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MULTIPLE BUMPS IN A NEURONAL MODEL OF WORKING
MEMORY*
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Abstract. We study a partial integro-differential equation defined on a spatially extended
domain that arises from the modeling of “working” or short-term memory in a neuronal network. The
equation is capable of supporting spatially localized regions of high activity which can be switched
“on” and “off” by transient external stimuli. We analyze the effects of coupling between units in the
network, showing that if the connection strengths decay monotonically with distance, then no more
than one region of high activity can persist, whereas if they decay in an oscillatory fashion, then
multiple regions can persist.
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1. Introduction. Working memory, which involves the holding and processing
of information on the time scale of seconds, is a much studied area of neuroscience
[3, 9, 24, 35, 37]. Experiments in primates [8, 15, 29] have shown that there exist
neurons in the prefrontal cortex that have elevated firing rates during the period
in which an animal is “remembering” the spatial location of an event before acting
on the information being remembered. Realistic models for this type of activity
have involved spatially extended systems of coupled neural elements and the study
of spatially localized areas of high activity in these systems. Previous studies have
involved “rate” models [1, 19, 22, 37] in which a neural element is described by a single
scalar variable, e.g., a firing rate and more complicated “spiking” models [9, 24, 35],
which take into account the intrinsic dynamics of single neurons.

In this paper we extend the 1977 work of Amari [1] who found single spatially
localized regions of high activity (“bumps”) in rate models of the form

(1.1) % = —u(x,t) + /_00 w(x —y) f(u(y,t)) dy + s(z,t) + h.

Equation (1.1) models a single layer of neurons. The function u(x,t) denotes the
“synaptic drive” or “synaptic input” to a neural element at position z € (—o0, )
and time ¢ > 0. The connection function w(z) determines the coupling between ele-
ments, and the nonnegative function f(u) gives the firing rate, or activity, of a neuron
with input u. Neurons at a point x are said to be active if f(u(x,t)) > 0. The func-
tion s(x,t) represents a variable external stimulus. Finally, the parameter h denotes
a constant external stimulus applied uniformly to the entire neural field. Although
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the model we study has been used to model working memory, similar equations arise
in neural theory as applied to vision and robotic navigation [17], head direction sys-
tems [39], and cognitive development in infants [32]. We also mention recent analyses
of wave propagation when inhomogeneities are present in the underlying neural sub-
strate [4] and also in neural networks with axo-dendritic synaptic interactions [10].

Our goal is to extend Amari’s results in two ways. First, in the next section
we will extend the analysis of the original model in which w(z) is assumed to have
exactly one zero in (0, 00), and f(u) is a step function. We will determine a simple set
of assumptions on w and f for which (1.1) has stationary “single-bump” solutions.
Our assumptions will allow us to obtain a more precise description of the shape of
solutions. We will also investigate the existence of “double-bump” solutions.

In section 3 we relax the restrictions on w and f to include both oscillatory
connection functions which change sign infinitely often and continuous firing rate
functions. Our goal here is to show that “multi-bump” solutions of (1.1) exist over
an appropriate range of parameters. The extension of f(u) to a continuous function
will allow us to derive an ordinary differential equation, specific solutions of which are
steady-states of (1.1). This differential equation, which is derived in section 5, will
be invaluable in proving the existence or otherwise of such “multi-bump” solutions.
Sections 6 and 7 are devoted to studies of its N-bump solutions. In section 8 we
extend the model to two space dimensions and present numerical evidence for multi—
bumps solutions. Sections 9 and 10 contain proofs of two theorems stated in the text,
and a summary of our results is given in section 11.

2. “Mexican hat” coupling. We begin with a description of the assumptions
and conclusions obtained by Amari [1] where the coupling function w(z) satisfies the
following:

(Hy) w(x) is symmetric, i.e., w(—z) = w(z) for all x € R;

(Hz) w(z) > 0 on an interval (—z,Z), and w(—2) = w(z) = 0;

(H3) w(x) is decreasing on (0, Z];

(Hy) w < 0on (—o0,—Z) U (T, 00).
An additional condition which Amari uses but does not explicitly state is

(H5) w is continuous on R, and [*_w(y) dy is finite.
A coupling satisfying (Hy) and (H4) produces “lateral inhibition” [14]. That is, con-
dition (Hs) means that nearby neural elements excite one another, but (Hy) results in
an “inhibitory effect” if the distance between neural elements is greater than a certain
value, Z. Conditions (H;), (H;3) and (Hs) are general requirements which allow for a
tractable mathematical analysis of (1.1). In order to rigorously determine the shape of
steady-state solutions of (1.1), we make one final assumption on the coupling function
w(x):

(Hg) w(x) has a unique minimum on R* at a point zy > 7, and w(w) is strictly

increasing on (zg, 00).
A connection function which satisfies conditions (H;)—(Hg) is

(2.1) w(z) = Ke *=l — pre=mlel,

where 0 < M < K and 0 < m < k. An example of this “Mexican hat” type function
is given in Figure 1 for K = 3.5, M = 3, k = 1.8, and m = 1.52. For simplicity, Amari
assumes (see Figure 1) that the firing rate f(u) is the Heaviside step function

0, u<0,
(2:2) flu) = {

1, u>0.
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Fia. 1. Mezican hat function (2.1) for parameters given in the text, and the Heaviside firing
rate function (2.2).

The effect of (2.2) is that a neuron fires at its maximum rate when the input exceeds
the threshold value u = 0 and does not fire otherwise. Thus, (2.2) can be viewed as
modeling neural elements whose firing rates “saturate” immediately, since increasing
the input further does not cause the firing rate to increase, provided the input is above
the threshold value.

Under assumptions (H; )—(Hs), Amari analyzes the existence and stability of equi-
librium solutions of (1.1) under the assumption that there is no “inhomogeneous” ex-
ternal stimulus s(z,t). That is, he sets du(x,t)/0t = 0 and s(z,t) = 0. This reduces
(1.1) to the time independent equation

(2.3 ww) = [ wla =) sle) dy-+

— 00

Solutions of (2.3) are called equilibrium or stationary solutions. An important obser-
vation is that the neural system is still subject to the constant external stimulus h
applied uniformly to the entire neural field. Note that if A < 0, then the constant
function u = h is a solution of (2.3).

Single-bump solutions: For a given distribution u(x), Amari defines its region
of excitation to be the set

R(u) = {z|u(x) > 0}.

He then defines a localized excitation to be a pattern u(x) whose region of excitation is
a finite interval, i.e., R(u) = (a1, az2). If R(u) is connected, we refer to the pattern as a
“single-bump”, or “l1-bump” solution. Furthermore, because (2.3) is homogeneous, it
is easily verified that u(z — a) is a solution whenever u(z) is a solution. Thus, without
loss of generality, we assume that the region of excitation for a single-bump solution
has the form

R(u) = (0, a).

Remark. If (2.3) has a solution whose region of excitation consists of N > 1
disjoint, finite connected intervals, the solution is called an N-bump solution. A major
goal of this paper is to show that multi-bump solutions exist for (2.3) when the
restrictions on w(z) and f(u) are relaxed.
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Fic. 2. W(x), (2.4), for parameters given in the text. We have chosen h to be negative, so that
Woo <0< —h < Wy,

In his analysis of single-bump solutions, Amari makes use of the function

(2.4) W(zx) = / w(y) dy
0
and the related quantities

(2.5) Wy = max W(z) and Wy = lim W(x).

Conditions (H;y) and (Hs) imply that W (x) is odd, and that W, is finite, respectively.
Amari observes that if (2.3) has a single-bump solution u(x) whose region of excitation
is given by R(u) = (0,a), then u(x) satisfies

(2.6) u(z) = /Oaw(a: ) dy+h=W(z)— Wz —a)+ h.

At the value z = a, (2.6) reduces to
(2.7) W(a) =—h

since W(z) is odd and u(0) = u(a) = 0. In turn, Amari claims that ifa > 0 and h < 0
satisfy (2.7), then

(2.8) u(z) =W(x)—W(x—a)+h

is a single-bump solution of (2.3) for which R(u) = (0, a).

For a given h < 0, (2.7) may have zero, one or two positive solutions. The
exact number is determined by the relative values of W, W,,,, and h. In Figure 2 we
construct the W (x) corresponding to the Mexican hat function illustrated in Figure 1.
That is, we use the formula for w(x) given in (2.1) for the specific values K = 3.5,
k=18, M =3, and m = 1.52. In Figure 2 we see that if W < 0 < —h < W,,, then
there are two values, a1 and ag, which satisfy (2.7). Setting a = a1 and a = ag in (2.8)
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F1G. 3. Stable (left) and unstable (right) single-bump solutions of (2.3) for the functions w and
f shown in Figure 1 and h = —0.7.

gives the corresponding single-bump solutions of (2.3). In Figure 3 we illustrate these
two solutions for the value h = —0.7. Amari gives arguments that indicate that the
large amplitude solution corresponding to a = as (i.e., the first solution in Figure 3)
is stable, while the second, smaller amplitude solution in Figure 3 corresponding to
a = ay is unstable. Furthermore, as Figure 2 indicates, if h = 0, then (2.7) holds only
at the positive value a = az = a.. Setting a = a, and h = 0 in (2.8), one can easily
show that the resulting function is still a single-bump solution of (2.3).

We note that if (2.7) has a solution for some a > 0 and h > 0, then (2.8) implies
that u(x) > 0 for all large x, contradicting the supposition that R(u) = (0, a) is finite.
Thus, single-bump solutions do not exist if A > 0.

Finally, we make a few observations concerning the shape of nonconstant single-
bump solutions (see Figure 3). First, we conclude from hypotheses (H;)—(H4) and
(2.8) that u(z) is symmetric with respect to © = a/2 and that u(x) is increasing
on (0,a/2) and decreasing on (a/2,a). When we consider the additional hypotheses
(Hs) and (Hg), it follows from standard analysis that the solution u(x) has a unique
minimum on (0, 00), and that u(x) — h from below as © — oo.

Double-bump solutions: We now consider the possible existence of double-
bump solutions. A solution u(x) of (2.3) is called a double-bump, or 2-bump, solution
if there are values 0 < a < b < ¢ such that

u>0 on (0,a)U(bc),
(2.9) u(0) = u(a) = u(b) = u(c) =0,
u <0 otherwise.

Thus, a 2-bump solution is one whose region of excitation consists of two disjoint,
connected intervals. The quantity b — a is the distance between bumps. Our goal is
to prove the existence or nonexistence of double-bump solutions of (2.3) which satisfy
property (2.9). In general, a rigorous resolution of this problem is very difficult.
Before stating our first result, we recall that xy denotes the unique positive value at
which the coupling function w(z) attains its global minimum and that w(z) is strictly
increasing on (zg,00) (see Figure 1). In the following result we eliminate a class of
2-bump solutions.



MULTIPLE BUMPS IN WORKING MEMORY 67

THEOREM 2.1. Under hypotheses (Hy)—(Hg) there is no value h € R for which
the problem (2.2)—(2.3) has a 2-bump solution such that the distance between bumps
satisfies b — a > xg.

Remark. Theorem 2.1 does not completely eliminate the existence of all double-
bump solutions. For example, our proof does not address the existence of general
2-bump solutions such that the distance b — a satisfies b — a < x9. However, it
can be shown that under the assumptions ¢ — b = a, i.e., equal width bumps, and
We < 0, (2.2)-(2.3) can support (possibly unstable) 2-bump solutions [33] (and
see [18]). We also have no results concerning existence or nonexistence of N-bump
solutions where N > 3. The resolution of these problems remains open.

Because the proof of Theorem 2.1 is somewhat technical, we postpone the details
until section 9. We proceed in the next section to describe the main focus of our
investigation.

3. Statement of main results. The main goal of our investigation is to ex-
tend the analysis in section 2 and determine conditions on the connection and firing
functions so that the integral equation (1.1) has stable N-bump solutions. For this
we choose a specific w(z) which changes sign infinitely often, and we let f(u) be a
continuous extension of the Heaviside function. For simplicity it is assumed that both
s(z,t) =0 and h = 0. Setting h = 0 will be compensated for by including a threshold
in f. Thus, we study the problem

(3.1) Pt — o)+ [ wla = ) ulas0) do
where

(3.2) w(z) = e "®(bsin |z| + cos z)

and

(3.3) Fu) = 2"/ W=t [ (y — th).

Here th > 0, b > 0, and r > 0 are constants. The parameter b controls the rate at
which the oscillations in w decay with distance. As shown in Figure 4, they decay
more rapidly as b is increased. It is hoped that this oscillatory form of coupling better
represents the connectivity known to exist in the prefrontal cortex, where labeling
studies have shown that coupled groups of neurons form spatially approximately pe-
riodic stripes [16, 26, 27]. Interestingly, it has been proposed that disruption of this
“lattice” of connectivity may be responsible for some of the symptoms of schizophre-
nia [27]. Note that we are not addressing the processes involved in the formation of
these stripes, but are interested in the possible patterns of neural activity that can
exist in the system once these patterns are in place. Also, although w(z) does not
have finite support we know that in the brain, connections cannot exist over arbi-
trarily large distances, so this is obviously an approximation to reality. It would be
an interesting problem to analyze (3.1) with a function w(z) that had more than one
zero crossing for x > 0 yet had finite support. Finally, it is interesting to observe
that the coupling given in (3.2) is differentiable at « = 0, and that w’(0) = 0. This is
proved in [23] and easily follows from the formal definition of derivative. In contrast,
the lateral inhibition coupling given in (2.1) is not differentiable at x = 0. However,
we believe that the only significant feature for analysis of the models is continuity of
w at x =0.
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FiG. 4. w(z), (3.2), for b=0.25 (left) and b = 1.0 (right).

Fic. 5. f(u), (3.3), forr =0 (left) and r = 0.1 (right), with th = 1.5.

The parameter th denotes the threshold that is now included in f(u). The coeffi-
cient of 2 in (3.3) was chosen merely for convenience. We note that f(u) = 0 if and
only if u < th. Furthermore, f(u) is a C* function when r > 0, and r controls the rate
of increase of f(u) for u just past threshold. The differentiability of f will be useful
when we derive a differential equation, specific solutions of which are equivalent to
steady-state solutions of (3.1). In Figure 5 we set th = 1.5 and graph f(u) for r =0
(left) and r = 0.1 (right). When r = 0, f(u) is just twice the Heaviside function.
For r > 0, f(u) is a continuous function which rapidly approaches 2 from below as u
increases past th.

The choice of the functions (3.2) and (3.3) had some arbitrariness to it. The
important features of (3.3) are that f(u) =0 for u < th and that f(u) is sufficiently
differentiable. The choice of (3.2) was made not only because it has the appropriate
shape (decaying oscillations, with approximately the same distance between successive
maxima), but also because the form of its Fourier transform makes the ordinary
differential equation derived in section 5 particularly simple. Our hope is that the
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qualitative details of the following results do not depend on the exact form of (3.2)
and (3.3).

As before, we define a “stationary solution” to be a time independent solution of
(3.1)—(3.3). Thus, a stationary solution satisfies the equation

o0
(3.4) uw) = [ e~ y)f(ulw)dy.
—o0
Before proceeding with our study of N-bump stationary solutions, we need to make
precise the definition of the “region of excitation.” For a solution of (3.4), we define
its region of excitation to be the set

(3.5) R(u) = {z|u(x) > th}.

A solution of (3.4) is an N-bump solution if its region of excitation consists of exactly
N disjoint, finite connected intervals.

In the next section we begin our investigation of N-bump stationary solutions
by considering the limiting value 7 = 0. As r — 0T we note that the firing function
tends to the discontinuous step function depicted in Figure 5 (left). In sections 57 we
extend our studies to the case r > 0, for which the firing function f(u) is continuous.
As mentioned above, when r > 0 we find that there is an equivalent differential
equation, some of whose solutions are solutions of (3.4). In section 5 we derive this
fourth order equation and state our second theorem which determines a range of
parameter values over which N-bump solutions can possibly exist. The differential
equation will be especially useful to us in sections 6 and 7 where we give an extensive
numerical investigation of the global behavior of entire families of N-bump solutions
as parameters vary. Section 6 consists of a study of families of N-bump solutions for
odd values of N, while section 7 covers even values of N.

4. The limiting problem: r = 0. It is natural to begin our investigation by
considering the case r = 0 where f(u) reduces to a multiple of the Heaviside function.
In order to understand this case, we investigate the existence of N-bump solutions
for a specific choice of the parameters b and th. For convenience we set th = 1.5
and b = 0.25 (see Figures 4 and 5 in the previous section). At these values our
computations suggest that the problem (3.1)—(3.3) has at least four stable N-bump
solutions. These are shown on the left in Figures 6-9, where the initial profile u(z, 0)
is represented by the dashed curve, and the solid curve represents u(z,t) at ¢ = 60.
The formula for u(z,0) is given by

Lz Lz \°
4.1 = — - = —12. 12.57.
(4.1)  u(x,0) = cos (12.57r> exp ( (12.57r) >, 51 < x < 12.57

The parameter L > 0 allows us to vary the initial profile u(z,0). Equation (3.1)
was numerically solved by spatially discretizing it on a uniform grid and then moving
forward in time with an Euler step until convergence. The integral was approximated
by a Reimann sum; note that the convolution can be performed more efficiently with
a fast Fourier transform.

In the left panel in Figures 6 and 7 we set L = 6 and L = 2.5, and find that
u(x,t) approaches stable 1-bump and 2-bump solutions, respectively, as ¢ — co. Our
computations imply that these also are solutions of

(4.2) utw) = [ " wle - y) f(uly))dy.
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F1G. 6. Stable (left) and unstable (right) 1-bump solutions: r =0, th = 1.5, b= 0.25.
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F1a. 7. Stable (left) and unstable (right) 2-bump solutions: r =0, th = 1.5, b = 0.25.

Our computations also indicate that there exist unstable 1-bump and 2-bump station-
ary solutions. These are shown in the right panel in Figures 6 and 7. It is interesting
to compare these unstable solutions with the unstable single-bump solution of the
original Amari model described in section 2 (see Figure 3). Some of the stable solu-
tions in Figures 6-9, Figures 1417, Figure 19, Figure 23, Figures 25-28, and Figure 30
were found by numerically integrating (3.1) to a steady state, and the continuation
program Auto97 [12, 13] was used to find the unstable solutions and reconfirm some
of the stable solutions already found. We provide more detail in section 6.

Even though the system (3.1)-(3.3) is defined on an infinite domain, when nu-
merically integrating (3.1) it must be finite. We have chosen a domain size of 25,
centered at x = 0. While it is unlikely that the boundaries have a significant effect
on the spatially localized solutions shown in Figures 6 and 7, they will have a greater
effect on broader solutions such as those in Figures 8 and 9. When comparing homo-
clinic orbits for the differential equation derived in section 5 (which represent solutions
on an infinite domain) with solutions obtained from the numerical integration of (3.1),
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Fi1G. 8. Stable (left) and unstable (right) 3-bump solutions: r =0, th = 1.5, b= 0.25.
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F1c. 9. Stable (left) and unstable (right) 4-bump solutions: r =0, th = 1.5, b = 0.25.

the difference in domains should be kept in mind.

In the left panel of Figures 8 and 9 we let L = 1.6 and L = 1.5, respectively,
and found that u(z,t) tended to stable 3-bump and 4-bump stationary solutions as
t — oo. Again, our computations indicate that there exist corresponding unstable
3-bump and 4-bump stationary solutions. These are shown in the right panels of
Figures 8 and 9. Although we do not show the results, our computations indicate
that if L = 1, then u(z,t) tends to a stable 5-bump stationary solution as t — oo.
For the values r = 0, b = 0.25, and th = 1.5, and a sufficiently large domain, we
conjecture that both stable and unstable N-bump stationary solutions exist for each
N > 1. We leave the resolution of this conjecture as an open problem.

We now develop a necessary mathematical criterion for the existence of 1-bump
solutions of (4.2) when r = 0. In this case the firing function f(u) defined in (3.3)
reduces to twice the Heaviside function, as shown in the left panel of Figure 5. The
solutions computed in Figures 6-9 are symmetric with respect to x = 0. Thus, we
first look for single-bump symmetric solutions. We assume that there is a value a > 0
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i

) 10

FiG. 10. W (z), (4.4): th =15, b= 0.25.

such that u(z) > th on (—a,a) and u(z) < th if |x| > a. Under these assumptions,
(4.2) reduces to

(4.3) u(z) = /a 2w(z — y) dy.

—a

In analogy with section 2, we define

(1.4 W)= [ 2l

and note that W(0) = 0. From (4.3) and (4.4) it follows that
(4.5) u(z) = W(x +a) — W(x — a).

Thus, we conclude that the condition u(a) = th can be written as
(4.6) W(2a) = th.

Figure 10 shows that, when b = 0.25 and th = 1.5, there are exactly two positive
values, a1 and ag, for which (4.6) is satisfied. In Figure 11 we keep th = 1.5 and
decrease b from b = 0.25. The left panel shows that there is a critical b ~ 0.057 at
which a third value a = ag appears which satisfies W (2a3) = th. For 0 < b < 0.057
there are at least four solutions of (4.6). For example, we set b = 0.03 and illustrate
this property in the right panel of Figure 11. As b decreases further, the number
v = v(b) of solutions of (4.6) (i.e., the number of symmetric 1-bump solutions of (4.2))
continues to increase, with v(b) — +oco as b — 0F. In Figure 12 we see that the
number v(b) of solutions of (4.6) also increases if we keep b fixed at b = 0.25 and
then lower the value of th from th = 1.5. Here we find that there is a critical value
th* = W(oo) = 4b/(b® + 1) such that v(b) — +oo as th — th*. We conjecture that
each solution of (4.6) corresponds to a single-bump solution of the integral equation
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Fic. 11. W(z), (4.4): th=1.5; b=0.057 (left) and b= 0.03 (right).

2.17 1

Fic. 12. W(z), (4.4): b=0.25, th* = 0.94.

(4.2). In order to prove this conjecture, one would need to check that for all values
of a satisfying (4.6), the function defined in (4.5) satisfied

(4.7 u(z) > th for —a <z <aandu(z) <thforz<—aora<u,

i.e., that the form of u(z) given in (4.5) is actually a 1-bump solution. It would also be
interesting to develop a criterion for the existence of N-bump solutions when N > 1.
We leave these questions as open problems for future research.

5. The continuous case: r > 0. We now turn to the case r > 0, for which
f(u) is a continuous function. Thus, we study the existence of N-bump solutions of
the equation

(5.1) utw) = [ " wle — y)f(ul)) dy,

— 00
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where w(zx) is given in (3.2) and f(u) is given by (3.3), with » > 0. When r > 0,
both the mathematical and computational analysis of (5.1) become more tractable.
This is due to the fact that N-bump solutions of an associated differential equation
problem also are solutions of (5.1). To derive the differential equation we make use
of the Fourier transform, defined by

(5.2) ro) - [ " emiong(n) dn,

—00

where g € L*(R) and o € R. Note that F(g) is a function of a.
We assume that u is a solution of (5.1), that u, v/, v, v, and u
on R, and that

" are continuous

(5.3) (u, o', u” u"") — (0,0,0,0)

exponentially fast as ¢ — 4o00. Under these assumptions, an application of the Fourier
transform to (5.1) is justified and gives

(5.4) F(u) = F(w)F(f(u)).
An evaluation of F(w) converts (5.4) to

4b(b* + 1)
at +2a2(b2 — 1) + (b2 + 1)2

(5:5) F(u) = F(f(u)).

Next, multiply both sides of (5.5) by the denominator of F(w) and use the identities

(5.6) F(u"") = a’F(u) and F(—u") = o?®F(u)
to obtain
(5.7) Flu"" —2(b* — D)u” + (b + 1)%u — 4b(b* + 1) f(u)] = 0.

We claim that (5.7) is satisfied if u is a solution of the problem
(5.8) { u" = 2(0% = D" + (0* + 1)u = 4b(b* + 1) f(u),

limg 400 (u, v/, u”’, u”") = (0,0,0,0).

Because r > 0, it follows from the definition of f(u) and standard analysis that if u
is a solution of (5.8), then u, v/, v”, v, and v"" are continuous on R, hence (5.7)
holds. It then follows that properties (5.4)—(5.7) also hold. From this we conclude
that any solution of (5.8) also is a solution of the integral equation (5.1). This reduces
the problem of finding N-bump solutions of (5.1) to the study of N-bump solutions
of (5.8).

The first goal of our investigation of (5.8) is to extend the results of the previous
section where we considered the special case r = 0. Thus, we keep th = 1.5 and choose
an 7 > 0. Our numerical experiments for the case r = 0 indicate the existence of even
solutions. Thus, when r > 0 we will restrict our attention to even solutions of (5.8).
These satisfy

(5.9) v’ (0) = u"(0) = 0.
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In the next two sections we use the program AUTO97 [12, 13] to obtain an understand-
ing of the global behavior of families of N-bump solutions of (5.8) as the parameter
b varies.

Our second goal is to give global estimates on the range of r, th, and b for which
N-bump solutions of (5.8) can exist. We have the following result.

THEOREM 5.1. Let r > 0 and th > 0. If there is a value b > 0 for which (5.8)
has a monconstant solution, then

44 /16 — th?
(5.10) 0<bgy.

th

Remarks. (i) It would be interesting to extend the results of Theorem 5.1 to the
special case r = 0. When r = 0 the function f(u) is discontinuous and the differential
equation in (5.8) no longer has a continuous right-hand side. However, since f(u)
will now be piecewise constant and the left-hand side of the differential equation is
linear, it may be possible to solve (5.8) over restricted domains, piecing together these
solutions into a continuous solution for all z € (—oo,00). We leave this as an open
problem.

(ii) The proof of Theorem 5.1 will be postponed until section 10.

(iii) As will be seen in section 6, the upper bound for b in Theorem 5.1 is not
particularly tight, but the main purpose of this theorem is to show that there do not
exist nonconstant solutions for all positive b.

The differential equation in (5.8) is fourth order, and for th > 0 it has a fixed
point at the origin. The eigenvalues of the linearization of (5.8) about the origin are
b+iand —b+4i. Thus, in (u,u’,u”,u”") phase space, solutions of (5.8) are homoclinic
orbits leading to the bifocus-type fixed point (u,u’,vw”,v"") = (0,0,0,0) [25]. We note
that the differential equation is not generic since the sum of the eigenvalues is zero
for all parameter values. This is a simple consequence of the fact that the differential
equation in (5.8) is conservative and, in fact, Hamiltonian. This is easily verified,
since solutions u(x) satisfy the first integral

1o (UH)2

(5.11) u'u 5~ (b = 1) (u)* + (* +1)*Q(u) =0,

where Q(u) is defined by

(5.12) Qu) = /0 ’ (s - < bfj 1> e/ (s=th)’ p (5 — th)> ds.

We also note that the differential equation is reversible since it contains only even
order derivatives.

In recent years, higher order reversible, Hamiltonian equations have played an
increasingly important role in modeling pattern formation in physical systems. We
mention, for example, the encyclopedic paper by Cross and Hohenberg [11] which
describes a wide array of higher order scalar equations. In two recent survey papers,
Champneys [5, 6] gives a dynamical systems approach to the analysis of multi-bump,
homoclinic orbits in higher order reversible models arising in physics, fluid mechan-
ics, and optics. We also mention the recent book by Peletier and Troy [30] in which
methods of analysis of pattern formation in higher order equations are developed from
the alternative topological shooting point of view. In the models considered in these
works, families of N-bump homoclinic orbits often arise through a Hamiltonian—Hopf
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bifurcation from a constant solution. Furthermore, in many of these models the terms
involving u are polynomials of degree greater than one. Thus, these terms exhibit su-
perlinear growth as |u| — co. However, in the model proposed in this paper, the terms
involving u exhibit only linear growth for large |u|. In addition, the rapidly increasing
sigmoidal function f(u) given in (3.3) is poorly approximated by polynomials. Finally,
as we shall see in the next two sections, our numerical investigation of (5.8) indicates
that families of N-bump solutions do not come into existence through a Hamiltonian—
Hopf bifurcation from a constant solution. Because of these fundamental differences
from other higher order equations, a rigorous proof of existence of N-bump solutions
of problem (5.8) should prove to be a challenging problem.

6. Families of N-bump solutions: IN odd. In this section we use AUTO97
[12, 13] to determine the global behavior of families of even 1-bump, 3-bump, and
5-bump solutions of the problem

61) { u" =267 — D’ + (b2 + 1)%u = 4b(6* + 1) f (u)
limg 4 oo (u, v/, v, u"") = (0,0,0,0),

where

(6.2) Fu) = 2~/ [ (4 — th),

and th > 0, b > 0, and r > 0 are constants.

In Figure 13 we set th = 1.5 and r = 0.095, and let b vary, and compute the
bifurcation curve for families of even 1-bump and 3-bump solutions of (6.1)—(6.2).
The horizontal axis is b and the vertical axis gives the global maximum of u for the
corresponding solutions. Figures 14—-17 show solutions at specific points P,... , Pr
on the curve.

Using MATLAB [28], we numerically integrate (3.1)—(3.3) to a steady state, choos-
ing an initial condition which evolves, as t — oo, into a 1-bump solution at b = 0.25.
This solution, which we conjecture to be stable, is labeled P, on the bifurcation di-
agram, and is illustrated in the right panel of Figure 16. We then use AUTO97 to
continue this solution as b varies. Figure 13 shows 1-bump solutions along the lower
branch I'y~ between P; and P3. We conjecture that these solutions are unstable. So-
lutions at P, and Ps are shown in Figure 15. As b decreases along I'; ™, solutions
cease to be 1-bump solutions at P; (the right panel in Figure 14). As b decreases
towards zero, solutions acquire arbitrarily many bumps. For example, the point P,
corresponds to the 3-bump solution shown in the left panel of Figure 14. Note that
when b = 0, the only bounded even solution of the ordinary differential equation
(ODE) in (6.1) is u(z) = cosz, and it is to this that solutions tend as b — 0.

Remark. The first solution in Figure 15 is computed at b = 0.25. As 7 — 0T, our
computations indicate that this solution tends to the 1-bump solution shown in the
right panel of Figure 6 in section 4.

Next, we consider the middle branch T;" in Figure 13. Along I't ™ we find a
second family of 1-bump solutions, some of which we conjecture are stable, between
P5 and Ps3. As b decreases along I'; 1, solutions cease to be 1-bump solutions at P (the
left panel in Figure 16). The solution in the right panel of Figure 16 was computed
at b = 0.25. As r — 0%, our computations indicate that this solution is stable and
tends to the 1-bump solution shown in the left panel of Figure 6 in section 4.

We let I's™ denote the upper branch of the diagram in Figure 13. Along this
branch our computations indicate that solutions are unstable 3-bump solutions. Spe-
cific solutions at Ps and P; are given in Figure 17. The solution at Ps is computed
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F1G. 13. Bifurcation curve for (6.1)—(6.2) showing 1-bump and 3-bump solutions. Parameters
are th = 1.5 and r = 0.095. umaqz s the mazimum of u over all x. Particular solutions at the points
Py, ... P7 are shown in Figures 14-17, and the labeling of the curves is discussed in the text.

F1G. 14. Solutions on T'1~ at Py (left) and P1 (right) in Figure 13.

at b = 0.25, and as r — 0T our computations indicate that it tends to the solution
shown in the right panel of Figure 8.

We have also investigated the existence of 3-bump and 5-bump solutions. Our
computations show that these solutions lie on yet another branch leading to the
original bifurcation curve in Figure 13. This branch of solutions is labeled T's™ and
I's~ in Figure 18. In Figure 19 we give specific solutions on I's™ and T's™ at b = 0.25.
Our computations indicate that the solution in the left panel of Figure 19 is stable.
Furthermore, as r — 07 this solution tends to the solution in the left panel of Figure 8.

We can use data from Figures 13 and 18 to compare the largest values of b
for which nonconstant solutions exist with the upper bound given in Theorem 5.1.
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F1G. 15. Solutions on I'1~ at P2 (left) and Ps (right) in Figure 13.
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FIG. 16. Solutions on T17 at Ps (left) and Py (right) in Figure 13.
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Fic. 17. Solutions on I's™ at Ps (left) and Py (right) in Figure 13.
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F1G. 18. Bifurcation curve for (6.1)—(6.2) showing 1, 3, and 5-bump solutions. This Figure is
an extension of Figure 13.
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Fic. 19. Solutions on the curves T'sT (left) and Ts~ (right) at b = 0.25 in Figure 18.

In Figure 20 we show saddle-node bifurcations of 1-, 3-, and 5-bump solutions in
the b,th plane for r = 0.095. The curve ~; is the continuation of the point Pj3 in
Figure 13, and the curves y3 and -5 are the corresponding continuations for 3- and
5-bump homoclinic orbits, respectively. The dashed line (A) is the function given by
the equality in (5.10), i.e., the value of b above which Theorem 5.1 states that no
nonconstant solutions of (6.1)—(6.2) can exist. We see that the solutions studied in
this section are compatible with Theorem 5.1, but that the bound given there is not
particularly tight.

We have done one further experiment which shows how quickly the global behavior
of solutions can change. In Figures 13 and 18 we set th = 1.5 and r = 0.095 and
found that two “cusps” form on the left side of the bifurcation diagram. In Figure 21
we have increased r from r = 0.095 to » = 0.1 and repeated our computations. In
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Fic. 20. The continuation of the saddle-node bifurcations marking the largest values of b
for which various orbits exist, compared with the upper bound given in Theorem 5.1. ~1 is the
continuation of the point P3 in Figure 13, while 3 and ~ys are continuations of the corresponding

points for 3- and 5-bump homoclinic orbits. The curve “A” is the function b = (4+ /|16 — th?|)/th,
given in (5.10).

this case we find that the cusps have now joined and the 1-bumps solutions lie on
an isolated closed curve. The lower branch I'] consists of small amplitude 1-bump
solutions, which are conjectured to be unstable. The upper branch I'{” consists of large
amplitude 1-bump solutions, some of which are conjectured to be stable. In order to
see the separation of curves more clearly, in Figure 22 we have redrawn the bifurcation
diagram of Figure 21 but now we have replaced ;4. on the vertical axis with the L2
norm of the solution (the default L? norm of AUTO97 is used). Figure 22 suggests
that a “snaking” phenomenon occurs in the branches of the bifurcation curve and that
solutions acquire more bumps as the L? norm increases (e.g., see Figure 23). Similar
snaking phenomena occur in other physical systems modeled by higher order scalar
equations [21, 30, 38], as well as in systems where homoclinic orbits are present [20].

7. Families of N-bump solutions: IN even. In this section we determine the
global behavior of families of 2-bump, 4-bump, and 6-bump solutions of the problem

(7.1) u" —2(b% — Du + (b2 +1)%u = 4b(b* + 1) f (u),
’ limy 400 (u, v, u”, u™) = (0,0,0,0),

where

(7.2) Fu) = 2"/ W=t [ (4 — th).

Here H(-) is the Heaviside function, th > 0 is the threshold, and b > 0, r > 0 are
constants.

In Figure 24 we again keep th = 1.5 and r = 0.095, and let b vary, and compute
the bifurcation curve for families of even 2-bump and 4-bump solutions of (7.1)—(7.2).
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F1G. 21. Bifurcation curve for (6.1)—(6.2) showing 1-, 3-, 5-, and 7-bump solutions. Parameters
are th = 1.5 and r = 0.1. Compare this with Figure 18.

0

F1G. 22. The same curves as in Figure 21, but the vertical axis is now the L2 norm of the
solutions.

Figures 25-28 show solutions at specific points Py, ... , Py on this curve. To compute
the curve in Figure 24 we first set b = 0.25 and integrate (3.1)—(3.3) with an initial
condition chosen so that the solution converges, as t — 00, to the 2-bump (apparently
stable) solution indicated by point Py, and illustrated in the right panel of Figure 27.
We then use AUTO97 to continue this solution as b varies. In Figure 24 we find
2-bump solutions, which are conjectured to be unstable, along the lower branch I's™



82 C. R. LAING, W. C. TROY, B. GUTKIN, G. B. ERMENTROUT

|

Fic. 23. Solutions on the curves F; (left) and F;L (right) in Figure 22. Parameters are
r=0.1, th=1.5, and b = 0.25.

Fic. 24. Bifurcation curve of 2-bump and 4-bump solutions for (7.1)—(7.2). Solutions at the
points Py, ..., Pr are shown in Figures 25-28. Parameters are r = 0.095, th = 1.5. Compare with
Figure 13.

between Py (b= 0.045) and P; (b = 1.23). Solutions at P2 (b = 0.25) and P5 are shown
in Figure 26. As b decreases along I's™, solutions cease to be 2-bump solutions at P;
(right panel in Figure 25). To the left of P, our computations imply that solutions
acquire arbitrarily many bumps as b — 07, as was the case for bumps with N odd.
For example, at b = 0.03 the point Py corresponds to the 4-bump solution in the left
panel of Figure 25.

Remark. The solution in the left panel of Figure 26 is computed at b = 0.25. As
r — 0%, our computations indicate that this solution is unstable and tends to the
2-bump solution shown in the right panel of Figure 7.
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F1G. 25. Solutions on T'a™ at Py (left) and Py (right) in Figure 24.

F1G. 26. Solutions on I'2~ at Pa (left) and Ps (right) in Figure 24.

[$) 1 =

FiG. 27. Solutions on T2T at Ps (left) and Py (right) in Figure 24.
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F1a. 28. Solutions on I'a™ at Ps (left) and P; (right) in Figure 24.
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Fic. 29. Bifurcation curve for 2, 4, and 6-bump solutions of (7.1)—(7.2). This figure is an
extension of Figure 24.

Next, along the middle branch T'y™ in Figure 24 we find a family of 2-bump
solutions, some of which are conjectured to be stable, between Ps (b= 0.187) and P
(b = 1.23). As b decreases along I's ™, solutions cease to be 2-bump solutions at Ps
(shown in the left panel of Figure 27). The solution in the right panel of Figure 27
corresponds to Py (b = 0.25) in Figure 24. As r — 0% this solution tends to the
2-bump solution shown in the left panel of Figure 7.

We let 'y~ denote the upper branch in Figure 24. Along this branch our com-
putations indicate that solutions are unstable 4-bump solutions. The solutions at Py
(b = 0.25) and P; (b = 0.99) are shown in Figure 28. We have also found another
family of 4-bump solutions, as well as 6-bump solutions. These solutions lie on a
second branch leading to the original curve in Figure 24. The lower and upper curves
on this branch are given by T'y™ and I's~ in Figure 29. In Figure 30 we give specific
solutions on I'; ™ and '™ at b = 0.25. Our computations indicate that the solution
in the left panel of Figure 30 is stable and tends to the solution in the left panel of
Figure 9 as r — 0%.
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Fic. 30. Solutions on Ty™ (left) and T¢~ (right) at b = 0.25 in Figure 29.

FIG. 31. The same curves as in Figure 29, but the vertical awis is now the L? norm of the
solutions.

As in the previous section, we redraw in Figure 31 the bifurcation curve shown
in Figure 29 but using the L? norm for the vertical axis. This allows us to see the
separation of branches and, once again, a snaking diagram results.

While we have only looked at multi-bump solutions for which successive maxima
of u monotonically increase and then decrease as a function of x, there may also exist
“(n + m)-bumps” for integer n,m > 1. These would have the approximate form of
an n-bump “glued” to an m-bump, with sufficient low-amplitude oscillations between
them. The linearization of (5.8) about the origin has the form necessary for these
“composite” orbits to exist, and to confirm this conjecture one would need to check
that the N-bump orbits studied above were formed by transverse intersections of the
stable and unstable manifolds of the origin (a generic property). See [7] and references
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Fi1c. 32. Coupling function w(z,y), (8.2), for b = 0.3, centered at the center of the domain.

therein for more details.

In this section we extend our model
to include two spatial dimensions. The system we study, an analogy of (

the following;:

imensions.

.

8. Extension to two space d

—(3.3), is

)

3.1

- S)f(u(q7 S, t)) dq dS,

Y

)

ffe-s

(bsin( x? +y2> +cos( x? +y2>) ,

+

t)

Y,

du(z,y,t)
o -

(8.1)

where

2+y2

w(z,y) =e V"

(8.2)

and

= Qefr/(ufth)QH(u —th).

f(u)
The coupling function (8.2) is the same as (3.2), with distance in one dimension now

(8.3)

replaced by distance in two dimensions. An example is shown in Figure 32. The rate

function, (8.3), is identical to (3.3).

A typical stable solution of (8.1)—(8.3) is shown in Figure 33 for the parameters
r = 0.1, th = 1.5, and b = 0.45. The initial condition was u(z,y,0)

x < 25.6 and 8 <y < 24, and u(x,y,0)

5 for 16 <

0 otherwise. The domain, €2, is a square of

are no constraints on u or any of its derivatives at the boundaries, and the integral

side-length 40, discretized by a regular 50 x 50 grid, with open boundaries; i.e., there
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FI1G. 33. A “6-bump” stable solution of (8.1)—(8.3). Parameters are b= 0.45, r = 0.1, th = 1.5.

in (8.1) is taken over only €. Note that while the coupling function (8.2) is radially
symmetric, the domain is not, and so we do not expect the resulting solutions to
have radial symmetry. The equation (8.1) was integrated using an Euler step until
the solution converged to a steady state, and at each time step the double integral
was approximated by a Riemann integral using the values of v on the grid mentioned
above. Note that the convolution can be performed more efficiently by using the
two-dimensional fast Fourier transform.

Figure 33 shows the resultant 6-bump solution, and the distance between local
maxima is approximately the same as the distance between successive maxima of the
coupling function (27). The regularity is a reflection of the initial condition; more
irregular initial conditions lead to an irregular cluster of bumps with similar spacing
between local maxima (not shown). That is, keeping » = 0.1, th = 1.5, and b = 0.45,
it is possible to find other stable clusters with small numbers of bumps, with the exact
number and position being determined by the initial condition. This is analogous with
the one-dimensional model (3.1)—(3.3) where stable multi-bump solutions coexist for
b = 0.25 (see Figure 19 (left), Figure 23, Figure 27 (right), and Figure 30 (left)). In
the two-dimensional model, as b is decreased from b = 0.45 it seems more difficult to
find localized clusters of multi-bump solutions. Instead, for smaller b, either an initial
set of u values will die down to u = 0 if b is too small or else the entire domain will
be filled with bumps. An example with b = 0.3 and the other parameters the same
(i.e., r = 0.1 and th = 1.5) is shown in Figure 34. This “progressive recruitment”
phenomenon is the same as that seen by Gutkin, Ermentrout, and O’Sullivan in a one-
dimensional model [16]. Similar patterns were also found by Usher, Stemmler, and
Olami [34] in a neural model with short-range excitation and long-range inhibition.

For larger b, stable attractors also form, but they do not seem to retain the
structure of a cluster of bumps observed in Figure 33. However, there still appears



88 C. R. LAING, W. C. TROY, B. GUTKIN, G. B. ERMENTROUT

‘\ » “\
‘\IW“\“ I')‘\\' % "“

'“\ “«"
.//’6‘\\\ "I" ‘\y
h \“i‘.;»

l', o ‘ \ ),
b ; {

“’M‘}'\ M ! ‘v ‘\“ Mgv}"
/)» \\\\ // \ ‘ 5}“\ Y \“'
NN \’!'

—-20
40

,

30 40

20

Yy 0O o0 X

Fic. 34. A stable solution of (8.1)—(8.3). Parameters are b= 0.3, r = 0.1, th = 1.5. The initial
u was spatially localized.

to be a characteristic length similar to the interbump spacing seen for lower b. In
Figure 35, keeping » = 0.1 and th = 1.5, we increase b to b = 0.7 and illustrate an
example of this type of stable attractor. For still larger b values, the whole domain
becomes active and there are no structures with characteristic length 27. This is
probably due to the lack of a significant inhibitory component to w when b is large—
see Figure 4, right panel, for an illustration of this effect in the one-dimensional setting.

In this section, we have presented only numerical results. We leave the possible
derivation of a differential equation problem whose solutions describe steady states
of (8.1)—(8.3), and any further analysis, as open problems. Although few mathematical
results exist for two-dimensional neural models, some interesting results have been
obtained relating to the study of circular stationary solutions [2, 31, 36].

9. Proof of Theorem 2.1. In this section we prove Theorem 2.1 concerning
the nonexistence of a class of 2-bump solutions of problem (2.2)—(2.3). Recall from
section 2 that u(z) is a 2-bump solution of (2.2)—(2.3) if there are values 0 < a < b < ¢
such that

u>0 on (0,a)U(b,c),
(9.1 u(0) = u(a) = u(b) = u(c) = 0,

u < 0 otherwise.
We define the “distance between bumps” to be b — a. Also, we recall from section 2
that under hypotheses (H;)—(Hg), the function w(z) is symmetric with respect to
x = 0, that w(z) attains a unique local minimum on R at a value xg > 0, and that

w(x) is increasing on (xg, 00) (see Figure 1). We will use these properties in our proof
of the following result (a restatement of Theorem 2.1).
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F1G. 35. A stable solution of (8.1)—(8.3). Parameters are b= 0.7, r = 0.1, th = 1.5. The initial

condition was random but spatially localized.

Under hypotheses (Hy)—(Hg) there is no value h € R for which

the problem (2.2)—(2.3) has a 2-bump solution satisfying (2.9) such that the distance

between bumps satisfies b — a > xg.

THEOREM 9.1.

Proof. We assume that there is an h € R for which (2.2)—(2.3) has a solution

0. Using (H;)—(Hg), we will obtain a contradiction of

this assumption. From (2.2), (2.3) and (2.9), it follows that u(x) can be written in

the form

with b —a > x

satisfying (2.9),

vz € R.

u(x)=/Oaw<x—y>dy+/bcw<x—y>dy+h

(9.2)

Next, recall from (2.4) that W (x) is defined by

Vr € R.

(9.3)

Hypotheses (H;)—(Hg) imply that W (z) is odd. That is,

Using (9.3), we write (9.2) as

(9.4)

+ h.

)

Tr —cC

(

0, it follows from (9.5) that

u(z) =W(x)—W@—a)+W(@-0b)-W

(9.5)

u(c) = W(0)

Because u(b)

u(e) =W(e) = W(e—a)+W(c—>b)+h=0,

(9.6)
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and
(9.7) u(d) =W(b)—Wh—a)—W({DH-—c)+h=0.

We note that W(c—b) = —W (b — ¢) since W(z) is odd. Thus, a subtraction of (9.7)
from (9.6) leads to

(9.8) Wi(c) —W(b) =W(c—a)—W(b-—a).
Recalling the definition of W (z) from (9.3), we write (9.8) as
(99) | ey = [ s
Also, our hypothesis that b — a > x¢ implies that

(9.10) zo<b—a<c—a.

We need to consider two cases to complete the proof. The first case is
(9.11) ro<b—a<c—a<b<ec

From (Hg) and (9.10) we conclude that w(z) is increasing on (b —a, ¢). Thus, w(x) >
w(b) on (b,¢), and w(z) < w(c—a) on (b — a,c — a). This implies that

(9.12) | wtn> v,

and

(9.13) /bi ’ w(y)dy < w(c—a)(c—0b).
Combining (9.9), (9.11), (9.12), and (9.13), we conclude that
(9.14) w(b) < w(c—a).

However, since (Hg) implies that w(x) is nondecreasing on [c — a,b], it follows that
w(b) > w(c — a), contradicting (9.14). The second case we need to consider is

(9.15) zo<b—a<b<c—a<ec
Then (9.9) can be written as

/b )y + / Caw(y)dy = /b baw(y)dy+ /b T ).

This reduces to
c b
(9.16) | vy~ [ wwa.

Again, we use the fact that w(z) is increasing on (zo, ¢), together with (9.15), and
conclude that

(9.17) /i w(y)dy > w(c—a)a
and

b
(9.18) /b_ w(y)dy < w(b)a.

From (9.16)—(9.18) it follows that w(b) > w(c — a). However, this is a contradiction
since w(zx) increases on (b, ¢ — a). The proof of Theorem 2.1 is now complete.
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10. Proof of Theorem 5.1. In this section we prove Theorem 5.1 and deter-
mine a global parameter regime over which nonconstant solutions of the problem

10.1) { w" = 2(0% — Du” + (0% + 1)%u = 4b(b® + 1) f (u),

limg 400 (u, v/, w” ") = (0,0,0,0)
might possibly exist. We recall that f(u) is defined by
(10.2) Fu) = 2e7/ =t [ (4 — th),

where H(u — th) is the Heaviside function (see Figure 5). For convenience we restate
our result (Theorem 5.1) below.

THEOREM 10.1. Let r > 0 and th > 0. If there is a value b > 0 for which
(10.1)—(10.2) has a nonconstant solution, then

4+ /|16 — th?

Proof. Suppose that u(z) is a nonconstant solution of (10.1)—(10.2) for some
4+ /|16 — th?
(10.3) r>0, th>0, and b> %

We will obtain a contradiction of this assumption. First, we observe that

4+ /|16 — th?
(10.4) % >1  Vith>0.
It then follows from (10.3) and (10.4) that b > 1. Next, from (10.1)—(10.2) it is easily
verified that w(z) must satisfy the first integral

(W)

10.5 /i _
( ) u'u 5

— (0 = 1)(W)* + (b* +1)*Q(u) = 0,

where Q(u) is defined by

(10.6) Q(u) = /0 ’ (s - ( bfi 1) e/t (s — th)) ds.

Over the range given in (10.3), we claim that the integrand in (10.6) satisfies

(10.7) u— <b28_|li 1) e_r/(“_th)QH(u —th) >0 Yu > 0.

First, suppose that 0 < u < th. Then f(u) = 0 by (10.2), and therefore the left side
of (10.7) must be positive. If u > th, then

8b > 8b
— /=t H(y — th) > th — ——— > 0
u (62+1>e (u ) > b2+1> ,

since we assume that th > 0, r > 0, and b > (4 + /|16 — th2|)/th. Thus (10.7) is
proved. From (10.6) and (10.7) we conclude that Q(0) = 0,

(10.8) Qu) >0 if |u| >0, | lim Q(u) = oo,

u|—o0
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1.1+

-1.5 1.5

Fia. 36. Q(u), (10.6), for parameter values r = 0.005, th = 1.5, b =5.2.

and

(10.9) % <0 Vu<O0, % >0 Vu>0.
For example, the parameters r = 0.005, th = 1.5, and b = 5.2 satisfy (10.3), and in
Figure 36 we graph the corresponding Q(u).

Next, because (10.1)—(10.2) is autonomous, we may assume that the solution u(z)
attains its global maximum at x = 0. We claim that «(0) > th. If, on the contrary,
u(0) < th, then u(z) < th for all x € R, and it follows from (10.2) that f(u) =0
for all z € R. This reduces the integral equation (5.1) to u(z) = 0, and we arrive at
a contradiction since we assume that u(x) is a nonconstant solution of (10.1)—(10.2),
and solutions of (10.1)—(10.2) also are solutions of (5.1). Thus, at = 0 it must be
the case that

(10.10) uw(0) > th, ¥'(0) =0, and «”(0)<0.
Substituting (10.10) into (10.5), and using (10.8), we conclude that

(10.11) u”(0) = —(b® + 1)/2Q(u(0)) < 0.

Without loss of generality we may assume that «”/(0) < 0. Otherwise, if «//(0) > 0,
then it would suffice to consider the function v(z) = u(—x) which also is a solution of
(10.1)—(10.2) and satisfies the initial conditions

v(0) > th, v'(0) =0, v"(0) <0, and 2" (0)<0.
Thus, it may be assumed that the solution u(x) satisfies
(10.12) w(0) > th, v'(0) =0, v"’(0) <0, and u"(0)<0.

Our goal in the remainder of the proof is to show that there is an Z > 0 such
that w(Z) > u(0). This will contradict the fact that u(x) attains its global maximum
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at x = 0. Thus, we need to follow the solution as z increases from x = 0. Throughout
we will make extensive use of the first integral (10.5) and the associated functional
Q(u(x)). In Figures 37 and 38 we follow u(z) and Q(u(x)), respectively, and keep
track of the points where the solution u(x) attains its maxima and minima.

From (10.1)—(10.4), (10.7), and (10.12) it follows that «””"(0) < 0. This and (10.12)
imply that v’ (x) < 0 on an interval (0,¢). We set

(10.13) o =sup{z > 0[u""(z) <0 Vz e (0,2)}.

If 0 = oo, then u”’(z) < w”(0) < 0 for all © > 0, hence u”(00) < 0, contradicting
the condition u”(c0) = 0 given in (10.1). Thus, it must be the case that o < oo,
u" (o) =0, and

(10.14) wu(z) < u(0), v/(z) <0, and u”(z)<u”(0)<0  Vz e (0,0].

Next, it follows from (10.8) and (10.9) that there is a unique, negative value u; < 0
(see Figure 38) such that

(10.15)  Qu) <Qu(0))  Vu € (u1,u(0)), and Qu1) = Q(u(0)).

We need to show that u(o) < uy. If u(o) > wy, then from (10.11), (10.14), and (10.15)
it follows that (u”)? increases on (0,0) so that

(10.16) % > (02 +1)2Q(u(x)) Yz € (0,0].
Setting = ¢ in (10.5), and using (10.3), (10.4), (10.14), and (10.16), we obtain
—(u'(0))*(0* = 1) > 0,

a contradiction since u/(0) < 0 and b > 1. Therefore it must be the case that u(o) <
up. Thus, there is an z1 € (0,0) such that (see Figure 37)

(10.17) ' (x) < 0, v”’(z) <0, "' (z) <0  Vx e (0,x1], and wu(z1)=wu;.
Since u(oo) = 0, it follows from (10.17) that there is an x5 > x7 such that
(10.18) u'(z) <0 Vz € [r1,22), and u'(z2)=0.

We conclude from (10.5) and (10.18) that

(10.19) u(zo) < uy <0, v/ (x2) =0, and u”(22) = (b* + 1)/2Q(u(x2)) > 0.

We need to determine the sign of u”/(x2). Because u”(z1) < 0 and v’ (z2) > 0, there
is an & € (z1,x2) where v”(Z) = 0 and «"(Z) > 0. This, (10.3), (10.4), and (10.18)
give

(10.20) u”' (%) — 2(b* — 1)/ (%) > 0.

Next, because u(z) < u; < 0 on [Z,x2], it follows from (10.1)—(10.2) that
(10.21) (" —20* = 1)u') = —(b* +1)%u >0 Vr € [7,2a).
From (10.19), (10.20), and (10.21) we conclude that

(10.22) u" (z2) > 0.
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>

th

F1a. 37. A sketch of u(z) for (10.1)—(10.2): u(z1) = w1, u(z2) = u2, and u(x3) >

Fia. 38. Q(u), (10.6): up = u(0), u1 = u(z1) = uwo, uz = u(x2), uz = u(xs).

In Figure 38 we set u; = u(x;) and us = u(xz2). As u(x) decreases from u; to us,
properties (10.8) and (10.9) imply that Q(u) increases, and therefore

(10.23) Qu(r2)) > Q(u1) = Q(u(0)).

In the final step of the proof we follow u(x) as x increases from x = x5, and we show

that there is an x3 > @9 such that u(xs) = us > u(0) (see Figures 37 and 38). We first
observe from (10.8)—(10.9) that there is a unique @ > 0 such that Q(a) = Q(u(z2)).
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It follows from (10.23), and the fact that Q(uw) is increasing for v > 0, that

(10.24) u > u(0).
Next, define
(10.25) xg = sup{® > xo|u'"(z) > 0 Vx € (x2,7)}.

Because of (10.24), if we show that u(x3) > 4, we will obtain a contradiction of the
fact that u(z) has its global maximum at = 0. From (10.19), (10.22), and (10.25) it
follows that

(10.26) o'(z) >0, u”’(x) >u"(z2) = (b +1)/2Q(u(z2)) >0  Va € (w2, 73]

If 3 = oo, then (10.26) implies that u'’(c0) > 0, contradicting the condition u” (c0) =
0 given in (10.1). Thus, z3 < co and it follows from (10.25) that

(10.27) u" (x3) = 0.
Finally, suppose that
u(ze) <u(z) <a Vo € (z2,x3).

Then (10.8) and (10.9) imply that

(10.28) 0 < Q(u(z)) < Qu(zz)) Vr € (x2,x3).
Combining (10.26), (10.27), and (10.28), and setting x = x5 in (10.5), we obtain
12 / 2 _ (u"(x3))? 12 2
(b7 = (' (23))" = —5=— = (0" + 1)°Q(u(a3)) > 0,

a contradiction since u'(x3) > 0 and b > 1. Thus, it must be the case that u(zs) >
@ > u(0) as claimed. However, as described earlier, this contradicts the fact that u(z)
has its global maximum at z = 0. This completes the proof.

11. Summary. In this paper we have studied steady states of a partial integro-
differential equation that has been used to model working memory in a neuronal
network. We have extended previous results for “Mexican hat” coupling to the case
where the connectivity function changes sign infinitely often, in the hope of more
realistically modeling the connectivity known to exist in the prefrontal cortex. Our
main results include (a) a proof of the nonexistence of a type of “multiple bump”
solution when the connectivity is of Mexican hat type, (b) an upper bound on the
decay rate of an oscillatory connectivity function, above which only trivial solutions
exist, and (c¢) a numerical investigation of the possible solutions and the bifurcations
they undergo for a particular oscillatory connectivity function.

For the one-dimensional model, many of the numerical results were obtained as
a result of noting that stationary solutions of the partial integro-differential equation
(5.1) are equivalent to homoclinic orbits in the related fourth order ordinary differ-
ential equation problem (5.8). This property allowed us to use the software package
AUTO97 [12, 13], with its facilities for continuing homoclinic orbits, to follow both
stable and unstable solutions as parameters were varied. We are presently pursuing a
rigorous proof of existence of the families of N-bump solutions found here. Already,
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it has been proved in [23] that any bounded solution of the ordinary differential equa-
tion in (5.8) also is a solution of the integral equation (5.1). Thus, in addition to
homoclinic orbits, we are also investigating the existence of other families of solu-
tions, including periodic, aperiodic, and chaotic solutions. While many of our results
were derived by exploiting the specific form of an oscillatory connectivity function,
we believe that the qualitative aspects of our results will hold for any qualitatively
similar function.

For the two-dimensional extension of our model we used a MATLAB [28] code
to generate stable multi-bump solutions. For appropriate parameter values we found
that N-bump solutions exist and that they retain many of the characteristic qualities
of solutions of the one-dimensional model. However, we also found stable solutions
which were not predicted by our one-dimensional studies. In future research we will
continue our investigation of the different types of stable patterns of solutions of the
two-dimensional problem.

Acknowledgment. The authors thank Edward Krisner and the referees for mak-
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