of CA to neural networks. Hoffman (1987) suggests
a simple CA model for cortical electrical activity based on excitatory and inhibitory
cells with simple dynamics. Modifications of the Hopfield model (Hopfield, 1982) in
which the updating of the “neurons” is parallel rather than asynchronous leads to a
CA. Indeed, let S; denote the state of the i-th neuron at time ¢, then, the parallel
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FiG. 3, Host-parasitoid automata. White is state 0 and dark grey is state 8.

version of the Hopfield model is:

S:Jrl:H(ZW,JS;—B)
i

where w;; is a weight matrix, H is the Heaviside function, and @ is a threshold. This
is a two-state automata; the topology (i.e. line, plane, etc) of the network is deter-
mined by the weight matrix. Note that Young’s model described above is a special
instance of the “parallel Hopfield” model. An excellent example of a realistic CA
model is the approach taken by Pytte et al. (1991) where they derive a simplified
model of the hippocampal slice. The behavior of the simple model is qualitatively
(and quantitatively) similar to that of a much more complex model that involves
solving thousands of non-linear differential equations.

Other examples of CA applied to biclogy include models for immunology (Dayan
et al., 1988; Sieburgh ef al., 1990; DeBoer et al., 1991), tumor growth (Duchting &
Vogelssaenger, 1983 ; Chowdhury et al., 1991), bacterial aggregation (Stevens, 1991),
angiogenesis (Stokes, 1989) and “artificial life”. The latter bears some additional
mention ; by artificial life (hereafter AL), we mean “the study of man-made systems
that exhibit behaviors characteristic of living systems” (Langton, 1989). AL models
are similar to CA in that they involve the dynamics of discrete objects. However, AL
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are penerally more complex and ofien allow evolution to take place. For example,
one might study the evolution of some simple trait such as cluich size to see which
is more favorable. The recent volume edited by Langton describes some of these
simulations. Related automata as well as other “‘artificial life forms® can be found in
the book edited by Meyer & Wilson (1991). Kauffman (1984, 1990) has contributed a
large body of work to automata as applied to evolutionary biology and complexity,
A recent volume of Physica D (Forrest, 1990) contains related articles that are
relevant to biological complexity.

3. Deterministic Automata

In this section, we describe a class of CA with completely determined rules; that
is, once the initial state is known, all subsequent states are found by iterating and
updating synchronously. In these types of automata, one considers the state of each
position in an array of stationary cells rather than “following” the changing position
of a single cell as in the next two sections. For this reason, we call these “Eulerian”
automata, in analogy to fluid mechanics. This type of model is, in a sense, a limiting
case of some partial-differential equation or integro-differential equation. Indeed, it
is often desirable to make this analogy explicit in order to produce a realistic auto-
mata. [For example, Gerhardt et af. (1990¢) use this method to create more realistic
“models” for the Belousov-Zhabotinskii reaction.]

A general deterministic automata can be described in the following manner. The
“world” consists of a discrete lattice of points, usually two-dimensional. Each lattice
point is called a cell and takes on a finite number of states, say, 0,1,..., N. The
simplest automata have only two states. We let C,(f) denote the state of the celi at
position i at discrete time £. To obtain the value of the i-th cell at the next time step,
t+1, a rule is given which depends on the previous values of the cell and some
(perhaps all) of the other cells:

Cro1(8) = F(C), C)) ' (1)

where C,( j} represents states of other cells in the lattice denoted by the index j at
earlier times s <{. Typically, the dependence is on some small neighborhood of the
cell. Suppose that there are N states per cell, # neighbors, and t carlier time steps
needed. Then the total number of possible rules is:

_ N(m+1)r
Trulcs_ N

Often the rules are isotropic so that the dependence is on the states of the m neighbors
but the neighbors are interchangeable. In this case the {N™) component above is
replaced by (N"/m!).

In a CA, cells often influence and are influenced by ‘‘nearest neighbors”. However,
a neighborhood in two-dimensions can be defined in several different ways. Each cell
in a two-dimensional square lattice has eight nearest neighbors conveniently
addressed as points on the compass. The four neighbors sharing a common face are:
N, E, S and W. Those that can be reached diagonally are: NE, SE, NW, and SW. In
a hexagonal lattice there are six neighbors. A finite, deterministic CA must eventually
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repeat since only finitely many states are possible on a finite grid. A simple calculation
shows that for a total of M cells in the lattice, the total number of possible states is:

Prax =M™,

Thus, Py is the maximal period of the automaton. Periods of this length correspond
to completely “stochastic’ behavior. We define an automaton to be “periodic” if it
repeats after T'< P« time steps. Realistically speaking, T is usually considerably
sinaller than the maximum.

The abstract properties of general deterministic CA have been the object of much
study. The two volumes (Farmer ef al, 1984; Gutwitz, 1990) contain numerous
theoretical and applied articles on the subject. Rather than focus on general aspects
of CA, we will describe some techniques for deriving models from partial and integral
equations. There are two main methods for derivation. The simplest is to abstract
the observed phenomena into a few simple rules ignoring any explicit analogy to a
fully defined mathematical model. The other approach is to directly discretize the
mathematical model and obtain an antomata. The former approach is used by Young
(1984) and Hassel et al. (1991), while the latter has been exploited by Gerhardt
et al, (1990a, b, c).

3.1. HEURISTIC CELLULAR AUTOMATA

The best known heuristic automata are the multi-state excitable media described
in section 2. Conway’s “LIFE” (Dewdney, 1988), which has little biological meaning
other than a metaphor, is another example. (“LIFE” is a two-state automata on a
two-dimensional grid with eight neighbors. If the cell is on and the sum of the
neighbors is 2 or 3, the cell remains on. If the cell is off and the sum is 4, then it is
turned on, Any other situations turn the cell off.) '

3.1.1. Age-structured predator prey model

A somewhat naive, but instructive CA can be derived for an age-structured pre-
dator-prey interaction. We describe a single example although other rules can be
used to create many more examples of arbitrary complexity. The present model is a
deterministic analogue of the Monte Carlo simulation WATOR described in section 2.
Consider an automaton with eight states: (0)-empty site, (1)-prey, (2)-(6)-predator
stages (i-v), (7)-reproducing predator. The prey reproduce to fill nearest neighbor
empty sites. Reproducing predators fill sites that have prey or that are empty. The
progeny are then stage (i) predators and the parent “dies”, leaving an empty site.
Prey adjacent to predators disappear (are “eaten”). Predators require adjacent prey
to consume in order to mature into the next stage. If prey is not available in an
adjacent spot, they either become “hungry” or “die”. In a 50x 50 domain with
periodic boundary conditions, randomly distributed prey and one or more initial
predators, the automaton tends to form complex spatial patterns. The total predator
and prey populations undergo complex oscillations with a period of roughly five time
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steps (see Fig. 4). Details of the completely deterministic rules are given in the figure
legend. This model bears a resemblance to the model derived by Hassell ef al. (1991).
The total populations of sharks and fish oscillate fairly reguiarly much like a Lotka-
Volterra model.

3.1.2. Coupled oscillators

CA are ideally suited for studying oscillatory media and exploring properties of
these systems. The recent interest in systems of coupled non-linear neural oscillatots
has produced many results, but most of the analysis has dealt either with “all to all”
coupling or with coupling of oscillators in one-dimensional chains. Two-dimensional
oscillatory media have been infrequently studied and, due to analytic complexity,
may be best initially explored by CA simulations. Here we propose a heuristic model
for a locally coupled oscillatory mediurn.

The idea for this CA is based on the notion of a phase response curve. When an
oscillator is stimulated, the result is a shift in phase compared to the unstimulated
case. The curve of phase changes as a function of the phase of the stimulus is called
the phase response curve (PRC). For an excitatory stimulus, the PRC is qualitatively
like —f sin ¢ where f is the magnitude of the stimulus and ¢ is the phase of the
oscillator when the stimulus occurs,

Suppose each cell traverses m values, 0, 1, .. ., m—1 through which it cycles con-
tinuously. Thus, the period of the oscillator is m. (An excitable automata goes
through a similar cycle, but stops at 0.) The interaction is defined as follows: If at
least one of the neighboring cells is in state 0 (the firing state), then the new state is
given by:

new state = old state + R[old state] + 1 mod m,

where R is the PRC of cell. Thus R is a list of m integers that approximates the
“sinusoidal” shape of the PRC. This model, although simple, has many of the proper-
ties associated with non-linear oscillators with “pulsatile” coupling: phase-locking
(the pair of oscillators fire once per cycle and have the same pericd), phase drift (the
pair drift in and out of phase and behave almost as if uncoupled), subharmonic
locking (one oscillator fires » times for each m of the second), and phase death (the
coupling is so strong as to cause both to stop firing) are all possible for two such
cells coupled together. Pacemakers and linear gradients are easy to simulate by
allowing the individual cells to have different “‘periods”, thus a comparison to con-
tinuous time and state-space models can be directly made. For example, “frequency
plateaus”, intervals of locked cells separated by complex quasi-periodic motion, are
observed in a chain with a linear gradation in intrinsic frequency. A pacemaker
tegion with a slightly higher frequency than the rest of the medium acts as a wave
source and two such pacemakers can interact. If the frequency of the pacemaker is
considerably higher than that of the remaining medium, the pacemaker cannot phase-
lock the medium.
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FiG. 5. Two-dimensional oscillatory automata with 16 states and nearest neighbor coupling showing
development of a spiral wave, At cach time step the automata advances by 1 modulo 16 unless at least
one of its neighbors is in state 0, in which case it has an amount subtracted or added to it depending on
its present state. The amount for states 0-15 is, respectively: (0, -1, -2, -2, -3, -2,-2,-1,0,1, 2, 2,
3, 2, 2, 1). White is state 0 and black is state 15.

If these cells are coupled in two-spatial dimensions through nearest neighbors we
can ask whether synchrony (all cells oscillate with zero phase difference) is a necessity.
We find that for small enough domain sizes, random initial conditions lead to synch-
rony. For larger domain sizes, persistent spatial patterns arise. Figure 5 shows such
a spiral pattern. The “period” of the automata is best discerned by examining the
“core” of the spiral (the spatial point about which it rotates). For the solution
depicted, the period is 228 cycles in which time it “fires” 15 times. If this cell was
uncoupled from the rest of the medium, 240 cycles would be required to fire 15 times,
Thus the “spiral” wave has a higher frequency than the medium at rest and “takes
over”. The existence of spatial structures in this simple automata suggests that similar

FiG. 4. Temporal behavior of the automata PREDATOR. There are seven states in this model, 0
{empty), 1 (fish), 2 (shark 2), 3 {shark 3}, 4 (shark 4), 5 (shark 5), 6 (shark 6}, and 7 {mother). Empty
sites are transformed into fish il any neighboring cells contain fish and into shark 2 states if any neighboring
sites contain mothers. Fish states are transformed into shark 2 states if any neighboring sites contain
mothers. Even shark states become empty if there are no neighboring fish sites otherwise they advance
to the next state. Odd shark states advance to the next even state if there are no neighboring fish states.
Otherwise they advance to the next even state. Mothers become shark 2 states at the next time step.
{a) Figh versus time; (b) sharks versus time.
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solutions may be found in more realistic models of coupled oscillators. We have
recently confirmed this by proving the existence of rotating waves in two-dimensional
discrete lattice of coupled continuous oscillators.

3.2. CELLULAR AUTOMATA FROM MORE COMPLEX MODELS

Since the numerical solution of the types of non-linear evolution equations that
arise in biology involve so many unknown factors and are themselves simplifications
of a system, it is often convenient to further simplify them in order to quickly
ascertain their behavior. One approach is to reduce these models to finite automata
which, because they work in integer arithmetic and use lookup tables, allow for a
substantial increase in the speed of simulations. This approach is called ““fixed point
arithmetic” and is well known to programmers who use the language FORTH (which
coincidentally is the language that Toffoli & Margolis use to drive their hardware
CA simulator}.

Suppose that one has derived a set of partial-differential equations for some deter-
ministic phenomena. If the spatial domain of the model is continuous, then, we
discretize the domain into finitely many regions. Boundary conditions are naturally
applied to the discretization. If the time evolution of the model is discrete, then
nothing needs to be done. Otherwise, one approximates the time-derivative by a
simple discretization such as Euler’s method. Generally, time and space discretization
of a problem is obvious; the art and most difficult problems arise in attempting to
discretize the state space. In most biological models, reality constraints force the
dependent variables to lie in some finite bounds. (For example, in neurobiology,
there will be a maximal neural firing rate, in ecology, a carrying capacity, etc.) If one
can bound the dependent variables, then the final step is to break each state variable
into a fixed number of parts and scale all variables so that the states are integers.
Using these discretizations, rule tables are made and the CA is ready to be simulated.
In the following, we will apply these techniques to several continuous problems.

3.2.1. A reaction-diffusion system

Consider the two variable reaction-diffusion equations in the plane:

u,=f(u, v)+d, A

X )
v,=g{u, v) +d:A"v.
Here, u, v might represent chemical concentrations, populations of animals, or electri-
cal activity of cells and £, g represent the interactions between these two components.
The spatial interaction is via diffusion. The first step is to discretize this system in
time and space which leads to:

tnew = (1 = 1) + A(tn+ ug+ us+uw) /4 + Atf (u, v) =Flu, v, it),

3
Unew = l')(l —3'2) +)‘2(0N+ U£+Us+ UW)/4+A!g(u! U)EG(H, v, ﬁ) ( )
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where A, =4d,At/(Ax)’ and (&, 7) are the mean values of the four neighbors of (, v).
At is the minimum time step of interest (e.g. it could be msec for neurons or months
for populations of animals) and Ax=Ay are the minimum spatia) scales of interest.
For numerical procedures, it is generally assumed that A¢= O(Ax?) but this is unim-
portant for deriving CA. One can use a more accurate approximation of the Laplacian
operator than the simple average of four neighbors but for the present discussion,
this is unnecessary. Suppose we have chosen the functions f, g so that we can bound
the variables u, v to lie in a finite interval. Then, we rescale (3) so that the values of
1 and » are always between 0 and 1. This in turn implies that the rescaled functions
F, G lie between 0 and 1. The interval [0, 1] is broken into N+ 1 pieces and (3) is
used to build a state transition function for the new values (#ney , ¥new) oN this integer
grid. Thus, a correspondence is made between the values of u, v and each of the
integers, 0,..., N, with 0—0:0 and N—1-0. This enables us to produce two
“functions” ZF (i, j, k) and %(i, j, k) which are defined to be the closest point on the
grid to F(i/N, j/N,k/N) and G(i/N, j/N, k/N). More generally, one uses a different
value of N for each variable. Gerhardt er al. (1990q, b, ¢) perform essentially this
same procedure in order to produce a reaction-diffusion model that accurately
mimics the Belousov-Zhabotinskii kinetics. The recovery variable in their model has
many states, while the excitation variable has only two states.

We can easily apply the above method to produce an automata which shows
spatial pattern formation, oscillations, and complex, slowly varying spatial patterns
similar to those observed in some reaction--diffusion models. There are many activa-
tor-inhibitor systems from which to choose; by using a caricature of sigmoidal

Fia. 6. The “phase-plane” for egn (4). The kinetics for this figure are filu, v)=f(—u+
16H(12u— 160+ 32)), glu, vy=a(—~v+[2(u—4)}’). Here H(u) is the Heaviside step function with the
stipulation that H(0)=1/2 and

b ifx=b
[xlt={a ifx<a

x  otherwise,
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interactions with decay and autocatalytic self-excitation, one can produce a simple
two-variable model with nullclines as shown in Fig. 6. By “sigmoidal” inter-reactions,
we mean that the effects of the activator are initially small followed by a rapid
increase and then a saturation. This type of model occurs frequently in the activator-
inhibitor literature and is meant to caricature a kinetic interaction of the form:

K
K2+ u2

where K, K, are constants and u is the concentration of some substrate.

The phase-plane in Fig. 6 is typical in biological settings [see e.g. figs 5.6-5.8, 6.4
in Murray (1989)]. This choice of kinetics constrains both ¥ and v to lie in the
interval [0, 15). We let each of the two variables have 16 possible states, thus there
are a total of 256 states. The parameters in the automata are the rate constants
At @ and At B, the threshold, @, and the diffusion parameters A, and A,. The “rate
constants” are not to be interpreted too literally here, but rather as a means of
characterizing the relative rates of the activator and inhibitor as compared to the
relative diffusivity. That is, these parameters essentially determine the relative import-
ance of the local kinetics compared to the effects of neighbors on the transition to
new states. By varying these rate constants we can make the activator faster or slower
than the inhibitor; similarly, by varying the diffusion parameters A, we can create
lateral inhibition or activation. In Fig, 7, we show some of the dynamic behavior of
this automaton that mimics a non-linear activater inhibitor system.

Accuracy of this model with respect to the continuum equation can be improved
by using more accurate discretizations of the Laplacian as Tyson and colleagues have
done (Weimar ¢t al., 1991a, b).

3.2.2. A model for shell patterns

The CA in section 3.2.1 uses nearest neighbor coupling, Integral equations in space
can also be discretized to produce CA with longer range interactions. A neural model
for molluscan shell patterns incorporating long-range interactions is proposed in
Ermentrout et al. (1985). They present a discrete time, continuous space system of
neural equations that is easily converted to 2 CA. Let x}, denote the pigmentation
of position j and row r on the surface of the shell. x is either 0 or 1 depending on
pigmentation. If the neural activation and inhibition (obtained by sensing the pig-
ment previously deposited) differ by some amount, new pigmentation occurs. Thus

Fig. 7. Two examples of dynamics for the activator-inhibitor model described by eqns (3-4). The
parameters are (A, 4, aA¢t, BAL, 6). Top figure: target and spiral in the same medium. Both patterns
expand outward periodically in time [50, 10, 50, 20, 0}. Bottom figure: slowly moving striped pattern
[40, 70, 4G, 30, 3). Activator states are shown with state 0 colored white and state 15 black, [Note:
stationary patterns showing effect of lateral inhibition occur for parameters (30, 60, 55, 16, 7).]
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they arrive at the following equations:
Xe =H(Af—1f 6)
AL=F, (2 x W":x”') 4)

k=0 1=—b

=1 b

~#(T 3 whoeitt)

k=0 I=—b
where A7 is the activation, F, is the inhibition, w§; are positive weighting functions
(usually piecewise constant), H is the Heaviside function, 8 is a threshold, and F,
are saturating non-linearities. The discussion of this model can be found in Murray’s
book (Murray, 1989) or in Ermentrout et af. (1985). Each x4 is either 0 or 1 and the
activation, 4/ and inhibition, F}, depend only on the weighted values of x}. Thus, we
can rewrite (4) as:

- j-- b j+ b j— b ' +b
xn+| ‘?(xj "'!x{t ,‘-.,X{,_,+1,...,X{,_r+|).

This is a two-state automata. There is an astonishing variety to the patterns that this
automata can make. In particular, most of the patterns in Ermentrout er al. (1985)
can be readily simulated. For purposes of comparison, we note that the “totalistic”
rules of Wolfram (1984a, b) are of the same form as (4) provided that we choose the
weights wj appropriately and 7= 1. Molluscan patterns are also mocleled by CA-in
Gunji (1990) and Vincent (1986).

3.2.3. An immunological model

So far all of the examples in this section have utilized local rules in that interactions
depend only on the state of the cell and some of its nearest neighbors. Recently,
DeBoer et al. (1991) describe a continuous state “cellular automaton™ for shape-
space simulations of the immune system. This model is a simplification of a continu-
ous time integral equation in space. The interactions are not with neighboring sites,
but rather, with the complementary sites. That is, if the system is on an N x N grid,
then the interactions of cell (i, /) depend on (', j)=(N —i, N—j). From their model,
we obtain the simple 16 state model for the number of “B-cells”, b; at point (i, /) in
state space:

,H_{min(b§j+l,15) if 8, <h<8,
o max (b;—1,0) otherwise

where,
hiy=wobly + wi(N'+S8' + E+ W) + woNE +NW'+ SE +SW'").

Here, N’ means the northern neighbor of b}; at time t. The' five parameters
wo, Wi, w2, 8}, and @; are non-negative integers. The effect of taking the maximum
and minimum values is to apply a piecewise linear approximation to a saturating
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non-linearity. In Fig. 8, we show the result of a simulation of this automata. The
shading at the (4, j)-th node indicates the number of cells with the “shape” (i, j};
white is the lowest and black is the highest. If instead of the complementary rule, we
just allow local interactions, the resultant pattern consists of lines of cells that are at
0 or 15; no complex spatial patterns occur. The idea of this model is to mimic
the interactions of B cells in a simple two-dimensional shape space. Here, the two
dimensions of the model do not correspond to real space bul rather to some abstract
properties (e.g. the shape of an antibody) characterizing the B cells. The variable A
characterizes the total stimulation of each population of B cells which comes from
the complementary “shape”, (N—i, N—j). For details on the biclogical justification
of this model as well as some analyses of the continuous case, consult (DeBoer et
al., 1991).

There are many other examples of realistic models that can be converted to auto-
mata. A model that is too simplistic admits no biological interpretation, whereas an
overly complex model does not permit exploration of a wide range of different
parameters in large spatial domains. Thus, a balance must be struck between the
conflicting desires of realism and biological interpretability on one hand, and the
basic aim of keeping the simulations simple to avoid lengthy computations,

F1G. 8. Stowly varying spatial pattern for the “immune” model defined by eqn (3.8). State 0 is white
and state 1 black.
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4. Biological Lattice Gases

In the previous section, we examined examples of automata in which there is some
quantity at every point in the grid and the evolution of this quantity was determined
by the present state and previous states. Here, instead, we follow “particles” which
stand for cells, organisms, or molecules as they move about the empty grid points.
The particles move and bind to the medium, but binding is assumed to be reversible.
(Irreversible binding is the subject of the growth models of the next section.) We
present three examples of this sort ranging from the subcellular to the organismic
level. The models exhibit collective organization that can often be modeled by a
simpler continuous dynamical system, albeit at the risk of losing spatial information.
Indeed, in Edelstein-Keshet & Ermentrout (19905), we apply this spatial homogeniza-
tion to determine the density of cells at which parallel arrays are formed in fibroblast
aggregates.

The basic idea of what we call a “lattice gas™ is that particles move in a medium
(whether randomly or deterministically) over a discrete lattice and undergo state
changes when they collide. The primary interest is the steady-state behavior of the
system, or more specifically in the case of biological models, in the steady spatial
pattern. Examples of this type have been applied to fluid dynamics (Frisch et al.,
1986; Doolen & Montgomery, 1987; Chopard & Droz, 1988}, spin glasses (Farmer
et al., 1984), billiard ball computations (Farmer et al., 1984; Vichniac, 1984}, and
ferro-magnetism (Wolfram, 1986). Note that, unlike models of section 3, probabilities
are involved in these models, and thus, the initial configuration does not uniquely
specify the dynamics. This is an advantage since different initial states are unlikely
to lead to different final configurations. Thus, only the parameters and not the initial
data must be varied. A well-known tool also based on probabilistic events is the
Monte Carlo simulation, which has a long history in numerical computation of
PDEs. While Monte Carlo simulations are closely related to our simple models, they
differ in permitting a continuum of values where, in our models, the number of
permissible states is limited. Some previously described examples of lattice gas models
are the WATOR. simutation, Camazine’s model for honey combs, and the ecological
model of Moloney et al. (1991).

It would be impossible to adequately survey all know lattice gas models in this
brief space. We shall instead describe three examples that have arisen in our own
research.

4.1. FIBROBLAST AGGREGATION

Experiments using cell cultures of fibroblasts show that as the density of the
cultures increase, the cells begin to line up into “parallel arrays”. In Edelstein-
Keshet & Ermentrout (19904, b) we describe a model for this phenomenon, derive
continuous integro-differential equations, and obtain conditions for pattern forma-
tion as functions of the cell density, turning rate, and binding rates. Cells with initially
random orientations are placed in a dish. The cells crawl and make occasional
random turns. If a cell comes into contact with other cells or with groups of cells it
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attempts to align, provided the angle of contact is sufficiently small. As groups of
aligned cells form, they recruit other cells into an array that has a definite direction.
Cells in an array do not reorient. If the total number of cells is sufficiently large,
eventually only a few arrays of cells of similar orientations are obtained. For a small
number of cells, parallel arrays form only transiently.

In our automata, we consider N cells in an m x m array with periodic boundary
conditions (N <m”). With each cell C; we associate an orientation as well as a state
(bound or unbound). The cell’s orientation determines its direction of motion for
the next time step. There is a fixed probability Py of reorienting by one angular unit
per time step. For example, if eight orientations are used to discretize angles, then
the cell moves to the appropriate neighbor, turning by one unit with probability P,.
If, instead, 16 orientations are used, the movement direction depends on whether the
time step is odd or even. {A cell that is oriented halfway between N and NE will
mazke a north step followed by a northeast step at the next time step.)

At each time step, an unbound cell may reverse its direction of motion with
probability Pp. If it comes into contact with another cell or group of cells, the
probability of binding and aligning is P, if the angle of contact is small enough.
Otherwise, the approaching cell reverses direction and moves away. Bound cells do
not move. The probability that a bound cell detaches from a group is Pp.

The simulation begins with all N cells unbound and assigned random orientations.
Total numbers of cells in each orientation are tabulated and the simulation is followed
until a steady state appears to be reached. Assuming “well mixing” (i.e. neglecting
spatial structure) we show in (Edelstein-Keshet & Ermentrout, 19905} that if the
total number of cells is large enough (say, N*) then parallel arrays will form. In Fig. 9,
we depict a simulation involving N < N* cells. There are transients that last for a
long time, but no orientation eventuatly wins out. Figure 10 shows the same simula-
tion with N> N*. Parallel arrays quickly form.

To give the reader some of the flavor for the mathematics that arises, we derive
the continuum models for this automata. Let #(8, ) denote the number of free cells
in the array with orientation 9 at time ¢. Let 5(6, ) be the number of bound cells.
The probability of a collision between two free cells is (8, n(@', 1)/ V> where V is
the volume (or in the present case, the area) of the “dish”. Similarly a(8, )b(&', t)/
¥? is the collision rate of bound and free cells. From this we see the following must
hold:

n(8, 1+1)=n(0, 1)~ P.n(0, 1) :—/z K(0—8)(n(®, 1)
<
+b(8, )+ Pr(n(0+m, ) —n(8, 1))+ Ppb(6, 1)
+ Poln(B+3, ) +n(0—38, 1)—2n(0, 1)) (5)

for the unattached cells. The first term is the interaction between all other orientations
that causes loss of free cells. The function K is 1 if the difference in the angles is
small enough and 0 otherwise. The Py term arises from the ability of cells to reverse
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Fic. 9. Fibroblast automata for ¥ < N* showing inability for one erientation to dominate. There are
N “cells” in 16 different orientations that randomly move about the squate with periodic boundary
conditions. Each cell has a probability p, of reorienting. If two cells bump into cach other and are not
perpendicular in orientation, they align at one of the two orientations with probability p, and become
bound and immobilized. Simitarly a single cell that runs into a bound cell will stick to the bound cell with
probability p,. Cells can fall out of the bound state with probability p,. Spatial arrangement after over
10 000 iterations. The parameters are N =50, p,=099, p,=0-05, p,=0-1, p,=0-99.

direction, the Pp term is the rate of detachment from bound cells, and the Py term
arises from reorientation to the next close angle. For the bound cells, we have:

B(6, 1+1)=b(0, 1)+ P.(n(0, )+ b(8, 1)) :l/ Y K(0—0)n(8', 1) = Ppb(8, ). (6)
<

In our analysis of these equations (with continuous time) it is shown that if the
number of cells is sufficiently great (or equivalently, if the domain is small enough),
then an instability of the homogeneous steady state arises and one orientation is
selected. The continuum model proposed above does not incorporate spatial patterns
which is why we use the CA model. The full spatial equations would be very com-
plicated (see e.g. Edelstein-Keshet & Ermentrout, 1989).
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FiG. 10. Same as Fig. 9 but &= 100. This depicts the state after 6500 steps.

4.2. OCCULAR DOMINANCE COLUMNS

Occular dominance columns are regions in the visual cortex of the brain which
receive neural signals from one of the two eyes. During development, different nerves
with signals from each eye must grow towards and form contacts (synapses) with
target tissue in the visual cortex. As a result, the region becomes organized into
striking spots and stripes of left versus right eye dominated regions, i.e. occular
dominance colummns. (These can be visualized by radiolabeling experiments.) The
problem of formation of these patterns of occular dominance has been a subject of
numerous mathematical and experimental studies (Fraser, 1980; Swindale, 1980;
Miller et al., 1989; Fraser & Perkel, 1990). Many of these studies are based on the idea
that the target tissue within the cortex is initially homogeneous and the formation of
synapses somehow enhances the creation of more synapses of the same occularity.
The mechanism for this affinity could be activity dependent (i.e. Hebbian) or it counld
depend on some chemical affinity (see e.g. Fraser & Perkel, 1990). Hebbian synapses
strengthen if the pre- and post-synaptic activities are correlated. In the chemical
affinity model, ““like” axons attract each other through chemical markers.

We briefly describe such a model using biological lattice gases. Consider a lattice
of unoccupied sites filled with freely diffusing particles of two types, say L and R.
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The particles represent crawling neurites that emanate from the left and right eyes,
respectively. The lattice represents the target tissue. At any given time there is a
probability of binding to a free site, Py as well as a probabilily of unbinding if
already attached, Py. It is clear that if the probabilities were fixed, no driving force
for the emergence of pattern would exist, and no pattern would emerge. Thus, we
asgsume that these probabilities depend on the number of neighbors that are of the
same type as the given neurite, namely, we assume that the probability of binding,
Py is an increasing function and that the probability of unbinding P is a decreasing
function of the number of like neighbors, We investigate whether such neighborhood
effects suffice to induce spatial segrepation.

If the probabilities are uniform, then initially random assortments of cells remain
random and no segregation occurs. In contrast to this, Fig. 11 shows the results of
a simulation when the binding rates are state dependent. The phenomenon of segrega-
tion is clear cut. We observe, further, that the average spacing of the segregated
patches is not identical with the spatial length scale of an interaction but is rather
much larger. The (analytic) determination of this spacing as a function of the prob-
abilities is an open problem. (We have begun analysis of a deterministic model in
one spatial dimension which may partially address this question.)
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Fig. 11. DOMINANCE automata for modeling the formation of occular dominance columns. There
are two types of “cells”, dark and light and a two-dimensional array of grid points. A cell occupies a grid
point with a probability dependent on the neighborhood of the grid point. The probabilities of binding
increase as the number of neighbors that are of the light or dark type increase. This leads to a stripe-like
pattern and definitive boundaties between cell types. In the absence of state-dependent probability, no
patiern is formed.
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Several variants of the preceding occular dominance auvtomaton can be envi-
sioned. First, clearly, a simulation of this sort need not be restricted to two cell types;
rather one could generalize this to k different neurite types, possibly arriving at a
model for orientation preference (see e.g. Miller er al., 1989). Further, it is also
possible to treat the transition rules in a quasi-deterministic fashion. A deterministic
model that has much the same behavior as our original two-state system is described
below.

Initially suppose that two states L and R are randomly distributed on an mxm
grid. Let a neighborhood be defined as a central square together with it eight nearest
neighbors. Let o represent the sum of members of a neighborhood that are in state
L. If 6=6,7, 8, or 9, in the next step the state of the central square becomes L. On
the other hand, if =0, 1, 2, or 3, the transition is to R. When o =4, 5 neither is a2
clear winner, so the “majority rule” is reversed: i.e. if o =4, the state changes to L
but if o=35 it changes to R. Such switching is important in order to permit some
“random” change to occur when a balance between types exists. This particular
automata, called “ANNEAL” in Toffoli & Margolis (1988) is used as a model for
anpealing. The edges slowly are eroded away, but the stripe-like quality remains. In
Fig. 12 we show a typical result of this simulation.

Fi1G. 12. Simple model based on the automata ANNEAL described in the text. Here, state ¢ is white
and state 1 is black. ’
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4.3. SELF-ORGANIZATION OF ANT TRAILS.

Ants are known to communicate by a variety of means including chemical (phero-
mone) signals that they deposit along their trails. A pheromone trail deposited by a
worker returning from a food find to the nest elicits recruitment of fellow workers
to the find (Deneubourg et al., 1989). Various types of foraging ants, and particularly
army ants, continuously secrete pheromone even in the absence of food (Holldébler
& Wilson, 1990). Our interest is in the possible range of behavior that arises when
individuals create (or reinforce pre-existing) trails while attempting to follow new
trails that they cross. One expects limiting cases in which ants fail to find one
another’s trails and remain solitary, or in which a small subset of trails carry the
majority of the traffic. A striking example of the latter which actually occurs in
nature, is the “ant mill”, a closed circular path in which ants (mostly army ants)
follow each other meaninglessly to the point of starvation and death [see figs 12-16
in Holldobler & Wilson (1990)].

FiG. 13. Ant automata showing snapshots at three different times. There are 20 ants on a 50 x 50 grid.
The parameters are K., =30, K= 18 when on the trail, K=8 when off, P,,=0-001, and P,y=0-0l. First
figure: early part of simulation showing disordered movement (T =24). Second figure: later two strong
trails arise (T=1728). Third figure: eventually a single trai! dominates (7'=4032). This persists at least
until 7=12 000 when the simulation was stopped.
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We now describe a very simple spatial model for trail following in ants which
could possibly apply to other types of organisms. Consider an mxm grid with
periodic (toroidal) boundary conditions as we have encountered in previous examples
(i.e. a particle leaving from one edge, returns at the opposite edge). On this lattice,
a population of N ants moves in random directions. Each ant secretes a pheromone
trail which then evaporates at some rate. Other ants encountering this trail will
possibly turn (by an acute angle) and follow the trail, also depositing pheromone
along it. If the ant approaches the trail at a right angle, it crosses and ignores the
trail. While following a pre-existing trail, the ant has a probability P,, of losing the
trail by turning away from it. A solitary ant makes occasional random turns with
probability Pr. Generally P.g® Pop.

An amount K of pheromone units is secreted by each ant every time step. K
depends on whether or not the ant is on or off the trail; generally, more pheromone
is secreted when the ant is on the trail. We assume that the maximal pheromone level
at a lattice site cannot exceed Kn.x. (The Ievel is artifically set to this maximum if it
exceeds it at any location.) Pheromone “decays” at the rate of one unit per time
step, 80 that a solitary trail disappears (from the rear) after K, time steps. The

F1G. 13—continued.
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domain size is assumed large relative to the diffusional range of the pheromone so
that a simulated ant senses the trail only when crossing it directly.

The automaton requires seven parameters: the size of the grid, m, the number of
ants, N, the maximum pheromone allowed on one site, K., the amount of phero-
mone deposited by an ant on the trail, K,,, the amount when off the trail, K,q, the
probability of turning when not following a trail, P.y, and the probability of turning
when on the trail, P,,.

In Fig. 13 we show snap shots of the ANT automaton simulation incorporating
the above rules. In the earliest stages, ants move about in a disordered way, but in
time, most are following some trail. In the last frame, all ants are on a single trail
circling around the domain. For a larger number of ants, the behavior is somewhat
different: several “trunk’® trails evolve and the ““ants” move between these, but a
single dominant trail does not evolve (see Fig. 14).

We have recently derived continuum models for trail following that explain some
of the phenomena in this discrete model. Roughly, we assume that there are many
trails and that ants choose between them depending on a difference in pheromone
concentration. This effect is “autocatalytic” since as ants cross from one trail to

F1G. 13—continued.
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FiG. 14. Same parameters as Fig. 13 but N =80 ants. There are three stable trails that persisted until
the simulation was tetminated. There are enough ants to maintain three strong trails.

another, more pheromone is added to the chosen trail. The ideas in the continuum
and the discrete models are related to those in a series of detailed theoretical and
experimental papers by Deneubourg and others (198%). (See their article for
many more references to their large body of work on simulating ant social
organizations.)

One can imagine many similar types of models involving migration, attraction,
and diffusion of cells and organisms. The probabilistic formulation as well as deriva-
tions of continuum models for animal movement has been extensively studied in
papers by Othmer ef al. (1988). In our approach, the emphasis is on undersianding
the evolution of patterns from considerations of directional and spatial aspects of
the individual organisms’ motion.

5. Growth Autemata

In this section, we describe a number of automata that can be viewed as models
for growth in a medium. We assume that only sites adjacent to pre-existing ‘“‘cells”
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can be populated by new cells. Further, once a site is occupied, it remains occupied.
These models are local. Indeed, the radius of the active (i.e. “living’) region has a
finite velocity of propagation which is proportional to the rate of growth of the cells.
Sites distant from the “growing” edge of the medium cannot change as is the case
in the first class of automata (for example, the IMMUNE and OSCILLATORY
automata). The models described below bear a resemblance to diffusion-limited
aggregation (DLA) but with the absence of the diffusing particles. Instead of generat-
ing growth by accretion of such aggregating particles, we have new cells spontane-
ously added at a given point of growth once certain conditions are met. The simple
model for bacterial colonies described below owes much to some simple models for
freezing and phase-transitions (see below for details).

5.1. FUNGAL BRANCHING

In Edelstein-Keshet & Ermentrout (1989) we introduced a two-dimensional contin-
uum model for the growth of branching structures such as fungi. Key ideas in such
growth mechanisms were tip splitting as a means of growth and anastomosis (cross-
linking) as a way to limit over-growth. Here, we propose a simple discrete automaton
based on similar ideas. We imagine branches growing at their tips in one of eight
possible directions. With probability p, a growing tip splits into two growing tips.
With probability p, a growing tip spontaneously dies. If a tip contacts a pre-existing
branch, it forms a junction (anastomosis) and ceases to extend. Note that a formal
similarity exists between growing tips and branches in this model and moving ants
and trails, respectively, in a previous example. However, here the branches (“trails™)
do not decay and tips (“ants”) stop when crossing a branch. Because there is no
“self stimulation™ or autocatalysis, no inhomogeneities in density form in this model.
In Fig. 15 we show the shapes of various colonies that occur under parameter
variations. If p, is small, the shapes of the “colonies™ are fairly regular, while for
larger p, the colonies are irregular and sometimes cease to grow before filling the
domain, The patterns resemble fractals; there are many small “holes”, fewer medium
“holes” and very few large “holes”. Biological structures such as blood vessels,
bronchioles, intestinal villi, and others have been shown to have fractal properties
(see Stokes, 1989); it would be interesting to investigate whether the branching
automata have similar properties.

One can improve the realism of the above branching models in several ways. For
example, branching could depend on a depletable resource, on the time since last
branching, or on transport of substances through the branches (see Edelstein-Keshet
& Segel, 1983). We can allow branches to thicken (grow laterally) or wither away.
Some modifications of these types may allow the branching automata to more closely
describe the development of vascular networks.

5.2. GROWTH OF BACTERIA

In a series of novel and interesting experiments Fujikawa & Matsushita (1989)
and Matsuyama et al. (1989) showed that in a nutrient-depleted culture, or with-
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FiG. 15. BRANCH automata. Eight cells start in the middle of the region with each of the eight
otientations. These move outward at one space per time step. At any given time, a growing tip can split
into two which are 45 degrees on either side of the tip orientation with probability p,. If a tip hits a
branch then it is extinguished. A tip can also spontaneously die with probability p,. First figure: p,=0-4,
pa=01, This leads to dense colonies that are somewhat irregular. Second figure: p,=0-1, p,=0-02. A
much sparser colony looking more like blood vessel patterns or glass cracks.

motility inhibitors, bacterial colonies attained a form that was very irregular and
resembled the shapes of diffusion-limited aggregation. These colonies had non-integral
fractal dimensions and showed self-similarity. The above authors suggested diffusion-
limited aggregation (DLA) as a model for this phenomena based on the similarity
of fractal dimensions of the colonies and the DLA patterns, However, a connection
between a growth model and DLA must be somewhat indirect, at best. In DLA a
fixed cell in the center of the domain acts as target. Single particles diffuse from
“infinity” (i.e. from the boundary of the domain) and stick to one of the four
neighboring spaces of the cell. The particle is then frozen into position and another
particle is rcleased. Aggregating particles form tendrils and feathery protrustons
which prevent other particles from getting close to the center. The result is a fractal
structure that bears striking resemblance to precipitates in weak chemical mixtures,
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Fi1G. 15—continued.

Although the shapes of DLA patterns may resemble those of certain bacterial
colonies, the mechanisms are clearly distinct. In bacterial colonies, cells are added
through division of nearby cells. Immotile cells cannot move to more favorable
locations. In the presence of a limited amount of nutrient, food will be depleted near
the center of the colony and thus portions of the colony edge which protude furthest
into undepleted medium would have the best chance of growing. Thus, it is likely
that fractal patterns similar to those of DLA would be generated by a depletion and
crowding model. Consider the following automata model based on crowding and
food depletion. A diffusable nutrient is placed in the dish and at each time step, the
new amount of nutrient is calculated from a weighted average of the nutrient in the
eight neighboring sites and the amount used in that step:

food=(1—3) - old food+ 5 - mean—eaten

Here,

_HN+S+E+ W)+ (NE+SE+SW+NW)
- 20

mearn
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and

a, if new cell formed
eaten=¢ a, if cell exists
0 otherwise.

To take crowding into effect, consider the number of neighbors of a given cell that
are occupied by other cells (a number between 0-8), and define a function f of this
number. f should be small for small and large numbers of neighbors with 2 maximum
occurring at some optimum number. Every m time steps, cell division occurs; nutrient
diffusion occurs at each time step. (The parameter m allows us to vary the growth
time scale relative to the diffusion time of the nutrient.) Growth of an unoccupied
cell occurs with probability 1/2 if f food > @ where € is a threshold. In Fig. 16, we
show the results of simulations of this automaton with changes in the threshold for
growth. The shapes of the “colonies” are quite complex, varying from circular ones
when the threshold is low to fractal-like, as observed in the above experiments.
This bacterial growth model is intimately related to automata used in describing
solidification patterns. Packard (1986) studied fractal formations in a combination
CA and continuous diffusion model. His idea is that heat diffuses and, if enough
frozen neighbors exist, then the state of a cell switches from liquid 1o solid. This
phase transition leads to the release of a small amount of latent heat which adds to
the total temperature of the system. As a result, freezing is inhibited. Temperature
plays the role of the depletion of nutrient in our model; the higher the temperature
(the less nutrient), the less likely it is that freezing (cell growth) will occur. Packard’s
model also has a crowding portion which plays the role of surface tension effects. -
Our crowding occurs via the function f defined above. Various attempts with other
models involving only nutrient depletion without crowding or only crowding without
nutrient depletion fail to produce the fractal patterns. Since these latter models
produce only round, even colony margins, it would appear that an interplay between
the effects of crowding and nutrient depletion is required for the characteristicaily
fractal patterns.

6. Discussion

We have explored a number of methods for creating models of biological processes
based on discrete time, discrete space, and discrete state simulations. These examples
and models have allowed us to infer a number of properties and consequences of the
mechanisms suggesting the simulation. For example, in observing branching structure
formed under different choices for tip branch and tip death probabilities, we
encountered cases in which the “colony” reached a terminal size. In other parameter
regimes, growth continues unabated.

CA models are fast and fairly easy to implement. Furthermore, the visual feedback
they provide is striking and often resembles the patterns experimentally observed.
These two aspects of CA modeling are its biggest advantage over more traditional
approaches. CA are thus an excellent way of formalizing a theory of purported
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Fig. 16. BACTERIA automata, The crowding function is f=(0, 40, 40, 40, 30, 20, 10,0, 0) for 0
through eight occupied neighbors. There are six parameters: initial food per site (F=100), food for
sustenance {a,=10), food for growth (a@,=60), threshold for division (8), diffusion (6= 100}, steps
between growth (T=8). At each time step food is consumed and every T time steps, growth can occur,
If '+ Fis larger than @ then with 50% probability, a cell will appear. First figure: low threshold results
in rounded dense colonies 6=2200. Second figure: intermediate threshold leads to sparser branched
colonies 8=2600. Third figure: higher threshold resuits in very sparse colonies with long tendrils 8=
2750. :

mechanism into computational terms. This is an important first step in the under-
standing of any physical process. By creating a simulation, one is forced to decide
what properties are necessary for the occurrence of some natural phenomenon.
Because a CA is completely self-contained, it is 8 way to test the sufficiency and
necessity in their conceptual simplicity (e.g. compare the excitable rules with a two-
dimensional reaction-diffusion equation), descriptive implementation, and graphical
feedback. :
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Fig. 16 —continued.

We do not believe that CA should be viewed as a replacement for rigorous mathe-
matical models. Instead, they should be considered as a first step in the modeling
process. Once it has been established that the CA implementation of one’s hypothesis
produces the desired results, then one must proceed toward deriving a traditional
mathematical model. For then and only then is it possible to bring to bear tools from
analysis such as stability theory, bifurcation theory, and perturbation methods. Only
in very rare instances has it been possible to prove the existence of some particular
behavior for a CA. Generally, the only available technique is to run the simulation.
For lattice gas and solidification types of automata, this provides little since the
results are governed by random processes. A “run” of a deterministic antomaton is
exact since all aspects of the simulation are integers of finite precision. Thus, such a
run can “prove” that a pattern exists. However, it is much more difficult to prove a
general result on the existence of some pattern that will hold over a range of para-
meters and initial conditions.

Some investigators have attempted to reproduce quantitative aspects of partial-
differential equations using improved CA models. In particular, techniques such as
increasing the total number of states, averaging over larger neighborhoods and com-
plex lookup tables, have been applied to a number of problems. These methods allow
the investigators to get accurate simulations of the partial-differential equations they
are meant to mimic. The improvements are not without difficulties. In creating more
complex rules, some of the advantages of CA are defeated: speed and conceptual
simplicity. Since these more complex models elude analysis and take considerably
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longer to simulate, one should be cautious in trying to push CA beyond their inherent
strengths.

In spite of the misgivings in the previous paragraphs, we believe that CA can play
an important role in theoretical biology. First, they provide a simple transition from
a verbal and non-rigorous statement of mechanisms to a formal model. Second, their
speed and graphical clarity furnish a means of testing a range of models and param-
eters while getting almost immediate feedback. Since so much of biology is at best
qualitative, CA are good tools in that one need not specify precise values of (most
likely unknown) parameters before obtaining some results from the model. Finally,
CA provide a theoretical framework on which to build a rigorous mathematical
model that can be analyzed and further refined.
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9002028. During initial stages of this work L. Edelstein-Keshet was supported by a National
Science Foundation grant DMS8601644. She is currently supported by the National Sciences
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