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Linearization of F-1 Curves by Adaptation
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Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.

We show that negative feedback to highly nonlinear frequency-current
(F-1) curves results in an effective linearization. (By highly nonlinear we
mean that the slope at threshold is infinite or very steep.) We then apply
this to a specific model for spiking neurons and show that the details of
the adaptation mechanism do not affect the results. The crucial points are
that the adaptation is slow compared to other processes and the unadapted
F-I curve is highly nonlinear.

1 Introduction

Many computational models of neural networks use a simple threshold-
linear output function for the firing rate, primarily for ease of analysis (Sali-
nas & Abbott, 1996; Ben-Yishai, Hansel, & Sompolinsky, 1997, for example).
This type of firing rate function can be a good approximation to regular
spiking cells in sensory cortex (Mason & Larkman, 1990; Avoli & Olivier,
1989; McCormick, Connors, Lighthall, & Prince, 1985; Stafstrom, Schwindt,
& Crill, 1984) Unlike fast spiking cells, regular spiking cells show adapta-
tion to inputs. (Compare Figures 1 and 6 in McCormick et al., 1985.) The
initial firing rate is fast and then slows to a steady-state rate. The curves of
steady-state firing as a function of the input current (F-1 curves) are very
close to linear, whereas the initial interspike interval (an approximation of
the firing rate before adaptation) is quite nonlinear. Wang (1998) has recently
described a model for adaptation and, exploiting the fact that the adapta-
tion process is slow, derives the firing rate and many other properties of
adaptation. He uses a model for adaptation based on a calcium-dependent
potassium channel (see below). He first considers the model without adap-
tation and fits the steady-state calcium concentration to a straight line. He
then uses this to derive a firing rate for the adaptation, which is linear. This
last fact is not surprising since his approximation for calcium concentration
is also linear. Our goal here is to show that the F-1 curve is linearized in
any model with slow adaptation, provided that the unadapted firing rate
curve is sufficiently nonlinear. The latter condition occurs in simple models
such as the integrate-and-fire neuron, as well as in more “realistic” models
such as Traub’s Hodgkin-Huxley-type model for spiking dynamics. That
is, we make no a priori approximations; the linearization is a consequence
of the analysis, not an assumption. We derive a similar model to Wang’s
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“calcium” model but exploit the full nonlinear aspects of the F-1 curve in
our subsequent analysis. We close with some specific examples.

2 Negative Feedback and Linearization

We start with an abstract model. Suppose that in the absence of negative
feedback, the firing rate curve is given by a function, f(l), and we can sup-
pose that the threshold current for firing is | = 0 by shifting the threshold.
Then f(I) = 0if | < 0and f(l) is continuous for | > 0. This last condition
says that the firing rate must tend to zero as the current tends to zero. The
Hodgkin-Huxley model does not have this property since the firing rate
is some nonzero value as soon as the threshold is crossed (see Rinzel &
Ermentrout, 1989). The integrate-and-fire model has a firing rate given by

Kk
log(1+ Ka/D)’

which does vanish as | — 0. The firing rate for many cortical models,
including the Traub model, is well approximated by

fiar () =

fon() = AVI. (2.1)

Both of these firing rates are highly nonlinear in that they cannot be approx-
imated by a linear function near threshold. In both cases, the derivative of
the function tends to infinity as the current decreases to threshold. Now
suppose that there is negative feedback, due to adaptation, which slows the
firing rate. Let z be the amount of this negative feedback so that the true
firing rate is f(I — gz). The parameter g is the degree of negative feedback.
This feedback term is in turn proportional to the firing rate so that

z = gf(l — gz2). (2.2)

(Thisis notan unreasonable assumption, as we will see below in the analysis
of biophysical models.) We must solve this for z and then use the result to
obtain the true firing rate. Note that if | = 0, then z = 0 and there is no
adaptive feedback. To see that firing rate will be linearized, we implicitly
differentiate this:

% = pf'(1 - 92) (l - gg—f) ,
hence,

dz Bf’

dl 1+ pgf’

Our nonlinearity assumption implies that the derivative of f is very large
when | is small, so that we must have

dz_l

da g’
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and from this we conclude that

YA

Q| —

and that the true firing rate,

z |

B By

Thus, the negative feedback makes the behavior of the steady-state firing
rate linear with the injected current. Furthermore, the details of the firing
rate function itself do not even contribute to the slope of this function at
low inputs. Only the degree of adaptation and the proportionality of the
adaptation to firing rate matter.

As a concrete example, suppose that the firing rate is like equation 2.1.
Then we can solve for the true firing rate:

—A2 AZBQ)Z + 4ATI
fae() = LTV CLDH I 23

Note that the slope of this function at | = 0is 1/(gB), as noted in general in
the above calculation.

3 Application to Biophysical Models

The typical biophysical model consists of several compartments and has the
form,

dv
Cqr = 2 %OE =V +1, (31)
k

for each compartment, and the time-dependent conductances have the form,

g(t) = Gkmi (Dh) V),

where the gates, my, h, obey first-order differential equations that are de-
pendent on voltage or other quantities such as calcium. We want to separate
out one of these conductances as having slow dynamics compared to all the
others. This will represent the adaptation. Thus, we will write the sum in
equation 3.1 as

—lion — 9Z(V — Eaggpt)

where

dz

a = EZ(V, Z,.. .),



1724 Bard Ermentrout

and ¢ is a small, positive parameter. Now we make our main assumption
about the dynamics of the fast subsystem. If g = 0 as the current increases,
the dynamics makes a transition from rest to repetitive firing via a saddle-
node bifurcation on a circle. This type of bifurcation occurs in most models
of cortical neurons when there is no adaptation. Then, itis known (see Rinzel
& Ermentrout, 1989; Ermentrout, 1994; Hoppensteadt & Izhikevich, 1997)
that the firing rate near the critical current at which the transition is made is

f=AVI— I

Thus, the square-root firing relation discussed in the previous section arises
naturally from the dynamics.

In many neurophysiology articles, the F-1 curve is depicted as bilinear
(cf. Stafstrom et al. 1984), with a steep slope at low currents and a shallower
slope at high currents. This is exactly what one would expect with a square-
root relationship. Figure 1A shows the data from their article together with
the square-root F-1 curve. (The points on this graph were obtained by dig-
itizing their figure of the first interspike interval for cat layer V neurons
during current injection. The first interspike interval presumably reflects
the instantaneous firing rate before adaptation turns on.)

Now we turn to the slow dynamics of the adaptation. We write the dy-
namics as

g =eHNV..)—2),

where H depends only on the “fast” equations. When there is no firing, we
assume that H is very close to zero so the adaptation does not contribute
much hyperpolarization at rest. When firing repetitively, the potential and
the other variables are periodic so that we can formally average the slow
equation, obtaining

dz 1 (7
" =e(?/(; HV (), ...) dt — 2).

Last, we suppose that the spike width does not vary much over a range of
current; thus, the integral of H over one period of the oscillation is roughly
a constant, say, 8. Since 1/T is just the firing rate, f, we see that

dz ~ e(Bf —2)
dt '

Finally, the firing rate is proportional to the input current and the total
outward current due to the adaptation. Near the transition from rest to
repetitive firing, the potential spends most of the time near rest, so we can
approximate the adaptation current by

lagapt ~ 0Z(Vrest — Eadapt) = §ZA. (3.2)
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We thus obtain the simple model for adaptation:

dz

< S =lc—gAz—72). .
it e(BAJ/I — I, — gAz—2) (3.3)

This allows us to model adaptation quantitatively because each of these
parameters is readily computed. Only A, 8 require us to compute numeri-
cally the actual solutions as a function of the input; all other parameters are
readily available from the model. Wang (1998) has noted that the sequence
of interspike intervals can be fitted to an exponential function and has used
his simple linear equation to derive the time constant. Equation 3.3 is not
linear, so the approach to steady state is not so readily computed. However,
empirically, we find that 8 is small, so that z will be quite small as long as
BA is small compared to gA, and we get the linear approximation

d—z—e,BA\/I—IC—e<1+ pAgA )Z.

dt 21— 1
The effective time constant is thus
BAgA )
1 =c(1 . 3.4
/Tadapt € < + ZH (3.4)

As Wang notes, the actual time constant for adaptation is faster than the
time constant of the slow adaptation process. In fact, near threshold, the
time constant can be quite small.

4 Examples

4.1 Traub Model with an M Current. We first consider Traub’s model
for spiking dynamics (Traub & Miles, 1991) with a slow outward potassium
current. The equations are 3.1 where the fast current is:

lion = gNahM®(V — Ena) + 0LV — EL) + gkn*(V — Ex).
The gating variables, m, h, n, obey equations of the form:

z_)t/ =ay(V)L —y) —by(V)y.

We used an (V) = .32(54 + V) /(1 — exp(—(V + 54)/4)), b (V) = .28(V +
27)/(exp((V + 27)/5) — 1), an(V) = .128exp(—(50 + V) /18), bp(V) = 4/(1 +
exp(—(V + 27)/5)), an(V) = .032(V + 52)/(1 — exp(—(V + 52)/5)), and
bn(V) = .5exp(—(57 + V)/40). The other parameters are C = 1 wF/cm?,
Ona = 100,09k = 80,9. = .1mS/cm?, and Ena = 50,E, = —67,Ex =
—100 mV.
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With these parameters, the critical current for the onset of rhythmicity
is 0.45 uA/cm?. We find (see Figure 1B) that a good fit for the unadapted
firing rate is

f(1) ~ 601 — I,

which is accurate except at high firing rates, where it is a little low. (The
reason is that at high currents, the unadapted firing rate actually becomes
more linear.)

We add adaptation via the current:

lagept = 92(V — Ex),
where,

% =0.01(1/(1 + exp(—(V + 20)/5)) — 2).

In Figure 2A, we show the result of the adaptation when a current pulse of
5 uA/cm? is injected and g = 5 mS/cm?. The initial firing rate is about 125
Hz and the steady-state firing rate is about 50 Hz. A numerical calculation
shows that the average magnitude of the adaptation is proportional to the
firing rate with factor, 8 = 0.00045. Using equation 2.3 along with equa-
tion 3.2 we get an approximation for the steady-state firing rate when there
is adaptation. In Figure 1C, we plot the steady-state firing rate along with
the computed firing rate from these two formulas. The fit is very good even
though the nonadaptive firing rate approximation was somewhat low at
high rates of firing. Figure 2B shows the slow variable z for the full model,
as well as the solution to equation 3.3 with the parameters as chosen above.
The dynamics is captured very closely. As with Wang’s simulations, random
inputs into the model are very nicely reproduced with the averaged model
even though the inputs occur at a fast time scale. Equation 3.4 shows that
for current near criticality, the time constant is quite small, so the system
can respond quickly.

4.2 Calcium-Dependent Potassium Current. A more likely type of adap-
tation is one that arises from a calcium-dependent potassium current. We
have computed this model as well. The fast ionic current is as above, with
the addition of a high-threshold calcium current:

lca = gCamoo(V)(V — Eca),

where my (V) = 1/(1 + exp(—(v + 25)/5)), Eca = 120 mV, and gca =
1 mS/cm?. Calcium obeys the dynamics

dIc 2+
[ dat 1 _ _ 002lc, — 0125[Ca?"].
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Figure 1: F-1I curves for real cells and for models of cells computed numeri-
cally along with analytical functions obtained by averaging. (A) F-I curve from
Stafstrom et al. (1984) fitted by the square-root function. (B) Traub model with no
adaptation is well fitted by a square-root function. (C) Traub model with slow
voltage-dependent potassium current with conductance, g = 5 mS/cm?, and
the analytic approximation based on equation 2.3. (D) Calcium-based model
with a calcium-dependent potassium current, g.,, = 5mS/cm? and the analytic
approximation. In curves B, C, and D, current is in ,uA/cmz.

and the adaptive current is
lap = Gatp ([CZ71/(30 + [Ca** D)(V — Ex).

Here, the calcium concentration is the slow parameter. The same type of cal-
culation above shows that the average calcium concentration in the absence
of adaptation is a factor of § = .008 times the firing rate. The unadapted
firing rate is about the same as the firing rate for our previous model.
Figure 1D shows a plot of the steady-state firing rate for this model for
Oatp =5 mS/cm? using A = 60, 8 = 0.008 and approximating the nonlinear
gate, ([Ca®*]/(30 + [Ca?*])) by [Ca?*]/30 since the calcium concentration
stays well below 30. As in the simpler adaptation model, the approximation
of the steady-state firing rate fits the computed one very well.
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Figure 2: Response of the Traub model to a current pulse showing adaptation
of the firing rate. (A) Voltage. (B) The adaptation gating variable for the full
model using a voltage-dependent potassium current along with a solution to
the averaged equation (3.3).

5 Discussion

We have derived a model for adaptation similar to that derived by Wang
(1998). However, we have used no approximations that do not arise di-
rectly from formal analysis of the dynamics. In particular, we have have
not approximated the amount of adaptation by any ad hoc functions but
rather obtained the approximations from the behavior of systems near a
saddle-node limit cycle bifurcation. We have used a simple negative feed-
back argument to show that adaptation always linearizes nonlinear firing
rates that are very steep near the transition to repetitive firing.

There are some intrinsic heuristics in our simplification. The square-root
form of the firing rate is formally exact only in the neighborhood of the
saddle-node bifurcation. However, in that neighborhood, the frequency of
the oscillation is very small, so that in order to average the equations for-
mally to get equation 3.3, the adaptation would have to be unrealistically
slow. Thus, we have used the square root formula for the firing rate be-
yond the regime where it is formally correct. The result is that we have a
model for linearization that is not valid right at the bifurcation or valid far
from the bifurcation, but rather at some intermediate range. Nevertheless,
the numerical calculations show that the formula is good over a far greater
range than would be expected from a formal mathematical point of view.

Most neurons are better modeled by multiple compartments. In this case,
there will be additional slow variables, and the simple scalar model (see
equation 3.3) will not be valid. Instead, we will obtain equations for the
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form:

d B
el 1-1= Y agm) - 2,
i

where g and g are related to how the adaptation in different compart-
ments affects the somatic potential. Here we assume that only the soma is
able to spike. The analysis of these equations is not as straightforward and
would certainly depend on the number and strength of coupling between
compartments.
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