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1 Introduction

In this review, I will discuss a number of methods than can be used to math-
ematically analyze the behavior of coupled neural oscillators and networks of
such units. This is by no means an exhaustive review and I refer the reader to
the comprehensive reviews by Kopell and Ermentrout [39] or Rubin and Ter-
man [55] which cover many more details. I will begin with a discussion of how
oscillations arise in neural models. I then discuss the phase resetting curve,
an experimental measure, and how this can be used to analyze coupled neu-
ral oscillators. A related method using discrete dynamics is applied to pairs
of excitatory-inhibitory local networks. I then discuss a variety of general re-
duction procedures that lead to drastically simplified models suitable for use in
large networks. I conclude with a brief discussion of network behavior.

Oscillations are observed throughout the nervous system at all levels from
single cell to large networks. Some of the earliest experiments in physiology
were aimed at understanding the underlying mechanisms of rhythmicity in nerve
axons. Indeed, Hodgkin & Huxley won their Nobel Prize for dissecting the bio-
physical mechanisms underlying action potential generation in the giant axon
of the squid. Oscillations are often associated with simple repetitive motor pat-
terns such as walking, swimming, chewing, breathing, and copulation. Muscles
responsible for these actions are controlled by the outputs of neurons whose
outputs in turn are controlled by neural circuits in the brain and spinal cord.
For this reason, they are called central pattern generators (CPGs). CPGs in
the stomatogastric ganglion in the lobster have been well characterized and the
exact wiring and neurons responsible for the activity are in some cases com-
pletely known [45]. CPGs produce a variety of regular rhythms that control
the behavior of the target muscles. Thus, in the case of CPGs the importance
of oscillatory behavior is clear and without doubt. Various models based on
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coupled oscillators have been suggested for quadruped locomotion ([6, 56, 14]).
Undulatory swimming in the leech [4], the lamprey[13], and other animals is
controlled by a series of segmental oscillators [12].

Oscillations in various areas of the brain are also associated with various
pathologies. Epilepsy produces massive rhythmic or near rhythmic behavior
throughout large areas of the brain. Parkinsonian tremors appear to be a con-
sequence of pathological rhythmic behavior in an area of the brain called the
basal ganglia. Large amplitude rhythmic electroencephalographic (EEG) activ-
ity is found in patients suffering from Creutzfeldt-Jacob disease. Oscillations
occur throughout large regions of the brain during anaesthesia and sleep.

The possible role of oscillatory activity in normal sensory and cognitive be-
havior is more controversial. It has been suggested that synchronous oscillations
in cortex and the phase and timing information they confer could be used to
bind together different aspects of a sensory stimulus [31, 57]. Synchronous os-
cillations in the antennal lobe of insects appear to enhance the ability of the
animal to distinguish between two closely related odors [58]. In [25], we sug-
gested that synchronous oscillatory activity enhanced the competition different
stimuli thus making it possible to direct attention the the more salient one.
In a series of papers [20, 28] we studied the role of oscillations and waves in
the learning of odors by the slug by modeling neurons in the procerebral lobe.
Ulinski and coworkers [47] have analyzed stimulus-induced waves in the turtle
visual area and suggest that the patterns of these waves are characterizing the
stimulus in a global distributed fashion. Lam et al [42] suggest that odors are
encoded by patterns of oscillations in the turtle olfactory bulb. In spite of the
large experimental literature on these sensory-induced oscillations, there is still
no definitive evidence for their role in cognition.

2 How does rhythmicity arise

In this section, I discuss the mechanisms that generate periodic behavior from
the point of view of nonlinear dynamics. I will only sketch the main points; a
thorough and detailed account can be found in [54]. Suppose that we consider
a nonlinear differential equation of the form:

dx

dt
= F (x, α) (1)

where α is a parameter and x ∈ Rn. Most models of neurons have a resting
state which corresponds to a fixed point of the system (1). As the parameter
increases, we assume that a limit cycle arises. There are several mechanisms
by which this can happen. The best known is the Hopf bifurcation (HB). In
the HB, the fixed point x0(α) becomes unstable at α = α0 when a complex
conjugate pair of eigenvalues of the linearized system cross the imaginary axis
at ±iω. Generically, a branch of periodic orbits emerges from this fixed point;
these cycles have small amplitude and have the form:

x(t) = x0(α0) + εz(t)Φeiωt + cc
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where “cc” means complex conjugates, Φ is a fixed complex vector depending
on the problem and z(t) is a complex scalar which satisfies

dz

dt
= ε[a(α− α0)z + cz2z̄] (2)

with a, c complex constants. If Re c < 0 we say that the bifurcation is supercrit-

ical and the resulting branch of small amplitude periodic orbits is stable (Fig
1A). If Rec > 0, then the bifurcation is subcritical and the resulting oscillations
are unstable. In most neural models, the unstable branches turn around and
produce stable periodic orbits which have large amplitude. This is shown in
Figure 1B. This case is quite interesting since, for a range of parameters near
α0, there is both a stable fixed point and a stable large amplitude oscillation
separated in phase space by the unstable small amplitude periodic orbit. The
frequency of oscillations in a Hopf bifurcation is generally confined to a rather
limited range (Fig 1D). Hodgkin [34] classified the firing patterns of nerve axons
into two different classes : Class I and Class II excitability. (Also called Type I
and Type II). In Rinzel and Ermentrout, we suggest that the properties of type
II neurons are consistent with the dynamics resulting from a Hopf bifurcation.

A second common way for oscillations to emerge from a fixed point is through
a saddle-node infinite-period bifurcation. Unlike the Hopf bifurcation, this is
a global bifurcation and requires knowledge of the full phase space in order to
prove. Figure 1C illustrates this bifurcation. There is a stable fixed point
xn and a saddlepoint xs with a one-dimensional unstable manifold and an
n − 1 − dimensional stable manifold. The branches of the unstable manifold
terminate on the stable fixed point forming a heteroclinic loop. As the pa-
rameter α changes, these two fixed points merge at a saddle-node bifurcation.
However, the global loop still remains (see Figure 1C) and as the parameter
passes through α0, the fixed points disappear leaving a large amplitude stable
periodic orbit. The frequency of this orbit can be arbitrarily low and scales as√
α− α0 (Fig 1F.) Rinzel and Ermentrout suggest that the properties of class I

(Type I) neurons are consistent with this type of dynamics. The local behavior
of a saddle-node is captured by the normal form [41]:

dx

dt
= qx2 + b(α− α0) (3)

where q > 0, b > 0 are problem dependent parameters. When α > α0 (3) has no
fixed points and any initial conditions tend to infinity in finite time. The real
line can be mapped onto the circle so that this “blow-up” no longer occurs by
making the change of variables, x = tan θ/2 leading to:

dθ

dt
= q(1 − cos θ) + b(1 + cos θ)[α − α0]. (4)

In spite of the global nature of the dynamics, in [22] we show that the behavior
near the saddle-node on a circle is captured by this simple scalar model. This
model is often used to simulate spiking neurons and is called the ”theta” model.
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Figure 1: Firing rates for neuron models. (A) Onset of periodicity through a
supercritical Hopf bifurcation leading to small amplitude stable periodic orbits
(B) Subcritical Hopf bifurcation showing large amplitude limit cycles and bista-
bility between oscillations and the fixed point. (C) Saddle-node on a limit cycle
bifurcation to large amplitude periodic orbits. (D) Frequency (firing rate) as a
function of current for the bifurcations in A,B. (E) Frequency versus current for
the leaky integrate-and-fire model (LIF). (F) Frequency versus current for the
bifurcation C and for the quadratic integrate-and-fire model (QIF). (G) Voltage
plots for the LIF model with spikes painted on. (H) Voltage plots for the QIF
model.
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It seems to be a better model for the dynamics of cortical inhibitory neurons
than the Hopf bifurcation model. Note that under this change of variables,
θ = π is equivalent to approaching +∞ and “resetting” to −∞ in the original
equation (3). If, instead of letting x reach +∞ in equation (3)and then resetting
to −∞ we reset to a finite value xreset when x crosses xspike , then we obtain a
simple computational model for a spiking neuron called the quadratic integrate-
and-fire (QIF) model. This was first introduced by Latham et al [43] in the
following equivalent form:

τ
dV

dt
=

(V − Vrest)(V − Vthresh)

Vthresh − Vrest
+RmI (5)

where I is the applied current, Rm is the membrane resistance of the cell, τ
is a characteristic time constant, Vrest is the resting state of the neuron, and
Vthresh is the threshold for excitability. Clearly as I increases, the two fixed
points of this model merge at a saddle-node and for I large enough, disappear.
The voltage V is reset to a finite value, Vreset > −∞ when it reaches a finite
value Vspike <∞.

A simpler model for spiking neurons but one which cannot be derived from
any type of bifurcation is the leaky integrate and fire model (LIF) which has
the form:

τ
dV

dt
= −(V − Vrest) +RmI.

The LIF model is reset to Vreset whenever V crosses a value Vspike. The approach
to a spike for the LIF model is concave down while that of the QIF is both.
Figure 1E,F shows the output frequency of the LIF and the QIF models to a
constant current, I. Note that due to its equivalence, the QIF and the saddle-
node model have the same firing rate curve. Figures 1G,H show the shape of
the membrane potential, V (t) for several cycles; spikes are painted on whenever
the spike-threshold is crossed. The LIF model is often used for analysis since it
can be exactly solved even when I varies in time. This is not true for the QIF
model and the theta model. (However, for sinusoidal stimuli, the theta model
can be transformed into the Mathieu equation, [22]).

We point out one last model related to the QIF that is due to Izhikevich
[36] and which can produce many of the spiking patterns of cortical neurons by
changing parameters. If we add a simple linear negative feedback term to the
QIF, we obtain the following model:

dV

dt
= (v2 + 125v)/25 + 140 + I − z

dz

dt
= a(bv − z)

along with the the reset conditions, when v = +30 then v = c and z = z + d.
Here I is the input and a, b, c, d are free parameters. Ermentrout and colleagues
[17, 26] also considered this system when b = 0 as a model for high-threshold
spike frequency adaptation. The additional term, b makes this similar to adding
low-threshold adaptation.
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Figure 2: Phase response curves (PRC). (A) Construction of the PRC. Natural
period is T. A perturbation arrives at t after the last spike causing the spike
to change its time to T ′. The PRC, ∆(t) = 1 − T ′/T. Dashed pulses show the
times at which the oscillator fires without the perturbatioin and the solid curves
show the perturbed firing times. Note that a key assumption is that effect of
the perturbation occurs only during the cycle it was given. (B) PRC for the
firefly P. Malaccae. (C) PRC for a cortical neuron.

3 Phase-resetting and coupling through maps.

The stability properties of periodic orbits of autonomous differential equations
are different from those of fixed points. There is always a zero eigenvalue which
corresponds to translation in time of the orbit. This means that when a limit
cycle is perturbed through an external stimulus, there can be a phase shift. This
extra degree of freedom is what leads to the ability of several coupled oscillators
to maintain differences in timing. It is also what is responsible for jet-lag; the
internal circadian oscillator (body clock) needs to be rest by sunlight and this
can take several days. Experimentalists have long known about the ability of
oscillators to shift their phase and the quantification of this shift is one of the
standard methods to characterize a biological oscillator. The basic thesis is that
if I know how an oscillator shifts its phase to a stimulus, then I can use this
to study entrainment by periodic stimuli and other oscillators. That is, given
the phase-resetting curve (PRC) for an oscillator, it is possible to construct a
map for the behavior when it is periodically driven or coupled to other similar
oscillators.

Figure 2A shows how the PRC is constructed. A convenient measure of
the timing of a neuron is the time of its action potential, so we assume that
the oscillator in question has a well define event corresponding to the start of a
cycle. Suppose the period of the unperturbed oscillator is T and a brief stimulus
is given at t ∈ [0, T ). This causes the oscillator to shift its timing (that is, the
time of the next event) to a time T ′. We define the PRC to be

∆(t) ≡ 1 − T ′

T

If we define φ = t/T as the phase of the oscillator, we can define this function
in terms of φ, ∆[φ] = ∆(φT ). If ∆(t) > 0 (respectively ∆(t) < 0), this means
that the oscillator fired early (late) and the phase was advanced (delayed).
Certain species of SE Asian fireflies (notably, Pteroptx mallacae or P. cribellata)
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congregate by the thousands in trees along riverbanks and after some time, flash
synchronously with a period of about a second. The the PRC for a single firefly
has been measured [33, 5] to understand how such synchronization could take
place. Figure 2B shows the form of the PRC for P. mallacae which is roughly
sinusoidal. We note that the PRC for an oscillator near a Hopf bifurcation
has essentially the same shape. Figure 2C shows the PRC form for a cortical
neuron injected with constant current (to make it oscillate) and then subjected
to brief depolarizing pulses [53]. The main difference between the two PRCs is
that the cortical one is basically positive over the whole range of perturbation
times. Positive PRCs are characteristic of model neurons which become periodic
through a saddle-node bifurcation (Type I). Suppose that we parameterize the
PRC by the amplitude of the perturbing stimulus, ∆(t, a). Then consider

Z(t) ≡ lim
a→0

∆(t, a)

a
.

This is called the infinitesimal PRC. Now suppose the model for the oscillator
has the form:

dV

dt
= F (V,w1, . . . , wn), ,

dwj

dt
= gj(V,w1, . . . , wn)

and the perturbation is applied only to the equation for V . Let (V 0(t), w0
j (t))

be the limit cycle solution to this equation with the maximum of V occurring
at t = 0. Then, the infinitesimal PRC, Z(t) is proportional to the V component
of the adjoint solution (see [32, 23]). Recall that if X ′ = F (X) has a periodic
solution, X0(t), then the adjoint, X∗(t) satisfies X∗′(t) = −DXF (X0(t))

TX∗(t)
with X∗T (0)X ′

0(0) = 1. This makes the calculation of the PRC for models
simple, one need only compute the adjoint to a given periodic solution. This
also allows one to explicitly calculate the PRC for certain simple oscillators.
The PRC for the theta model, equation (4), is proportional to (1−cos(t)) while
that for a supercritical Hopf bifurcation, equation (2), is proportional to sin(t)
where the period of the oscillation is 2π and the spike occurs at t = 0. Many
PRCs in biology satisfy ∆(0) = ∆(T ) = 0.

Looking at the PRC for the firefly (figure 2B), it is intuitively easy to see
how a pair of mutually coupled oscillators could synchronize. Suppose oscillator
1 fires slightly before oscillator 2. Then it will speed up oscillator 2 since the
PRC is positive right before the spike. Once oscillator 2 fires, this will slow
down oscillator 1 since it has recently fired. Thus, the oscillator ahead is slowed
down and the one behind is sped up. We can formalize by creating a model for a
pair of mutually coupled oscillators. But before doing this, we first consider an
oscillator that is periodically driven by a small pulsatile stimulus with a period
P relative to the period of the oscillator. Let φn be the phase of an oscillator
(φ ∈ (0, 1]) at the point the nth stimulus arrives. The phase is incremented by
an amount ∆(xn) immediately after the stimulus. Then between stimuli, the
oscillator advances by an amount P , so that we obtain

φn+1 = φn + ∆(φn) + P ≡ G(φn;P ) (6)
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We will assume that the stimulus is weak enough so that the function F (x) =
x+∆(x) is monotone increaing. (This means that ∆′(t) > −1.) We also assume
that ∆(0) = ∆(1) = 0. This implies that the map F : [0, 1) −→ [0, 1) is
invertible. This has many implications for the forced oscillator; notably that
the ratio,

ρ = lim
n→∞

φn

n
is almost everywhere rational and a continuous function of the parameters of
the model. It is called rotation number. On regions where ρ is rational, we say
that the oscillator is phaselocked to the stimulus. One solution of interest to
(6) is 1:1 locking. This solution requires that ρ = 1 and that φn+1 = φn + 1.
The latter definition implies that φn = φ̄ satisfies

1 − P = ∆(φ̄).

Since ∆(φ) is periodic, solutions are lost in pairs at saddle-node bifurcations.
(For example, suppose that ∆(φ) = −a sin 2πφ. Then if |1 − P | > |a| there are
no fixed points and if |1 − P | < |a| there are two fixed points; a saddle-node
occurs at |1− P | = |a|.) For a PRC such as the firefly’s, it is possible to obtain
1:1 locking for periods, P both shorter and longer than the natural period of
the oscillator. However, for oscillators with a PRC like type I oscillators or like
the cortical neuron, it is only possible to lock to stimuli that are faster than the
intrinsic period, i.e., P < 1. This is intuitively obvious; stimuli can only speed
up the oscillator since the PRC is positive. A 1:1 locked solution is stable if and
only if

|F ′(φ̄)| = |1 + ∆′(φ̄)| < 1.

By hypothesis, ∆′(φ) > −1 so that the necessary condition for stability is that
∆′(φ̄) < 0. For the PRCs illustrated above, the solution stable solution occurs
on the falling side of the PRC.

We now turn to the analysis of the behavior of a pair of identical reciprocally
coupled oscillators ([30]). We suppose that the period of each is 1 without loss
in generality. We will write the coupled system, formally, as a set of differential
equations and from this derive a locally defined map near a particular periodic
solution:

θ̇1 = 1 + δ(θ2)∆(θ1), θ̇2 = 1 + δ(θ1)∆(θ2). (7)

Each time, say, oscillator 1 fires (that is, crosses 0 modulo 1), then oscillator 2
has its phase altered as θ2 = θ2 + ∆(θ2) ≡ F (θ2). The function, F (θ) is called
the phase-transition curve. Note that our assumptions on ∆(θ), namely that
∆′(θ) > −1, and that ∆(0) = ∆(1) = 0 imply that F (θ) is monotone, with
F (0) = 0 and F (1) = 1. Suppose that θ1 fires a spike at t = 0 and θ2 = φ. Then
immediately after the spike, θ2 = F (φ) < 1 since F is monotone and F (1) = 1.
θ2 will spike at t2 = 1−F (φ) at which point θ1 has advanced by an amount t2.
The spike elicited by θ2 advances θ1 to F (1− F (φ)) while θ2 is set to 0. θ1 will
next fire at t1 = 1 − F (1 − F (φ)) and θ2 has advanced by the same amount.
Thus, we have the map

φ −→ 1 − F (1 − F (φ)) ≡ Q(φ).
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Note that Q(0) = 0 so that φ = 0 is always a fixed point of the map. Other
fixed points are found by solving φ = Q(φ). The fixed point, φ̄ is stable if
|Q′(φ̄)| < 1 which translates to F ′(1−F (φ̄)) ·F ′(φ̄) < 1 since F ′(φ) > 0. This is
the product of two terms; the derivative of the phase-transition curve evaluated
at the phase of each oscillator when the other fires a spike. In particular,
consider the synchronous solution. This will be stable if F ′(1−)F ′(0+) < 1 or,
[1 + ∆′(1−)][1 + ∆′(0+)] < 1. Consider the firefly PRC. Then since ∆′(0+) < 0
and ∆′(1−) < 0, this means that synchrony is always stable. On the other
hand, it is not necessary that the derivative of ∆ is continuous at 0, so that it
may be that case that ∆′(1−) = ∆′(0−) 6= ∆′(0+). This appears to be the case
for cortical PRCs for which ∆′(0+) > 0 and ∆′(1−) < 0. For the PRC shown
in figure 2C, for example, since the slope at 0 is positive but shallow and the
slope at 1 is steep and negative, this implies that Q′(0) < 1 so that synchrony
is stable.

We can use these general methods to create networks of coupled cells through
their PRCs:

θ̇j = ωj +
∑

k

δ(θk)∆jk(θj),

where we allow for some slight differences in natural frequencies, ωj . In [30], we
consider rings of cells for which we prove the existence and stability of traveling
waves. We also consider two-dimensional arrays of cells with nearest neighbor
interactions. We show the existence of rotating waves in such a network.

We close this section with a simplification of the general pulse-coupled net-
work:

dθj

dt
= ω +

∑

k

gjkP (θk)∆(θj). (8)

In this model, the Dirac function is replaced by a smooth pulse function and
all cells have the same PRC; the only difference lies in the coupling amplitudes,
gjk. This model was suggested by Winfree [64]. Suppose that gjk ≥ 0 and that
G =

∑

k gjk is independent of j. Let

dθ

dt
= ω +GP (θ)∆(θ)

have a solution θ(t) = φ(t) with φ′(t) > 0 and φ(0) = 0, φ(T ) = 1 for some
T > 0. Then (i) there is a synchronous solution to (8), θj(t) = φ(t) and (ii) it is
asymptotically stable if

∫ T

0

P (φ(t))∆′(φ(t)) dt < 0.

We remark that this depends crucially on the non-negativity of gjk. We also
note that if ∆(θ) is similar to the firefly in that it is decreasing around the
origin and P (θ) is sharply peaked around the origin, nonnegative, and vanishes
outside some small neighborhood of the origin, then the stability condition will
hold.
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4 Doublets, delays, and more maps

In [24] we used maps to explain the importance of inhibitory doublets for syn-
chronizing two distant populations of neurons that were producing a so-called
gamma rhythm of about 40 Hz. Each population consists of excitatory and
inhibitory neurons which are locally coupled in such a way that they are syn-
chronous within the population. In the local populations, there are few (or weak)
excitatory-excitatory connections. Between distant groups, the excitatory cells
of one group connect to the inhibitory cells of the other group and because the
groups are far apart, the connection between them has a delay. In large scale
simulations of this setup [59, 60], thye found that the inhibitory population of
cells fires a pair of spikes (called a doublet) when the two populations of exci-
tatory cells were synchronized. Our approach to this problem was to consider
a firing time map for the spike times of the excitatory population. The basic
ideas are as follows. E cells cannot fire until the inhibition from them has worn
off below a certain level. Each time an I cell fires the synapse to the E cell is set
to its maximum conductance and then it decays exponentially. When an I cell
receives excitation, it fires a spike at a time that depends on the last time that it
spiked. In particular, if the I cell has recently spiked, then an incoming E spike
may not cause the I cell to spike (absolute refractoriness) or if it does spike, it is
with some perhaps lengthy delay. Indeed, because the I cell models are class I
excitable, they can fire with an arbitrarily long latency if the stimulus is timed
right. We now derive a simple map for the synchronization of these two groups
of oscillators. The key feature that is responsible for the synchronization of the
pair is the recovery map for the inhibitory neurons, TI(t). Specifically, TI(t) is
the time that the I cell fires its next spike given that it has received an E spike t
milliseconds since it last fired. This map can be computed numerically by firing
an E cell at different times after the I cells has spiked and measuring the latency
to the next spike. For t large, the map approaches a small positive latency, Tei.
For t small, the map is rather steep and in fact, it may be undefined for t small
enough. Recurrent inhibitory synapses make the map steeper since they act to
make the I cell even more refractory. Stronger excitatory inputs make the map
shallower and lower the latency for all times. The map can be approximated by
the function:

TI(t) = Tei +
a

t+ b
.

If b < 0, then the map is undefined for t < −b.
A brief digression Allow me to digress briefly and derive this map from the
biophysics of the I cell. The I cell is a type I neuron so that at the bifurcation,
the dynamics is approximated by dx/dt = qx2 (see equation (3). Suppose that
the impulse from the E cell arrives at t∗ and x(0) = −x0 is the degree of
refractoriness of the I cell right after firing. Until the I cell receives input,

x(t) =
−1

1/x0 + qt
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and when the input comes

x(t∗+) = A− 1

1/x0 + qt∗

where A is the amplitude of the input. Firing is defined as when the solution
”blows up” which occurs when

tfire ≡ q

A− 1
1/x0+qt∗

= Tei +
a

t∗ + b

where

Tei =
q

A
, a = A−2, and b =

1

q

(

1

x0
− 1

A

)

.

With this little derivation, we can assign meaning to each of the parameters. The
larger the refractory period, x0, the more negative the parameter b. Similarly,
the larger the value of the excitatory stimulus, the shallower the map. For
sufficiently large stimulus, the map is defined for t = 0, i.e., TI(θ) > 0.
End of digression

We assume that there is a conduction delay, δ, of the impulse from an E
cell in one group to the I cell in the other group. We are interested in the
ability of the two groups to synchronize stably in the presence of this delay. We
suppose that an E cell fires a fixed amount of time Tie after the last I spike
that it has received in a cycle. This is not unreasonable given our assumption
that the I cell synapses always produce their maximal conductance when the I
cells spike. This also implicitly assumes that the E cells have no slow processes
that are turned on when the E cell spikes. (For example, strong spike-frequency
adaptation would make the present analysis suspect. Indeed in [40] we include
adaptation in the excitatory cells and show that the behavior is quite different.
In [24], we in fact incorporate some memory of the previous spikes for the E
cells, but to keep matters simple, we ignore it here.) Let tj be the time of firing
of the excitatory neuron in group j (j = 1, 2) at the start of a cycle. By this
time the I cells in that group are completely recovered so that they fire at a
time, tj + Tei. The I cell in group 1 receives an extrinsic E spike at time t2 + δ,
so that this I cell will fire another spike (the ”doublet”) at a time,

tdoub
1 = t2 + δ + TI [t2 + δ − (t1 + Tei)]

The E cell in group 1 will then fire its next spike at tnew
1 = tdoub

1 + Tie. This
leads to the following map:

tnew
1 = t2 + δ + TI(t2 − t1 + δ − Tei) + Tie

tnew
2 = t1 + δ + TI(t1 − t2 + δ − Tei) + Tie.

We let φ be the timing difference between the two groups, φ = t2 − t2 so that φ
satisfies

φnew = −φ+ TI(−φ+ δ − Tei) − TI(φ+ δ − Tei) ≡ G(φ). (9)
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Clearly,G(0) = 0 so that synchrony (0 time difference) is a solution. Our interest
is in its stability. This requires that |G′(0)| < 1 or | − 1 − 2T ′

I(δ − Tei)| < 1
which simplifies to T ′

I(δ − Tei) > −1 since T ′

I is always negative. Applying this
to our approximate map, we see that we must have

δ > a− b+ Tei = A2 +
q

A
+

1

q

(

1

A
− 1

x0

)

.

However, for large values of δ, T ′

I is nearly zero so that G′(0) is close to -1 so
that small heterogeneities in the two networks (say, Tie is different from one to
the other) will lead to an inability to lock, not through stability, but through
existence. That is, if, for example, the two oscillators have different values of
Tie, then equation (9) is replaced by

φnew = G(φ) −B

where B is the difference between the values of Tie. Fixed points satisfy:

TI(−φ+ δ − Tei) − TI(φ+ δ − Tei) = B.

For large δ the left-hand side is nearly zero so that if B, the heterogeneity, is
too large, there are no fixed points.

The maps derived in this section allow us to make some general conclusions
about the roles of different parameters. First, if the delay is too small, then the
slope of the TI map is large and negative so that we expect to see instabilities.
Increasing the I − I coupling makes the map steeper since it essentially makes
the I cells more refractory. The steeper the TI map, the more difficult it is
to stably lock for short delays. On the other hand, a steep TI map is better
able to overcome intrinsic differences between the two networks at long delays.
Conversely, increasing the E− I coupling makes the network less susceptible to
instabilities for short delays but less able to compensate for heterogeneity.

5 Averaging and phase models.

One of the assumptions implicit in the use of phase-resetting curves is that the
coupling is not too strong. We can be more explicit about this ”weak” coupling
assumption by applying averaging to coupled oscillators. Consider the following
coupled system in Rn ×Rn

X ′

1 = F (X1) + εG1(X2, X1), X ′

2 = F (X2) + εG2(X2, X1). (10)

We assume that when ε = 0, the system X ′ = F (X) has a phase-asymptotically
stable limit cycle solution, X0(t) with period, T. The limit cycle is homeomor-
phic to the circle, S1. Stability means that there is an open neighborhood,
N of S1 in Rn such that all point in N are attracted to the limit cycle.
Thus, when ε = 0, there is an attracting two-torus, S1 × S1 and all points

12



(X1, X2) ∈ N ×N are attracted to the torus. Each point on the stable limit cy-
cle can be parametrized by a single variable, θ, so that when ε = 0, the dynamics
on the torus have the form

θ′1 = 1 and θ′2 = 1.

The solutions to these uncoupled equations are θj = t+φj where φj are arbitrary
constants. That is, without coupling, the solutions can have arbitrary phases
as they move around the torus. For ε 6= 0 and sufficiently small we expect
that the torus will persist, but that the parallel flow on the torus will collapse
toward a phaselocked solution where the difference, θ2 − θ1 takes on isolated
values. Indeed, we expect that for nonzero ε the equations have the form θ′j =
1 + εhj(θj , θk). Our goal in this section is to discern the form fo hj .

In order to derive the equations for ε > 0, we introduce some notation. Let
B denote the space in Rn of continuous T−periodic solutions. We introduce
the inner product

< u(t), v(t) >=
1

T

∫ T

0

u(t) · v(t) dt.

X0(t) is the asymptotically stable limit cycle solution satisfying

X ′

0(t) = F (X0(t))

so that differentiating this, we see that the linear operator

(LY )(t) ≡ −dY (t)

dt
+DXF (X0(t))Y (t) ≡ [− d

dt
+A(t)]Y (t)

has a one-dimensional nullspace spanned by dX0(t)
dt . Under the above inner-

product, the adjoint operator is

(L∗Z)(t) = [
d

dt
+AT (t)]Z(t)

and this has a one-dimensional nullspace spanned by Z∗(t) which can be nor-
malized to satisfy Z∗(t) ·X ′

0(t) = 1. (For asymptotically stable limit cycles, we
can numerically compute Z∗(t) by integrating (L∗u)(t) backwards in time until
convergence to a periodic solution is obtained.) Recall from section 3 that Z∗(t)
is related to the infinitesimal phase-response curve (see also below). Using the
method of averaging [23] it is easy to derive the equations for the evolution of
phases, Xj(t) = X0(θj) +O(ε) where

θ′1 = 1 + εH1(θ2 − θ1) +O(ε2) and θ′2 = 1 + εH2(θ1 − θ2) +O(ε2)

with

Hj(φ) =
1

T

∫ T

0

Z∗(t) ·Gj(X0(t+ φ), X0(t)) dt.
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Before turning to the analysis of this equation, we apply the formalism to cou-
pled neurons. Single compartment models are generally coupled through the
potentials, V (t). Suppose the equations for the voltage have the form:

dVj

dt
=

1

C

(

−Ij
ion(t) + Ijk

syn(t)
)

,

where Ij
ion(t) are all the ionic currents intrinsic to the cell and I jk

syn(t) has the
form

Ijk
syn(t) = gjk

synsk(t)(Vj(t) −Ejk
syn) + gjk

gap(Vj(t) − Vk(t)).

The variable sk(t) is gating variable just like the usual voltage-gated ion chan-
nels, but it is gated by the presynaptic voltage, Vk rather than the postsynaptic
voltage. The second coupling term is called electrical coupling and depends on
the voltage difference between the pre- and post-synaptic cells. Let V ∗(t) be
the voltage component of the adjoint, Z∗(t); recall that this is proportional to
the PRC for the neuron, at least to lowest order. Then

Hj(φ) =
1

C

1

T

∫ T

0

V ∗(t)
(

gjk
syns0(t+ φ)(Ejk

syn − V0(t)) + gjk
gap(V0(t+ φ) − V0(t))

)

dt.

Here V0(t), s0(t) are the solutions to the uncoupled system on the limit cycle.
Typically, s0(t) is qualitatively like, a2te−at where t is the time since the neuron
spiked during the cycle. Consider the first term in the integral:

1

C

1

T

∫ T

0

V ∗(t)(Ejk
syn − V0(t))s0(t+ φ) dt ≡ Hjk

c (φ)

The terms multiplying s0 depend only on the postsynaptic cell (the one receiving
the synapse). This term characterizes the response of a neuron to the synapse.
Thus the first term in the integral is the average of the response with a phase-
shift of the input. Note that in general, Hc(0) 6= 0. The second term in the
integral is

1

C

1

T

∫ T

0

Z∗(t)(V0(t+ φ) − V0(t)) dt ≡ Hg(φ). (11)

Note thatHg(0) = 0.We make one more observation. Suppose that the coupling
from one oscillator to the other is delayed by an amount, say, τ. Then the only
effect on the interaction function H is to shift the argument by τ. Intuitively,
this is because θ is essentially a time variable so that delays are just translations
in time.

Suppose that the two oscillators are coupled identically. Then we can write

θ′1 = 1 + εH(θ2 − θ1), θ′2 = 1 + εH(θ1 − θ2),

where

H(φ) = ggapHg(φ) + gsynHc(φ)

Hg(φ) =
1

CT

∫ T

0

Z∗(t)(V0(t+ φ) − V0(t)) dt,

Hc(φ) =
1

CT

∫ T

0

Z∗(t)s0(t+ φ)(E − V0(t)) dt.
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Figure 3: Computation of the stability of synchrony. (A) the derivative of the
synapse, s′0(t) and the response function, R(t). The integral of their product is
H ′(0) and is negative. (B) If R(t) has a negative region after the spike, the area
is positive and synchrony is stable.

Let φ = θ − 2 − θ1. Then

φ′ = εH(−φ) −H(φ).

The right-hand side is a continuous odd-periodic function so that it has at least
two roots, φ = 0 and φ = T/2. The former represents the synchronous solution.
It is a stable solution if and only if −2H ′(0) < 0 which means that H ′(0) > 0.
For chemical synapses,

H ′(0) =
1

T

∫ T

0

R(t)s′0(t) dt,

where R(t) = Z∗(t)(E − V0(t)). Consider first excitatory coupling. For cortical
neurons, R(t) has the shape shown in figure 2C. Figure 3 shows s′0(t), R(t) and
their product. From this figure it is also clear that the area of the product
R(t)s′0(t) is negative so synchrony is unstable. Less clear, but shown in specific
examples is the fact that the anti-phase solution, φ = T/2 is stable for excitatory
coupling. For a PRC like that of the firefly which has a substantial negative
region right after the spike (see figure 2B), synchrony is stable as seen in Figure
3B. Since inhibitory coupling essentially reverses the sign of E−V0(t), synchrony
is stable and the anti-phase state is unstable [61, 29, 11, 63]. The behavior of
gap junctions is more subtle and depends strongly on the actual shape of the
action potential [10]; from the above formula:

H ′

g(0) =
1

CT

∫ T

0

Z∗(t)V ′

0 (t) dt.
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Suppose that Z∗(t) is positive and essentially zero and the action potential is
short-lasting. Then V ′

0(t) is negative only at the beginning of the cycle where
Z∗(t) is small. For the majority of the cycle, V ′

0(t) > 0 as the neuron repolarizes,
so that the area under the integral is positive. Thus, we expect that for thin
action potentials, synchrony is stable. However, as the frequency of the neuron
increases, the action potential occupies a greater portion of the cycle and it
may be possible to destabilize synchrony. These simple intuitive arguments are
no replacement for the actual calculations. However, they serve to shed insight
into how different forms of coupling alter the locked states and how these states
depend on frequency.

5.1 Local arrays

So far, we have considered pairs of oscillators and their phaselocked behavior.
I will next consider one-dimensional geometries and then use results from this
to look at planar arrays of oscillators. Since rings are easier to deal with (there
are no boundary effects), we start with them and illustrate traveling waves
and synchrony. We then turn our attention to linear arrays in which the edge
conditions play a pivotal role it determining the steady state patterns.

The ideas discussed above can be extended in an obvious fashion to large
networks of weakly coupled nearly identical cells. This leads to equations of the
form:

θ′j = ωj +Hj(θ1 − θj , . . . , θN − θj), j = 1, . . . , N. (12)

A phaselocked state is one for which θj(t) = Ωt + φj where φ1 = 0 and the
remaining φj are constants. Suppose that there is such a state and let

ajk =
∂Hj(ψi, . . . , ψN )

∂ψk

∣

∣

∣

∣

φ1−φj ,...,φN−φj

.

With these preliminaries, we can now state a very general stability theorem.

Theorem 1. [16] Suppose that ajk ≥ 0 and the matrix A = (ajk) is irreducible.

Then the phaselocked state is asymptotically stable.

This provides a quick sufficient check for stability. If we regard the oscil-
lators as nodes and draw directed line segments from j to k if ajk > 0, then
irreducibility of the matrix A says that we can go from any given node i to any
other node, ` by following these directed segments. We also note that stabil-
ity implies that there are no zero eigenvalues of A other than the simple one
corresponding to the translation invariance of limit cycles. Thus, the theorem
also provides conditions under which we can continue solutions using the im-
plicit function theorem as some parameter varies. We will apply some of these
principles below.

5.1.1 Rings.

Since a general ring of oscillators (even phase models) is impossible to completely
analyze, we will assume translation invariance in the model system. That is, we
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assume the coupling between oscillators depends only on the differences between
their indices. Furthermore, we assume the nature of the coupling between any
two oscillators is the same and only the coefficient varies. Thus, we restrict our
attention to the system

θ′j = ω +

N
∑

k=1

C(j − k)H(θj − θk) (13)

where as usual, H is a sufficiently differentiable 2π−periodic function. Equation
(13) admits a family of traveling wave solutions of the form

θj = Ωmt+ 2πjm/M, m = 0, . . . N − 1.

Substitution of this form into (13) implies that

Ωm = ω +
∑

k

C(k)H(2πkm/N).

This provides the so-called dispersion relation for the waves; that is, how the
frequency depends on the wave number, m. Stability of these wave is readily
found by linearizing about the solution. The linearized system satisfies

y′j =
∑

k

C(j − k)H ′(2π(j − k)m/N)(yj − yk).

Because the resulting linearization matrix is circulant, the eigenvectors are of
the form exp(2πij`/N) so that for a given m, we have the N eigenvalues

λ`,m =
∑

k

C(k)H ′(2πkm/N)(1 − exp(−2πik`/N)).

In particular, the synchronous solution has m = 0 and the eigenvalues are

λ`,0 = H ′(0)
∑

k

C(k)(1 − exp(−2πik`/N)).

If H ′(0) < 0 and C(k) ≥ 0, then it follows from Theorem 1 that synchrony
is stable. However, if C changes sign, then synchrony is often unstable as
are waves with a high value of m, but for some range of values of m, there
are stable waves. As an example, consider a network of 100 oscillators with
coupling between the 10 neighbors on either side, C(j) = 1/9 for |j| < 5 and
C(j) = −1/12 for 10 ≥ |j| ≥ 5. The function H(x) = 0.5 cosx − sinx. Then,
synchrony is unstable, but the wave with m = 4 is stable. Random initial data
for this ring network tend to a solution which is a mix of waves propagating in
both directions.

17



5.1.2 Linear arrays

Linear arrays of oscillators, even with only nearest neighbor coupling, are con-
siderably more difficult to analyze. Unless the boundary conditions are chosen
very specially, the general behavior is nontrivial. However, with sufficiently long
chains, it turns out that the behavior is captured by the solutions to a certain
two-point singularly perturbed boundary value problem. Consider the following
network:

θ′j = ωj +Hf (θj+1 − θj) +Hb(θj−1 − θj), j = 1, . . . , N, (14)

where at j = 1 (j = N) we drop the Hb (Hf ) term. In [37, 38], we showed that
the phaselocked behavior of this system satisfies

θj+1 − θj −→ Φ(j/N)

where

Ω = ω(x) +Hf (Φ) +Hb(−Φ) +
1

N
[H ′

f (Φ) −H ′

b(−Φ)]Φx 0 < x < 1

Ω = ω(0) +Hf (Φ(0))

Ω = ω(1) +Hb(−Φ(1)).

For large N , this is a singularly perturbed first order differential equation. As
with many singularly perturbed systems, there are boundary layers. In these
papers, we exhaustively classify all possible phaselocked solutions for N large by
studying the singular boundary value problem and through the use of match-
ing of inner and outer equations. In figure 4, we illustrate various solutions
to equation (14) for N = 80. Note that for the isotropic case (panel E), the
boundary layer is in the interior. Note also, the value of N for which the con-
tinuum approximation is reasonable, depends on the parameters of the model.
For example, panel F shows little evidence of a boundary layer although one is
predicted at both sides for N large enough.

As another example of the behavior of one-dimensional chains, we consider
the completely isotropic case with nearest neighnbors in whichHf (φ) = Hb(φ) =
H(φ). For large N , the boundary layer (if it exists) will be interior. Suppose
that H(φ) = C + g(φ) where g is an odd periodic function like sinφ. Then,
Φ(x) ≈ K(x − 1/2) so that, the gradient is linear. In the second example,
H(φ) = g(φ + C) where, again, g is an odd periodic function. In this case, if g
is similar to sin and |C| < π/4, then Φ(x) ≈ Asign(x − 1/2). In both of these
examples, the phase difference switches signs in the middle so that physically,
one observes either waves propagating from the ends toward the middle or vice
versa. These examples will play a role shortly.

5.1.3 Frequency plateaus.

In [21], we considered the behavior of a chain of oscillators with a linear fre-
quency gradient. The motivation for this comes from experiments on waves in
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Figure 4: Local phase differences in a chain of 80 nearest-neighbor oscillators
under a variety of cases. (A,B,D,F) anisotropic coupling; (C) isotropic coupling
with a linear gradient in frequency; (E) isotropic coupling.
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Figure 5: Frequency plateaus in coupled oscillators. Left panel shows the intrin-
sic linear gradient in frequency and the coupled frequencies. Right panel gives
a geometric picture of how plateaus are formed.

the small bowel. Smooth muscle in the bowel generates rhythmic oscillations.
A plot of the frequency as a function of distance from the stomach (towards
the large bowel) shows that over large regions, the frequency is constant, but,
there are abrupt jumps to lower frequencies. When small pieces of the bowel
are isolated, they show a linear gradient in natrural frequencies. Figure 5 shows
an schematic of the frequency of the intrinsic and the coupled oscillators. We
were motivated to study the behavior of a chain of locally coupled oscillators
with a linear gradient in frequency:

θ′j = ω − gj +H(θj+1 − θj) +H(θj−1 − θj) j = 1, . . . , N + 1.

Since coupling in the bowel is through gap junctions, H(0) = 0. (See equation
(11). Suppose, in addition, that H ′(0) > 0. Then, for g = 0, θj = Ωt + C is a
solution. From Theorem 1, it is a stable solution and so we can continue the
phaselocked state for g small. As g increases (that is, the frequency gradient
increases), phaselocking can become disrupted. Thus, we can ask what happens
for large g. This question can be answered to some satisfaction if we make the
simplification that the function H(θ) is odd. For then, we can explicitly write
down the solutions for the phase differences, φj = θj+1 − θj :

H(φj) = −g (N − j)j

2
. (15)

Since H is continuous and periodic, it is bounded; thus, there are phaselocked
solutions only if g is sufficiently small. Since H(x) = b generically has two
roots, x, there are 2N roots. We show that only one of these is asymptotically
stable. Furthermore, we show that there is another fixed point with one pos-
itive eigenvalue and all other eigenvalues negative. The two branches of the
one-dimensional unstable manifold form a closed invariant circle containing the
stable fixed point. Figure 5B shows four fixed points on an invariant torus for
N = 2. The filled fixed point is stable and the fixed point to the left of it has a
one-dimensional unstable manifold forming the circle. Now, suppose that H has
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±1 as it extreme values. Then, from equation (15) g < g∗ ≡ N2/8 in order for
phaselocking to occur. The righthand hand side is largest in magnitude when
j = N/2. Thus, as g increases beyond g∗, there is a saddle-node bifurcation.
We showed in [21] that the two fixed points on the aforementioned invariant
circle merge and leave in their wake, an invariant circle. The frequency of this
oscillations is roughly q = a

√
g − g∗ so that the phases, φj split into two groups.

The frequency of the group with j ≤ N/2 is higher than the group with j > N/2
by an amount q, thus the ideas provide a mechanism for frequency plateaus.

5.1.4 Two-dimensions.

The behavior of two-dimensional arrays, with coupling to only four the eight
nearest neighbors turns out to be very similar to a cross product of behavior of
two associated one-dimensional chains. Thus, in a sense, the equations are like
separable PDEs. For simplicity, consider the network:

θ′j,k = ω+HN(θj,k+1−θj,k)+HS(θj,k−1−θj,k)+HE(θj+1,k−θj,k)+HW (θj−1,k−θj,k).
(16)

There are four different functions corrsponding to the four nearest neighbors.
in [52], we analyzed this and generalizations for N ×N arrays where N is large.
We showed that

θj+1,k − θj,k ∼ Φ(j/N)

θj,k+1 − θj,k ∼ Ψ(j/N)

where Φ(x),Ψ(x) solved the corresponding horizontal and vertical chains. Thus,
in a continuum approximation (x = j/N, y = k/N), θx = Φ(x) and θy = Ψ(y)
so that we can integrate this to obtain the full solution:

θ(x, y) = Ωt+

∫ x

0

Φ(x′) dx′ +

∫ y

0

Ψ(y′) dy′.

In particular, suppose that the medium is completely isotropic andHN,S,E,W (φ) =
H(φ). Suppose that H(φ) = g(φ) + C as in the end of section 5.1.2. Then we
know that the phase gradient is linear so that we have:

θ(x, y) = Ωt+K[(x− 1

2
)2 + (y − 1

2
)2].

This representa a target wave; curves of constant phase are circles! In the other
example from section 5.1.2, H(φ) = g(φ+ C), we have

θ(x, y) = Ωt+K[|x− 1

2
| + |y − 1

2
|],

and waves are “square” target patterns. These and other patterns which are
consequences of the theorem in [52] are illustrated in figure 6.

Spiral waves. The two-dimensional patterns described in the previous
section are homotopic to the synchronous phaselocked solution and are a con-
sequence of boundary inhomogeneities. Do there exist patterns of phases which
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Figure 6: Steady state phase relative to the upper-left oscillator in 32 × 32
arrays of locally coupled oscillators. Coupling is through a function of the
form A0 + A1 cos θ + B1 sin θ. Each of the four cardinal directions can be dif-
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are not branches of the synchronous state? For example, in a ring, the trav-
eling wave solutions are topologically different from the synchronous solution
and thus cannot be continued from that trivial branch. One analogue of such a
pattern in two-dimensions is a spiral wave. Some of these waves are illustrated
in figure 7. Figure 7A is a solution to the highly symmetric system:

θ′jk = ω +
∑

j′,k′

sin(θj′,k′ − θjk)

where the sum is over the four nearest neighbors, {N,S,E,W}. In [49], we showed
that there is a rotating wave-solution to this equation and with theorem 1, that
it is asymptotically stable. Here is an example of the distribution of the phases
for the 4 × 4 case:

0 ξ π/2 − ξ π/2
−ξ 0 π/2 π/2 + ξ

3π/2 + ξ 3π/2 π π − ξ
3π/2 3π/2 − ξ π + ξ pi

The reader is urged to check that there is a ξ ∈ (0, π/4) which leads to a
phaselocked solution and that this solution is stable. If we replace H(u) = sinu
with the more general, H(u) = sinu + d(cosu − 1), then the rotatinmg wave
develops a twist and looks more like a spiral wave. Figure 7B shows such a spiral
wave. As d increases, the spiral becomes tighter and tighter until eventually,
the phase differences near the center become too great. The spiral disappears
and leaves a “gently wobbling” spiral in its wake. Larger values of d result to
large scale meandering of the spiral; a snapshot is shown in Figure 7C. Figure
7D shows another solution with the same parameters as in figure 7B, but with
random initial data. There are many apparently stable steady state phaselocked
solutions which consist of random arrangements of phase singularities.

6 Neural networks.

The previous sections dealt with networks of single neurons which were coupled
together using chemical synapses. In this section, we are interested in firing-rate
models; that is models of neurons in which the actual times of spikes are not
specified. Rather, we specify the average firing rates of a neuron or a population
of neurons. There are many different derivations of these firing rate models and
we suggest that the reader consult [18, 15] for a general survey of formal means
of obtaining the equations. We will present one method of deriving them that
is tightly connected to the underlying biophysics of the neuron. Our method
entails the use of a slow time scale in order to reduce a single neuron to a one
(and possibly two) variable equation.

6.1 Slow synapses

For simplicity, we consider a simple network with one excitatory cell which has
slow spike-frequency adaptation (which we can always set to zero) with self-
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Figure 7: Spiral waves in a locally coupled 32 × 32 oscillator array. (A) Pure
sinusoidal coupling. (B) Coupling with H(θ) = sin θ + .6(1 − cos θ). (C) With
a cosine component of 0.8, locking is no longer possible and the core of the
spiral wobbles as shown in this snapshot. (D) Same parameters as (B) but with
random initial data.
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coupling and one inhibitory neuron which also is coupled to itself as well as
to the excitatory cell. (The reason for self-coupling is to give the most general
formulation of the reduction.) The derivation then suggests how to couple whole
networks of neurons.

We start with the following system:

C
dVe

dt
= −Ifast,e(Ve, . . .) − geese(Ve − Ee) − giesi(Ve −Ei) (17)

− gzz(Ve −Ez) + Ie

C
dVi

dt
= −Ifast,i(Vi, . . .) − geise(Vi −Ee) − giisi(Vi −Ei) + Ii (18)

dse

dt
= αe(Ve)(1 − se) − se/τe (19)

dsi

dt
= αi(Vi)(1 − si) − si/τi (20)

dze

dt
= αz(Ve)(1 − ze) − ze/τz (21)

The first two equations represent the potentials of the excitatory and inhibitory
cells respectively. The terms Ifast,∗ may involve many additional variables such
as the transient sodium and delayed rectifier channels necessary for spiking. The
se,i variables gate the synapses between the neurons and lie between 0 (fully
closed) and 1 (fully open). The functions αe,i are zero unless the neuron is spik-
ing and then they are some finite value. τe,i are the time constants for the decay
of the synapses. The parameters gjk represent the maximal conductances of the
synapses and Ee,i are the reversal potentials of the excitatory and inhibitory
synapses. Typically Ee =0 mV and Ei = −70 mV although this latter value
can be closer to -85 mV or up to -60 mV. The variable z gates the degree of
spike-frequency adaptation for the excitatory cell; the function αz(V ) and the
parameters, τz, gz, and Ez are similar to those of the synapses.

In order to perform the needed reduction, we assume that se,i and z are all
much slower than the fast system. Thus, we can treat them as parameters. We
assume that the fast dynamics of both excitatory and inhibitory cells is such
that as current is increased, the neuron switches from a stable fixed point to
large magnitude periodic firing. Furthermore, we also assume that the neuron
is monostable so that there are no currents for which it can both stably oscillate
and remain at rest. For example, if the fast-dynamics is class I, then as the
current increases the fixed point diappears at a saddle-point and large-amplitude
periodic oscillations emerge. Consider the excitatory dynamics :

dVe

dt
= −Ifast,e(Ve, . . .) −Gee(Ve −Ee) −Gie(Ve −Ei) −Gz(Ve −Ez) + Ie

where Gee, Gie, Gz are parameters. Let

I(V ;Gee, Gie, Gz , Ie) = −Gee(Ve −Ee) −Gie(Ve −Ei) −Gz(Ve −Ez) + Ie

be the applied current. Holding (Gee, Gie, Gz) constant, we suppose that as
the applied current is increased, there is a saddle-node at I∗e (Gee, Gie, Gz). For
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Ie < I∗e the neuron is at rest and for Ie > I∗e the neuron fires repetitively with
a frequency

fe ≈ βe

√

Ie − I∗e .

Now, we are ready for the reduction. Consider equation (19). If Ie < I∗e
then the neuron is not firing and αe(Ve) = 0. If Ie > I∗e , then the neuron fires
repetitively with period, Te = 1/fe. We have assumed that this is fast compared
to the dynamics of the synapse so that we can average the se dynamics obtaining

dse

dt
= fe

[

∫ Te

0

αe(Ve(t)) dt

]

(1 − se) − se/τe.

(We have used the fact that 1/Te = fe.) For many neural models, the spike-width
is nearly independent of the frequency, so that the integral can be approximated
as a constant independent of Te, say, ae. Using the frequency approximation,
we see that

dse

dt
= aeβe

√

Ie − I∗e (1 − se) − se/τe

when Ie > I∗e . We recall that I∗e is a function of (Gee, Gie, Gz) which are given
by (geese, giesi, gzz). Thus, to close the system, we need an expression for I∗e .
Numerically, for a wide variety of models, one finds that typically

Ie(Gee, Gie, Gz) ≈ GeeUee −GieUie −GzUz − Iθ,e

where Uee, Uie, Uz are positive constants which have the dimension of potential
and Iθ,e is the threshold current to initiate repetitive spiking in absence of any
slow conductances. Assuming the fast dynamics of the excitatory and inhibitory
cells are similar, we have reduced equations (17- 21) to the following three
equations

dse

dt
= ceF (Ie + Ieese − Iiesi − Izz − Iθ,e)(1 − se) − se/τe (22)

dsi

dt
= ciF (Ii + Ieise − Iiisi − Iθ,i)(1 − si) − si/τi (23)

dz

dt
= czF (Ie + Ieese − Iiesi − Izz − Iθ,e)(1 − z) − z/τz, (24)

where F (x) =
√

max(x, 0), ce = aeβe, cz = azβe, ci = aiβi and Iee = geeUee

and so on for the other Ijk .
Before continuing with our analysis of these models, we introduce a smoothed

version of the function F . Numerous authors have shown that the presence of
noise changes a sharp threshold for firing to a smoother and more graded firing
rate. In a recent paper, [44] analyzed the firing properties of the normal form for
a saddle-node. Using standard stochastic methods, they derive a complicated
integral form for the firing rate curve as a function of the amount of noise. We
find that a good approximation of such a curve is given by the smooth function:

F (I) =
√

log(1 + exp(I/b))b

where b characterizes the amount of “noise.” That is, as b→ 0+, F approaches
the deterministic model. In the analysis below, we use b = 0.1.
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6.2 Analysis of the reduced model.

We sketch some possible types of solutions to the reduced network model. This
is by no means exhaustive

6.2.1 Purely excitatory with no adaptation.

When there is no feedback inhibition and the adaptation is blocked, the equa-
tions reduce to

dse

dt
= ceF (Ie + Ieese − Iθ,e)(1 − se) − se/τe.

This is a one-dimensional system so that there are only fixed points. Since
F ≥ 0, the interval [0, 1] is positively invariant so there exists at least one stable
fixed point. Suppose, Iee = 0 so there is no recurrent excitation. Then the fixed
point is unique:

s̄e =
ceF (Ie − Iθ,e)

ceF (Ie − Iθ,e) + 1/τe
.

For small enough Iee the fixed point persists and remains stable. Further in-
creases in Iee can lead to a fold bifurcation and the annihilation of the fixed
point. But since we know there is always at least one fixed point, then there
must in general (except at bifurcation points) be an odd number. Since this
is a scalar system and the function F is continuous, the fixed points alternate
in stability. For many choices of F , there is bistable behavior representing the
neuron firing at a low or zero rate and at a much higher rate.

6.2.2 Excitatory with adaptation.

The presence of spike adaptation enables the network to oscillate and also al-
lows it to be excitable. We point out that oscillations in se at the slow time
scale assumed here correspond to bursting oscillations of the original model sys-
tem. Baer et al [2] analyzed a slow two-variable system which modulates a fast
spiking system through a saddle-node bifurcation and used this as a model for
parabolic bursting. A rigorous analysis of a saddle-node that is slowly period-
ically driven was provided by Ermentrout and Kopell [22]. Figure 8 shows the
bifurcation diagram for a set of parameters as the drive increases. Figure 8B
shows the network in an excitable regime; weak stimuli lead to a decay to rest
while stronger stimuli cause a burst of activity. Increasing the drive leads to a
subcritical Hopf bifurcation and bistability between a large amplitude periodic
orbit and a fixed point (Figure 8C). Further increases in the drive lead to a
single stable periodic orbit (figure 8D).

6.2.3 Excitatory and inhibitory.

If we remove the adaptation, but allow inhibition, then we are in the case
considered in the classic Wilson-Cowan model. This scenario has been explored
thoroughly by many authors [3, 18]. The phaseplane possibilities are very close
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to those of the excitatory-adaptation model. There is more flexibility in the
placement of the nullclines since the inhibitory cells receive inputs independent
of the excitatory population. That is, there is the possibility for feedforward

rather than feedback inhibition.

6.2.4 Full model.

Since the model is three variables, complex behavior is a possibility. For example
if the adaptation is slow, then it can slowly move the excitatory-inhibitory “fast”
system back and forth through bifurcations producing bursting [35].

6.3 Spatial models.

We can take the reduced model described in the previous section and create a
spatially distributed network in order to understand the kinds of behavior in
a one-dimensional slice of cortex. Consider the following spatial analogue of
equations (22-24):

∂se

∂t
= ceF (Ie + IeeJee ∗ se − IieJie ∗ si − Izz − Iθ,e)(1 − se) − se/τe(25)

∂si

∂t
= ciF (Ii + IeiJei ∗ se − IiiJii ∗ si − Iθ,i)(1 − si) − si/τi

∂z

∂t
= czF (Ie + IeeJee ∗ se − IieJie ∗ si − Izz − Iθ,e)(1 − z) − z/τz,

where

J ∗ u ≡
∫

Λ

J(x− y)u(y, t) dy.

In general, these spatial interaction functions are normalized so that the integral
over the domain, Λ, is one. For the purposes of analysis, we will assume that
the domain is the real line, a circle, the plane, or a torus. In the cases of a torus
or a circle, the functions J(x) will be periodic.

6.3.1 Bistability and fronts.

As in the previous section, we first consider the purely excitatory case so that
the equations are simply:

∂se

∂t
= ceF (Ie + IeeJee ∗ se)(1 − se) − se/τe. (26)

Suppose that g(u) ≡ ceF (Ie + Ieeu)(1 − u) − u/τe has three roots. That is,
suppose that the spatially homogeneous excitatory network is bistable. Then,
as in the case of the bistable scalar reaction-diffusion equation, we expect that
there may be front solutions joining one stable rest state to another. In fact,
for the present model if we assume that Jee is symmetric, positive, and has
an integral of 1, then a theorem of Chen [8] implies that there exists a unique
traveling front solution, se(x, t) = S(x − ct) with velocity, c joining the two
stable fixed points. We illustrate such a solution in figure 9A.
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Figure 9: Bistable media. (A) Space-time plot of a front for the scalar equation
(26). Color scale is amplitude of se(x, t) with time running vertically and space
horizontally. Jee = exp(−|x|/σ)/(2σ) with σ = 2. (B) Space-time plot for
a network with excitation and inhibition with local dynamics as in (C). The
spatial interactions are exponential with σi = 1, σe = 2. (C) Phaseplane for the
se − si system with no adaptation showing bistability. (D) Stationary localized
bumps in the same parameter set as (B) but with excitation slowed by a factor
of 2 and σe = 1, σi = 2.5. Horizontal axis indicates spatial index and the black
and red curves are se, si respectively.
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6.3.2 Fronts and localized excitation in the presence of inhibition.

Figure 9B illustrates a front produced in a two-population network whose null-
cline configuration is illustrated in figure 9C. Here we have turned off the adap-
tation so that Iz = 0. Unlike figure 9A, we have initiated the excitation in the
center of the medium. Clearly, there is still a front which propagates but the
rigorous existence of this front remains to be proven. Unlike the scalar sys-
tem, however, the properties of bistability alone are not sufficient to guarantee
a wave front. In particular, the time constant and the spatial extents matter
in two-population models. Figure 9D illustrates a stationary localized solution
to the excitatory-inhibitory network where we have slowed the excitation down
by a factor of two and given the inhibitory cells a spatial extent two-and-a-half
times that of the excitatory cells. Localized pulses have been the subject of
numerous theoretical and numerical studies since the first rigororous analysis of
this problem by Amari [1]. These pulses are thought to represent working or
short-term memory [62]. Pinto and Ermentrout [50] used sigular perturbation
(treating the extent of inhibition, σi, as a large parameter) to contruct solitary
pulses in an excitatory-inhibitory network of the prsent form. Their starting
point assumes the existence of fronts

6.3.3 Propagating pulses.

Suppose that we eliminate the inhibition. In experimental slice preparations,
this is a common protocol in order to study the excitatory connectivity. We
maintain the spike adaptation, z, and suppose that we have the phaseplane
depicted in Figure 8A (and repeated in 10A). Then, instead of fronts as in
figure 9A, we obtain traveling pulses as shown in Figure 10B. Essentially, if the
adaptation is slow, then this can be regarded as a singular perturbation problem.
For a fixed level of adaptation, the excitatory network is bistable and produces
fronts between high and low levels of activity as in figure 9. Thus, this pulse can
be viewed as a front and a “back” joined at a level of adaptation leading to the
same speed. In other words, these localized traveling pulses are analogous to
singular perturbation constructions of pulses in reaction-diffusion equations [7].
Indeed, Pinto and Ermentrout [51] use such a singular perturbation argument
to construct these fronts.

In the scenario described above, the local dynamics is excitable; there is
a single globally stable fixed point. However, the excitability of the medium
depends on the slow dynamics of the adaptation. This type of excitability
is called Class II in the context of single neuron models ([54];see also figure
1B in the present article). Suppose that there is no adaptation, but instead,
we allow inhibition. Then Class II excitability is still possible, but another
type of excitability is now possible. Figure 10C shows the phaseplane for the
excitatory-inhibitory network with no adaptation. Unlike the phaseplane in
figure 10A, there are three fixed points. However, the rightmost fixed point is
unstable. The middle fixed is a saddle-point whose unstable manifolds form
a heteroclinic loop with the leftmost stable fixed point. Thus, we have the
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analogue of class I excitability as shown in figure 1C. The stable manifolds of
the saddle point provides a true threshold; it is not necessary to have widely
different timescales between the two variables to achieve excitability. Figure
10D shows the behavior of a network with excitatory and inhibitory neurons
whose local dynamics is that of 10C. There has been little analysis of this type
of network excitability. However, we offer a simple approximation leading to a
scalar problem which may be amenable to analysis. The dynamics of the pulse
is largely confined to a tubular neighborhood of the unstable manifolds of the
saddle-point which form a ring. This suggests a scalar “ring model” for the local
dynamics as shown in figure 10E. Ermentrout and Rinzel [27] used such a ring
model to study propagation in a reaction-diffusion excitable system. Consider
the following system:

∂θ(x, t)

∂t
= F [θ(x, t)] + gR[θ(x, t)]

∫

Λ

J(x− y)P [θ(y, t)] dy. (27)

The functions F,R, P are , say, 2π−periodic functions of their arguments. The
function: q(u) = F (u) +R(u)P (u) characterizes the ring dynamics. We assume
that there are two fixed points, us and ut representing the stable fixed point
and the threshold respectively. Since q is periodic, there is also a fixed point,
us + 2π. The function R represents the response of the ring model to inputs;
since this is a class I system, R will usually be non-negative. The function
P (u) is the shape of the pulse of activity; it is positive and narrowly peaked.
We assume that R(us) > 0 so that inputs to a resting cell will excite it past
threshold. We can ask whether the scalar problem, equation (27), admits a
traveling front solution joining us to us +2π. Note that since the phase space is
a ring, this actually represents a traveling pulse. Osan et al [48] studied a similar
system but in the context of single neurons and with a time-dependent synapse
replacing the function P (u). Figure 10E shows a simulation of a network of 101
cells with J(x) exponential, R(u) = 1 + cosu, P (u) = (.5 + .5 cos(u − 2.5))5,
F (u) = .98 − 1.02 cos(u) and g = 2.2. Since θ is a front, we plot P (θ) instead
since these are the real coordinates. Despite the similarity of (27) to (26), we
cannot apply Chen’s theorem to the former. The reason for this is that one of
the assumptions of the Chen theorem is equivalent to P ′(u) ≥ 0. Since P is a
pulse-like function, this assumption will be violated. The precise conditions for
the existence of solutions like figure 10E for (27) remain to be determined.

6.3.4 Oscillatory networks.

Consider the excitatory-inhibitory network with no adaptation. Suppose that
we are in the same local configuration as figure 10C and drive the excitatory cells
enough so that the lower two fixed points merge and disappear. Then, the local
network oscillates. Figure 11A shows the phaseplane of the EI system with
no adaptation. Now suppose that we couple the network with exponentially
decaying functions for which the excitation spreads more than the inhibition
(σe > σi). Then, as seen in figure 11B, the network generates waves which
eventually synchronize. However, if the inhibition spreads farther than the
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Figure 11: Oscillatory E-I network. (A) Phaseplane for the local dynamics
showing the existence of a stable limit cycle. (B) A network where σe = 2 and
σi = 1. se, si are initialized at identical low value. The first 10 excitatory cells
are raised to a value of 1 inducing a wave of activity. The network oscillates and
tends to a synchronous solution. (C) Same as (B), but σi is raised to 4 leading to
an instability of the synchronous state and the appearance of clustered solutions

excitation, the synchronous solution is no longer the unique stable solution.
One such non-synchronous solution is illustrated in figure 11C; the network
breaks up into clustered states. Other initial data lead to synchrony so that
this network seems to be bistable.

6.3.5 Turing-type instabilities.

As a final example of spatial effects on networks, we consider a system where
all of the interesting dynamics arises due to the spatial interactions. That is,
the local dynamics consists of a single stable fixed point with no excitability.
We now connect this up with long-range inhibition and short-range excitation.
This is the classical scenario for pattern formation and results in an instability
of the uniform state to a nonzero wave number. We sketch the basic ideas of
the analysis. Let s̄e, s̄i be a spatially uniform fixed point to equation (25) when
there is no adaptation. Write se = s̄e +u and si = s̄i + v. The linearized system
has the form

∂

∂t

(

u
v

)

=

(

−ceeu+ deeJee ∗ u −dieJie ∗ v
deiJei ∗ u −ciiv − diiJii ∗ v

)

Since the rest state is on the middle branch, this means that −cee + dee > 0 so
that dee > 0. All of the other coefficients are obviously non-negative. Suppose
that we work on the infinite domain. Then solutions to this linear problem have
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the form:
[u(x, t), v(x, t)] = eikx+λ(k)t[ū, v̄]

where k ≥ 0. {λ(k); [ū, v̄]} is a eigenvalue-eigenvector pair for the matrix:

M(k) ≡
(

−cee + deeĴee(k) −dieĴie(k)

deiĴee(k) −cii − diiĴii(k)

)

where

Ĵ(k) =

∫

∞

−∞

J(x)e−ikx dx.

We note that if J is an exponential or Gaussian, then Ĵ is non-negative and
decreases with |k|. If M(k) has eigenvalues with positive real parts for some k,
then the rest state is unstable and perturbations with this wavelength will tend
to grow. This sets the template for patterns for the full nonlinear system [46].
Since M is a 2 × 2 matrix, stability is guaranteed if the trace is negative and
the detrminant positive. If we suppose that Jee = Jei = Je and Jie = Jii = Ji,
then, the trace, δ and the determinant, ∆ satisfy:

δ(k) = −(cii + cee) + deeĴe(k) − diiĴi(k)

∆(k) = ceecii + (diedei − diidee)Ĵe(k)Ĵi(k) − ciideeĴe(k) + ceediiĴi(k).

At k = 0, we know that the rest state is stable and for k large, all k−dependent
terms vanish so that the rest state is stable to large k perturbations. However,
because dee > 0 it is possible for intermediate values of k to produce instabilities.
This point is critical: if the rest state is not on the increasing middle-branch of
the E-nullcline, then no spatial instabilities are possible. If the self-inhibition
is weak, then dii is small and the trace will be negative for k > 0 if it is
negative for k = 0 as assumed. Consider for simplicity the case where dii =
0. Then the trace is a monotonically decreasing function of k and since it is
assumed to be negative when k = 0, the trace is always negative. On the other
hand, the determinant can become negative if dee is large enough since the
term Ĵe(k)Ĵi(k) decreases more rapidly than Ĵe(k). Such a scenario can then
lead to an instability as an eigenvalue crosses through zero at some non-zero k.
Figure 12B illustrates as example of this instability for the full nonlinear system.
Two-dimensional analogues of this instability were suggested as a mechanism
for visual hallucinations in Ermentrout and Cowan [19].

Suppose that we include adaptation as well as inhibition. We can remove
some of the inhibition to compensate for the presence of adaptation which acts
like a local slow inhibition. Figure 12C shows the result of this; instead of
stationary patterns of activity, we obtain traveling waves. What is surprising
about these waves is that the domain is finite and the boundaries seem to have
little influence on the waveform.
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