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There are several different biophysical mechanisms for spike frequency
adaptation observed in recordings from cortical neurons. The two most
commonly used in modeling studies are a calcium-dependent potassium
current Iahp and a slow voltage-dependent potassium current, Im. We show
that both of these have strong effects on the synchronization properties of
excitatorily coupled neurons. Furthermore, we show that the reasons for
these effects are different. We show through an analysis of some standard
models, that the M-current adaptation alters the mechanism for repetitive
�ring, while the afterhyperpolarization adaptation works via shunting
the incoming synapses. This latter mechanism applies with a network that
has recurrent inhibition. The shunting behavior is captured in a simple
two-variable reduced model that arises near certain types of bifurcations.
A one-dimensional map is derived from the simpli�ed model.

1 Introduction

Synchronous cortical rhythms are thought to be relevant to a number of
higher cognitive processes and have been associated with selective atten-
tion and the binding problem (Gray, Engel, Konig, & Singer, 1992; Traub,
Jefferys, & Whittington, 1999). Connections between different areas and
cortical columns are mediated by excitatory interactions. It has previously
been established that excitatory connections between neuron models that
spike with no adaptation do not readily synchronize and in fact often �re
in antiphase (van Vreeswijk, Abbott, & Ermentrout, 1994; Hansel, Mato, &
Meunier, 1995). The reason for this is a consequence of the mechanism by
which model cortical neurons make the transition from rest to repetitive
�ring. Ermentrout (1996) showed that if the transition to repetitive �ring
is through a saddle node on a circle bifurcation, then excitatory coupling
will not generally lead to synchronous activity. Most models for fast spik-
ing neurons have this property and thus will not tend to synchronize when
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coupled with excitation. In this article, we de�ne synchrony to mean a zero
phase lag when two identical neurons are identically coupled. This is a
mathematical idealization but allows us to be precise when we describe the
locking behavior of coupled oscillators.

Cortical excitatory neurons are not generally “fast spiking.” Rather, they
are so-called regular spiking neurons and have spike frequency adaptation
(McCormick, Connors, Lighthall, & Prince, 1985). In an earlier paper, Crook,
Ermentrout, and Bower (1998) showed that the addition of spike frequency
adaptation to cortical models enabled such models to synchronize stably
with mutual excitation. The analysis in that article concerned a speci�c mul-
ticompartment pyramidal cell model and was strictly numerical. In this ar-
ticle, we systematically explore the role of adaptation in enhancing the syn-
chronization properties of cortical neurons by studying the dynamics in the
presence of adaptation and how this alters the response of the neural oscil-
lation to inputs. We also show that the presence of recurrent inhibitory feed-
back works in the same way. Finally, we describe a “canonical” model that is
valid near the onset of repetitive �ring if the adaptation is suf�ciently slow.

We �rst discuss two different types of adaptation: the calcium-dependent
potassium current, Iahp (afterhyperpolarization [AHP] current), and themus-
carinic slow voltage-dependent potassium current, Im (M current). We nu-
merically show how they affect the synchronization of a model pair of cells.
We then turn to an analysis of why this happens. We �nd that the M-current
destabilizes the rest state through a Hopf bifurcation, which gives birth
to a large-amplitude, stable, periodic solution. This has consequences for
the phase-response curve (PRC), inducing a negative region that stabilizes
synchrony. The AHP current acts in a more subtle manner and stabilizes
by making the neuron insensitive to inputs that occur shortly after a spike
(�attening the PRC) and sensitizing the neuron to inputs that come right
before a spike (steepening the PRC). A similar effect occurs when the exci-
tatory neuron is part of a network that contains inhibitory neurons as well.
We �nally show that this effect is captured in the canonical model.

2 Adaptation, Inhibition, and Negative Feedback

In many models of cortical neurons, there are two basic �avors of spike
frequency adaptation: Im, which is a slow voltage-dependent potassium
current, and Iahp , which is a calcium-dependent potassium current. Due
to the slow kinetics of intracellular calcium accumulation, Iahp can be quite
slow. In typical models (see the appendix for some detailed equations), Iahp is
modeled by adding an L-type calcium current to the equations in addition to
thespiking current.TheL-typecurrenthas a fairly high thresholdand a steep
activation curve, and is generated only when the neuron produces a spike.
Thus, Iahp is turned on only if the neuron actually �res a spike. In contrast,
for several models of Im, there is a �nite amount of the current present at
rest in the neuron. The key qualitative (and quantitative) difference between
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Figure 1: Spike frequency adaptation in the Traub model. (A) gm D 1. (B) gAHP

D 1.

these two currents lies in their effective voltage dependence: the M current
is less sharp and has a lower effective threshold, while the AHP current
is sharper and has a higher effective threshold. Thus, more properly, we
distinguish between low-threshold broad adaptation (exempli�ed by the
M current) and high-threshold sharp adaptation (exempli�ed by the AHP
current). In the appendix, we describe the conductance-based models used
in this article; they are adapted from Traub and Miles (1991).

In Figure 1 we illustrate the two types of adaptation. In each case the
injected current goes from 0 to 15 in a step. The initial �ring rate slows to
a steady-state �ring rate. Note that the calcium-mediated adaptation takes
slightly longer to reach a steady state.

Figure 2 shows the effects of spike frequency adaptation on a network of
�ve globally coupled neurons. We plot the sum of the synaptic gates,

EEG(t) D
5X

jD1
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Figure 2: Effects of adaptation on the synchronization of a networkof �ve synap-
tically coupled neurons. The total synaptic conductance felt by each neuron is
plotted,

P5
jD1 sj(t). In the �rst three panels, the initial 100 milliseconds show the

behavior when there is no adaptation. The �ve cells all �re out of phase with
each other. In the top panel, at t D 100 (arrow), the applied current is increased
from I D 0.6 to I D 6.0 and gm D 1. In the second panel, I D 8.5, gAHP D 1, and
in the third panel, I D 2.5, gm D 0.2, gAHP D 0.2. In the last panel, initial data are
started very close to synchrony, and all adaptation is removed.

as this is a good measure of the total local current. With no adaptation, �ve
identical all-to-all coupled neurons always go into the splay-phase state
(one in which their phases are uniformly distributed). Adding adaptation
in the form of the AHP or the M current (and increasing the applied current
so that the uncoupled period remains the same) causes the �ve cells to
synchronize or nearly synchronize. Starting from the nearly synchronous
state, removing the adaptation, and reducing the applied current rapidly
sends the network back into the desynchronized state. This synchronization
is not particularly sensitive to noise and is robust to heterogeneities. (In the
presence of heterogeneities, perfect synchrony with no timing differences is
obviously impossible.)
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Recurrent inhibition is in many ways like high-threshold adaptation.
When the excitatory cell �res, it is suf�cient to produce an action potential
on a local inhibitory interneuron. This inhibitory neuron acts directly on the
excitatory neuron and lowers the spontaneous �ring rate. Thus, the presence
of a local inhibitory interneuron can lower the �ring rate of an excitatory
neuron while at the same time having no effect on the stability and existence
of the rest state. We have shown (Ermentrout & Kopell, 1998;Kopell, Ermen-
trout, Whittington, & Traub, 2000) that excitatory-inhibitory pairs are very
good at producing synchronous behavior when the connections between
such pairs are mediated by long excitatory-to-inhibitory connections. Be-
low, we show that the presence of a feedback inhibitory neuron acts on the
PRC curve of the excitatory neuron in the same way as high-threshold adap-
tation. Thus, excitatory-excitatory connections can produce synchronous or
nearly synchronous activity. Figure 3 shows how the presence of recurrent
inhibition can alter the synchronization properties of coupled excitatory
neurons. Unlike the results cited above, there are only connections between
the excitatory neurons.

2.1 Effect of Adaptation on the Bifurcation Diagram in a Model Cell.
Despite its importance in shaping the responses of excitatory cortical neu-
rons, there has been little systematic exploration of how the presence of
adaptation affects the global behavior of a model neuron as currents are in-
jected or other parameters are varied. Hansel et al. (1995), Ermentrout (1996),
and Izhikevich (1999) have shown that the response of a neural oscillator
depends crucially on the way in which the neuron makes the transition
from rest to repetitive �ring. There are two principal mechanisms by which
a neuron makes the transition from rest to repetitive �ring (Rinzel & Ermen-
trout, 1998). For Class I membranes, as the current increases, two equilibria
(one stable and one unstable) coalesce and disappear. A large-amplitude
oscillatory solution appears at this point with zero frequency. Ermentrout
(1996) and later Izhikevich (1999) showed that for neurons with Class I mem-
brane properties, the phase-response function is strictly positive. They also
show that for a reasonable set of synaptic parameters, synchrony between
excitatory neurons is unstable. For Class II, the onset of repetitive �ring is
through a subcritical Hopf bifurcation. The consequences are that the os-
cillations appear at a �nite positive frequency, and there is often a regime
of bistability between the stable �xed point and the oscillation. Hansel et
al. (1995) numerically study the Hodgkin-Huxley model (which is Class
II) and the Connor-Stevens model (which is Class I). For the former, they
�nd that the phase-response curve has a substantial negative region, and
this helps to stabilize synchrony between excitatory neurons. The best way
to study parametric effects of adaptation on model neurons is to compute
the bifurcation diagram as current is applied at different levels of adap-
tation. In this section, we show that the two distinct types of adaptation
(M current and the AHP current, or low- and high-threshold adaptation,
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Figure 3: The introduction of local recurrent inhibition can also synchronize a
group of coupled excitatory cells. The �rst 100milliseconds show the behavior of
the sum of the synaptic gates when there is no feedback inhibition and I D 0.6.
Feedback inhibition is turned on and the current to the excitatory neurons is
increased in order to maintain the same individual period (gie D 1, I D 3.5).
The system approaches synchronous behavior. The network has �ve coupled
“columns.” Each column is a reciprocally coupled excitatory-inhibitory pair
of cells. Coupling between columns is through all-to-all excitatory-excitatory
synapses. Equations are found in the appendix.

respectively) have different qualitative effects on the stability properties of
the rest state.

In order to perform this calculation, we have to choose a model neuron.
Since we want a minimal set of currents in addition to theadaptation current,
we have chosen a simple variant of Traub’s model neuron (Traub & Miles,
1991) that contains only the currents required for spiking: transient sodium,
the delayed recti�er, and a leak current. In addition, we have added an
L-type calcium channel to implement the calcium-dependent potassium
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Figure 4: Cartoon of the bifurcation diagram for the conductance-based neuron
model. The diagrams in the presence of gAHP or recurrent inhibition are indistin-
guishable from the control case with no adaptation. (A) No adaptation. There is
a curve of �xed points terminating at a saddle node (SN) point. Thin, solid lines
are stable �xed points; dashed lines are unstable. For larger currents, there is a
branch of stable periodic solutions that emerges from the saddle node with zero
frequency (denoted SLC in the �gure). (B) M current adaptation. The curve of
�xed points remains, but the lower branch loses stability at a Hopf bifurcation
(H). A branch of unstable periodic orbits (thick, dashed lines) emerges from
the Hopf bifurcation and ends homoclinic to the unstable upper branch (Hc).
A stable branch of limit cycles (SLC) terminates by colliding with an unstable
branch at the point FLC.

current. The model is similar to one used by Wang (1998) in his study of
spike adaptation and is described in the appendix.

In Figure 4, we sketch the bifurcation diagram of this model neuron as
current is injected and there is no adaptation. (To distinguish the differences
between the two diagrams more clearly, we offer only schematic pictures
rather than the full numerically computed curves.) At low values of cur-
rent, there is a stable �xed point representing the rest state. As the current
increases, a saddle point and the stable node coalesce and disappear. The
only stable behavior is repetitive �ring, which appears precisely where the
�xed points coalesce. This is typical behavior for Class I membranes. Since
the AHP is essentially nonexistent at rest, it has no effect on the bifurcation
of the equilibria. As the current increases, the critical value of the current at
which the �xed point disappears via a saddle node is independent of the de-
gree of adaptation. As with the case with no adaptation, a stable limit cycle
appears for currents greater than the saddle node, and these emerge with
zero frequency. Thus, adaptation mediated by a high-threshold calcium-
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dependent potassium current has basically no effect on the equilibrium
bifurcation curve. Furthermore, it does not change the nature of the branch
of periodic solutions other than to lower their frequency. The same can be
said for a network of one excitatory and one inhibitory neuron in which cur-
rent is injected only into the excitatory cell. (Equations for this network are
also given in the appendix.) As we will see below, however, high-threshold
adaptation or recurrent inhibition has a dramatic effect on the response of
the oscillation to perturbations.

In contrast to the high-threshold calcium-mediated adaptation or recur-
rent inhibition, the M current does have an effect on the bifurcation curve.
Since it is nonzero at the resting potential, we expect that it will affect the
onset of repetitive activity. Figure 4B demonstrates the effect on the rest
state. First, the disappearance of �xed points occurs at a much larger cur-
rent. The presence of a resting level of M current acts to delay the bifurcation
by providing a nontrivial outward current. The other (and more important)
effect of the M current is that it also causes the lower branch of �xed points
to lose stability at a Hopf bifurcation. This bifurcation is subcritical, and the
resulting unstable periodic orbit meets with the unstable �xed point at a
homoclinic point. The large-amplitude stable branch of periodic solutions
extends for currents beyond the Hopf bifurcation and disappears in a colli-
sion with a branch of unstable periodic solutions. There is a very small range
of currents where there is a stable limit cycle coincident with a stable equi-
librium point. Since the stable periodic orbit disappears at a �nite nonzero
frequency near a subcritical Hopf bifurcation, the adaptation changes the
dynamics from Class I to Class II. As we will see, this has a major effect on
the phase-response curve of the neuron.

Summarizing, the M current alters both the position of the bifurcation
to periodic solutions and the nature of the bifurcation to repetitive �ring.
It converts a Class I neuron to a Class II. Neither the calcium-dependent
potassium current (AHP current) nor the local inhibitory interneuron has
an effect on the bifurcation of the equilibria and the emergence of repetitive
activity at arbitrarily low frequencies. By lowering the threshold of the AHP
current, we can make its effect like that of the M current. Similarly, by sharp-
ening and raising the threshold of the M current, we can make it mimic the
AHP current. From the point of view of the dynamics, the main difference
between the two is that the M current is modeled as a low-threshold current
while the AHP is a higher-threshold current.

3 The Weak Coupling Limit

Previous workoncoupled neural oscillators (Ermentrout, 1996;Hansel et al.,
1995) has shown that there are dramatic differences in the ability to synchro-
nize according to whether the neuron is Class I (oscillations emerging from
zero frequency) or Class II (oscillations emerging via a Hopf bifurcation).
From the previous section, we see that low-threshold adaptation currents
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alter the �ring class of the neuron. Thus, we expect that the M current will
have an effect on synchrony. The effects of the high-threshold adaptation or
recurrent inhibition are not so obvious, although, as seen in Figures 2 and
3, both tend to stabilize synchrony. By analyzing the weak coupling limit,
we can study this question precisely. We �rst brie�y review the method for
computing weak interactions between oscillators. We then apply the meth-
ods to the conductance-based model showing how adaptation affects the
relevant curves.

3.1 Weak Coupling and the Phase-Response Curve. Suppose that two
identical oscillators, X1, X2, are weakly coupled (that is, the coupling be-
tween them is suf�ciently small so as not to distort the waveforms but
rather alters only the timing). The general equations are:

X0
1 D F(X1) C 2 G1(X2, X1) X0

2 D F(X2) C 2 G2(X1, X2). (3.1)

We assume 0 < 2 ¿ 1 and X0
0 D F(X0) has an asymptotically stable limit

cycle, X0(t) with period T. Then it can be shown (see, e.g., Ermentrout &
Kopell, 1984; Hoppensteadt & Izhikevich, 1997) that the solutions to equa-
tion 3.1 have the form

Xj(t) D X0(hj) C O(2 ),

where

h 0
j D 1 C 2 Hj (hk ¡ hj) C O(2 2) j D 1, 2 k 6D j

governs the evolution of the relative phases. The functions Hj are T periodic
and can be readily computed for any given model. Before describing their
computation, we brie�y consider the above phase equations. Let w D h2 ¡h1
denote the phase difference between the two neurons. Then,

dw

dt
D 2 (H2(¡w ) ¡ H1(w )) D 2 d(w ). (3.2)

If d(w ) D 0 for some w , then the phase differences between the two oscillators
is �xed, and there is a periodic solution to equation 3.1 with the phase differ-
ence w 2 [0, T) between the two oscillators. In particular, if w D 0, then the
two oscillators �re synchronously. If H1 D H2 ´ H, then d(w ) D ¡2Hodd (w )
is proportional to the odd part of the interaction function, H. Any odd pe-
riodic function always has 0 and T/2 as roots. Thus, both the synchronous
and the “antiphase” solution will exist for a pair of weakly coupled iden-
tical oscillators. A root Nw of d(w ) is a stable �xed point if d0 ( Nw ) < 0. For
identical oscillators, this means H0

odd ( Nw ) > 0. By simply looking at the odd
part of the interaction function, we can pick out all the stable and unstable
phase-locked solutions for two weakly coupled identical oscillators.

The computationof the interaction functions Hj canbe done by successive
changes of variables and then averaging. However, this is inef�cient and is
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not readily automated. We have shown (Ermentrout & Kopell, 1991) that
this rigorous procedure is equivalent to the formal method of computing H
in the manner of Kuramoto (1982):

Hj(w ) D
1
T

Z T

0
X¤(t) ¢ Gj(X0(t C w ), X0(t)) dt. (3.3)

The vector function X¤(t) is the unique solution to the linearized adjoint
equation:

dX¤(t)
dt

D ¡[DXF(X0(t))]TX¤(t) X¤(t) ¢ dX0(t)
dt

D 1.

(By [DXF]T we mean the transpose of the matrix of partial derivatives of F
with respect to the variables, X.) The functions X¤(t) are easily computed
for any stable limit cycle (see Williams & Bowtell, 1997).

For equation 3.3, the effects of adaptation on the interactions between
neural oscillations arise from two sources: changes in the coupling function
and changes in the adjoint X¤(t).

3.2 Speci�c Forms for Conductance-Based Models. Insynaptically cou-
pled one-compartment model neurons, coupling is only through the poten-
tial. That is, the coupling G(¢, ¢) is zero for all components except for the
voltage. In particular,

G(X2, X1) D gsyns2(t)(Vsyn ¡ V1(t)).

Here, s2(t) is the synaptic gating variable (often satisfying a differential
equation or speci�ed as a �xed function of the time since the presynaptic
cell has �red). gsyn and Vsyn are the maximal conductance and the reversal
potential of the synapse. This means that for a pair of coupled neurons, the
interaction function is simply

H(w ) D gsyn
1
T

Z T

0
spre(t C w )V¤(t)(Vsyn ¡ V(t)) dt, (3.4)

where V¤(t) is the voltage component of the adjoint. If we adjust input
currents to the oscillators so that the period of oscillations is �xed, then the
role of adaptation can be analyzed separately from the frequency effects.
For a �xed-period oscillation, we do not expect adaptation to have much of
an effect on the shape of the synaptic gating variable (since this just depends
on the �ring of an action potential); thus, all the changes in the function H
that arise will be due to changes in the product:

V¤(t)(Vsyn ¡ V(t)).
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For excitatory synapses, Vsyn D 0 mV, so that the main effect of the term
(Vsyn ¡ V(t)) is to multiply the adjoint V¤(t) by an essentially positive func-
tion. (V(t) > 0 for only a very short fraction of the period.) Qualitatively,
we see that if adaptation is to have an effect on the interaction, it will have
to be through the adjoint V¤(t).

The PRC is an experimentally measurable quantity (Reyes & Fetz, 1993a,
1993b) in which a brief pulse is applied to an oscillating neuron and the
advance or delay of the next spike is computed. That is, suppose that T is
the normal period of the cell. Let OT(t) be the time of the next spike given
that the stimulus has occurred at a time t after the last spike. Then the PRC,
P(t), is de�ned as the fraction change of the timing:

P(t) ´
T ¡ OT(t)

T
.

Often only the timing advance or delay, D(t) D TP(t) is reported.
Hansel et al. (1995) have given a nice intuitive de�nition of the voltage

component of the adjoint, V¤(t). It is just the in�nitesimal PRC. That is, let
P(t, a) be thePRC for a stimulus of amplitude a. Then V¤(t) D lima!0 D(t, a)/a.

Since the period of the oscillation does not change with adaptation (as we
compensate for this with additional injected current) and the synaptic time
course does not change, the main effect of adaptation on the interaction be-
tween neural oscillators must be mediated through the PRC (approximated
by the adjoint). Thus, we study the effects of adaptation on the PRCs and
adjoints, V¤(t), of conductance-based neural models.

3.3 Adjoints for Neural Models. Hansel et al. (1995) described adjoints
for several different model neurons. In particular, they describe what they
call Type I and Type II adjoints. Type I adjoints are strictly nonnegative; the
effect of a depolarizing stimulus is either to do nothing oradvance the phase.
Model neurons like theTraubmodel above (withoutadaptation), the Connor
model (Connor, Walter, & McKown, 1977), the Morris-Lecar model (Morris
& Lecar, 1981), and the integrate-and-�re model are all examples of models
with nonnegative PRCs. Ermentrout (1996) and Izhikevich (1999) showed
that all neural models that have Class I membrane properties (this includes
all the aforementioned models except the integrate-and-�re) are, near the
onset of oscillations, equivalent to a simple canonical model that is described
below. This model has a strictly positive PRC, D(t) D 2 arctan(tan(t/2) C
w) ¡ t, where w is the magnitude of the stimulus.

Type II (Hansel et al., 1995) adjoints are characterized by both positive
and negative regions so that for stimuli shortly after the spike, the phase
is delayed. The Hodgkin-Huxley model is of this type. Near a supercritical
Hopf bifurcation, the adjoint has a form similar to ¡ sin(2p t/T); thus, it
is both positive and negative. The adjoint for certain classes of relaxation
oscillators also has both positive and negative regimes (Izhikevich, 2000).
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In addition to classifying the differences in adjoint types, Hansel et al.
(1995) also numerically demonstrated that neurons with Type II adjoints can
synchronize with excitatory coupling in contrast to neurons with Type I ad-
joints, which have dif�culty synchronizing. This particular result suggests
that one mechanism by which adaptation enables neurons to synchronize
is to switch the adjoint from Type I to Type II. As we have already men-
tioned, the M current adaptation serves to change the saddle-node bifurca-
tion (which leads to Type I adjoints) to a Hopf bifurcation (which results in
Type II adjoints). Thus, the adaptation generated by the M current may work
by changing the adjoint from a strictly positive one to one with a substantial
negative regime after spiking.

3.4 The Variation of the Adjoint and the Interaction Function. In this
section, we consider the model depicted in Figures 1 and 2 in the limit of
weak coupling with different degrees of adaptation. In Figure 5 we show
the effects of the M current adaptation on the adjoint, V¤(t), in the left set
of panels and the odd part of the interaction function in the right panel.
In each panel, the degree of adaptation is shown, as well as the applied
current. The current is chosen so that the period of the limit cycle is 25 msec.
If we multiply V¤(t) by (Vsyn ¡ V(t)), the shapes of the resulting curves
are virtually unchanged except for the amplitude; thus, we show only the
adjoints V¤(t).

Figures 5 and 6 illustrate the effect of adaptation on the adjoint and
the consequent effect on the interaction function for the Traub model (cf.
Figures 1 and 2). Figure 7 shows a similar picture for the network with
feedback inhibition. We �rst point out that with the M-current adaptation,
synchrony becomes stable in the weak coupling limit since the slope of the
odd part of the interaction function is positive. This is not the case for the
high-threshold adaptation or for the network with recurrent inhibition; the
best we can say is that there is a small phase difference between the two
oscillators. We will see why this happens in the next section. The key feature
responsible for making the phase difference between the pair of oscillators
close to 0 is the �attening or negative region of the adjoint right after spiking.
We can intuitively see why there is a tendency toward synchrony by looking
at the different adjoints. Consider a pair of mutually coupled identical cells
that are nearly synchronous. Cell 1 �res �rst, which advances cell 2. Cell 2
�res, and this advances cell 1. Thus, in one cycle, both cells are advanced.
The phase difference between them will shrink if cell 2 is advanced more
than cell 1. In the case of no adaptation, the advances are both positive and
close in magnitude, so a more detailed analysis is required, and the width of
the synapse plays a critical role. However, in the presence of adaptation, cell
1 is either not advanced at all (with the AHP current) or actually delayed
(with the M current); thus, adaptation allows cell 2 to “catch up” to cell 1
in the sense that the phase lag between them shortens. This effect is quite
strong and thus will not be as sensitive to the time course of the synapses.
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Figure 5: The adjoint and the odd part of the interaction function for the Traub
model with M current (low threshold)–based adaptation. In each frame, suf�-
cient current is injected into the model cell so that the frequency of oscillation
is 40 Hz. Synapses are as in Figure 2. From top to bottom, (gm , I) D (0,0.922),
(0.2628,1.99), (0.99,4.9), and (2.477,10.3).

More formally, the following argument shows how changes in the adjoint
can alter the stability of the synchronous state. Recall that the synchronous
solution is stable if H0

odd (0) > 0, which implies H0 (0) > 0. Thus, the condi-
tion for stable synchrony for two coupled, identical, synaptically coupled
neurons is

H0 (0) D
1
T

Z T

0
s0 (t)(Vsyn ¡ V(t))V¤(t) dt > 0.

Consider the case with no adaptation. The adjoint is zero and then rises
to some peak. Since s0 (t) is positive shortly after the spike and is negative
thereafter, the integral is negative so that synchrony will be unstable. In the
case of the low-threshold adaptation (M current), the adjoint is negative and
grows in magnitude. Thus, the integral will be positive so that synchrony
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Figure 6: The adjoint and the odd part of the interaction function for the Traub
model with AHP current (high threshold)–based adaptation. In each frame,
suf�cient current is injected into the model cell so that the frequency of oscil-
lation is 40 Hz. Synapses are as in Figure 2. From top to bottom, (gAHP, I) D
(0,0.93),(0.262,3.06), (0.915,8.58), (1.368,12.455), and (1.48,13.43).

will be stable. For the case of high-threshold adaptation and recurrent in-
hibition, the situation is more subtle since the adjoint is nearly �at during
the majority of time when the synapse is on. Numerical calculations are
necessary. Indeed, as seen in Figures 6 and 7, synchrony remains unstable,
but there is a stable, nearly synchronous solution.

We have discussed only the adjoints of oscillators with adaptation in this
section. It is easy to compute the actual PRCs for these models by choos-
ing an appropriate perturbing stimulus. Numerical calculations (not shown
here) reveal that with a current stimulus with width 0.2 msec and magni-
tude 10, the PRC and the adjoint are indistinguishable up to a scale factor.
The measured PRCs of cortical neurons resemble those of the Traub model
with an AHP-type (or high-threshold) adaptation. In Figure 8 we show the
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Figure 7: Effects of a local inhibitory interneuron on the adjoint and the inter-
action function. (A, B) Adjoint and Hodd , respectively, for the isolated excitatory
neuron. Synchrony is unstable. (C, D) The same functions are shown, respec-
tively, for an excitatory and an inhibitory circuit. The inhibition �attens the the
response right after the spike. The resulting Hodd shows that synchrony is nearly
stable.

experimentally determined PRC (Reyes & Fetz, 1993a) and an adjoint from
the Traub model. It is dif�cult to tell whether there is a statistically signi�-
cant negative region, so that one could possibly �t this with the M-current
adaptation model.

Adaptationappears to encouragesynchronyby either causing theneuron
to ignore inputs shortly after it has spiked or to delay the onset of the next
spike by producing a negative region in the PRC.

4 The Behavior Near the Bifurcation: A “Canonical Model”

In previous work (Ermentrout, 1996) we have shown that many models for
spiking are Class I. That is, as the current increases, the model goes from
rest to repetitive �ring via a saddle node on a circle. Locally, a saddle-node
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Figure 8: The PRC from a cortical neuron (see Reyes and Fetz, 1993b, and the
PRC from the model in Figure 1 with a choice for gAHP and I that closely matches
the data. (Data supplied by A. Reyes.)

bifurcation has the form

x0 D I C x2, (4.1)

where I is the input into the system. If I is strictly positive, then equation 4.1
“blows up” in a �nite amount of time. This suggests a nonlinear integrate-
and-�re model in which x is reset to ¡1 when it grows to 1. Blowing up
to in�nity is equivalent to eliciting a spike. Suppose the system is reset to
¡1 at t D 0. Then for T > 0, it will blow up to C1 at t D p /

p
I. Thus, one

can think of this as a repetitively �ring neuron with a period p /
p

I.
This argument can be made formal (see Ermentrout & Kopell, 1986, or

Izhikevich, 1999). Equation 4.1 can be changed into a differential equation
on the circle by making the transformation x D tan(h /2), whence it becomes
the “theta model”:

h 0 D 1 ¡ cosh C (1 C cosh )I. (4.2)

Firing occurs when h (t) D p . Since we are interested in the oscillatory case,
the parameter I can be set to 1 without loss of generality so that the un-
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Figure 9: PRC for the theta model with and without adaptation. “Instant” adap-
tation means the adaptation modeled as a �xed delay of about a third of the
period with amplitude 3.

coupled theta model satis�es h 0 D 2. Thus, h (t) D 2t C h (0). The model
�res when x in equation 4.1 goes to in�nity or when h D p in equation 4.2.
The PRC for this simple model is obtained by instantly incrementing x in
equation 4.1 by an amount g.

In the appendix, we derive the PRC for this model and obtain

P(tI g) D
1
2

C
1
p

arctan(tan(t ¡ p /2) C g) ¡ t/p . (4.3)

Thus, for instantaneous perturbations, the PRC of the theta model is explic-
itly computable and is shown in Figure 9. It is strictly positive and for small
g is approximately proportional to 1 ¡ cos 2t.

Wenext askhow adaptation affects thePRC of the theta model. Izhikevich
(2000) shows that if you add adaptation with slow decay, then the theta
model becomes:

h 0 D (1 ¡ cosh ) C (1 C cosh )(I ¡ gaz) (4.4)

taz0 D d(h ¡ p ) ¡ z. (4.5)
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The PRC cannot be analytically found for this model. However, we can do
exactly the same as one would do in an experiment and compute the PRC
by applying a brief pulse at different times. The result of this computation
is shown in Figure 9. As with the full biophysical models, the effect of
adaptation is to suppress the excitability after the pulse.

To gain some insight into how the adaptation has this suppressive effect
at the early part of the PRC, we introduce a simpli�ed version of adaptation
that is analytically tractable. We apply a negativedelta function perturbation
with magnitude ga to a cell at �xed time ta after it has �red. That is, we
approximate the exponential adaptation, ga exp(¡t/ta), by a single pulse
concentrated ta units later. In this case, we can explicitly compute the PRC
(see the appendix). Figure 9 shows the result of the calculation. Several
effects are clear: the peak response is delayed considerably, the response
shortly after the spike is strongly suppressed, and the slope is increased for
inputs that occur right before the spike. These effects conspire to push the
two neurons toward synchrony.

To close this section, we consider a pair of theta neurons that have both
instantaneous delta functioncoupling (resetting using thePRC)and delayed
negative feedback. Thus, the model consists of a pair of theta neurons with
a �xed current bias, I D 1, subject to the following rule: Each time hj D p , it
is reset to hj D ¡p ; oscillator k 6D j is reset to

hk D 2 arctan(tan(hk/2) C g)I

and ta time units later, hj receives a negative impulse of strength, ga:

hj D 2 arctan(tan(hj/2) ¡ ga).

(The derivation of these resetting functions is in the appendix.) The useful-
ness of this simple model is that it can be directly reduced to a map for the
timing differences. That is, we let Tj(n) denote the time of the nth �ring of
unit j, we assume identical units, and �nally, we assume that ta is larger
than the initial time difference between the two units. This latter assump-
tion simpli�es the construction of the map and eliminates multiple cases.
Let wn D T2(n) ¡ T1(n). The map, w ! M(w ), is the composition of several
functions:

x1(w ) D tan(w ¡ p /2) C g

x2(w ) D tan[¡w C ta C arctan x1(w )] ¡ ga

Tp(w ) D p /2 ¡ arctan(x2(w )) C ta

y2(w ) D tan[Tp(w ) ¡ w ¡ ta ¡ arctan(cot ta C ga)] C g

wnC1 D p /2 ¡ arctan(y2(w )) ´ M(w ).

The derivation is in the appendix. First, note that by direct substitution, one
�nds that w D 0 is a �xed point. Next suppose that there is no adaptation,
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so that ga D 0. Then the map simpli�es to

wnC1 D wn,

no matter what the coupling strength. That is, in the absence of adaptation,
the map is degenerate and has no effect on the timing differences. We can
expand the map with adaptation (ga > 0) around the synchronous �xed
point to study its local dynamics. Using Maple V, we expand the map in a
power series in w and �nd that to cubic order:

M(w ) D w ¡ gag2 ga C 2 cot ta

1 C (ga C cot ta)2 w 3 ´ w ¡ Cw3.

Because the adaptation and synapses are instantaneous, the linearized map
is degenerate. However, the adaptation adds a nonlinear effect to the origin.
Since the coef�cient of the cubic term is negative, this implies that the origin
is an attracting �xed point. It is crucial that the adaptation delay, ta, be
positive since otherwise the limiting coef�cient of w 3 will be zero and the
origin will again be neutrally stable.

This map provides someadditional insight. Weexpect that if the synapses
and the adaptation are not instantaneous, then the linear coef�cient will not
be identically 1. Suppose that we introduce a small parameter, m , that repre-
sents the effects of �nite (but nonzero) synaptic and adaptation persistence.
Then the map is approximately given by

wnC1 D (1 C m )wn ¡ Cw 3
n.

If m < 0, then the origin is stable, and we obtain stable synchrony to the per-
turbed map. However, if m > 0, then the origin is unstable, and synchrony
is not a stable solution. However, since C > 0, for m > 0, there is a pair
of stable �xed points: Nw D §

p
m /C. That is, we �nd a nearly synchronous

timing difference between the two units identical in local behavior to the
last panels in Figures 6B and 7D. Numerical simulations of a pair of theta
models using instant adaptation and synapses whose dynamics are not in-
stantaneous show that synchrony is unstable. Instead, the pair tends to a
nearly synchronous solution with a phase difference that tends to zero as
the synapses speed up. Figure 10 shows the phase difference between the
two oscillators for synapses that have the form s(t) D b exp(¡bt) as a func-
tion of the parameter b. As b ! 1, s(t) approaches a delta function, and
w appears to approach the synchronous solution. The approach seems to
follow a power law that is consistent with the fact that for in�nitely fast
synapses, the synchronous solution is stable but not exponentially stable.

5 Conclusions

We have shown that the addition of adaptation to a spiking Class 1 neural
model has effects on the ability of the neuron to synchronize with other
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Figure 10: Phase difference between two theta models with delayed instant
adaptation and time-dependent exponential synapses, s(t) D b exp(¡bt). As
b ! 1 the phase difference tends to zero.

cells. This was shown to be a consequence of the effects of the adaptation
on the PRC. For M current–based adaptation, the current has a global effect
on the bifurcation diagram through a destabilization of the rest state at high
enough currents. This leads to a PRC that is negative for a short time after
the spike.

Intuitively, what is going on is that right after the spike, the adaptation-
related potassium gates are not fully saturated, and the additional depolar-
izing currents from an excitatory synapse open them further. This delays
the onset of the next spike. The calcium-based adaptation acts more like a
shunt since it is already close to saturation due to its sharpness of onset. The
recurrent inhibition acts in a way similar to the calcium-based adaptation.
Thus, the synaptic depolarization occurring after a spike is largely ignored.
The effects are more subtle since the phase cannot be delayed due to an
excitatory stimulus. Thus, intuition fails (or is, at least, not obvious), and
detailed calculations are necessary.
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van Vreeswijk and Hansel (in press) have recently explored the effects
of adaptation in integrate-and-�re models. They have suf�ciently strong
recurrent excitatory coupling such that with adaptation, the result of con-
necting two neurons together is bursting. This is a different regime from that
studied here. The adaptation in their models builds up slowly and is strong
enough to shut the neurons off. After the neurons recover from the adapta-
tion, they �re again. The recurrent excitation leads to rapid �ring. Thus, the
adaptation leads to a pattern of bursts that are synchronized. However, the
spikes within the burst are not synchronized. In this article, the synapses
are not suf�ciently strong to induce bursting.

Adaptation and negative feedback have a dramatic effect on the �ring
rate versus current curve of cortical neurons (Ermentrout, 1998). The com-
putations and analysis in this article show that they also have a big effect
on the synchronization properties of excitatorily coupled neurons. More
generally, the presence of a delayed negative feedback makes it possible to
synchronize or nearly synchronize two excitatorily coupled cells that would
not synchronize without the feedback.

Appendix

Here, we present the equations used in the article. The general equations
for all neurons have the form:

Cv0 D I ¡ gnahm3(v ¡ ena) ¡
³

gkn4 C gmw C gahp
ca

ca C 1

´
(v ¡ ek)

¡ gl(v ¡ el) ¡ ica
m0 D am(v)(1 ¡ m) ¡ bm(v)m

n0 D an(v)(1 ¡ n) ¡ bn(v)n

h0 D ah(v)(1 ¡ h) ¡ bh(v)h

w0 D (w1(v) ¡ w)/ tw(v)

ca0 D ¡0.002ica ¡ ca/80

ica D gcaml,1(v)(v ¡ eca)

ml,1(v) D 1/ (1 C exp(¡(v C 25))/2.5))

am(v) D 0.32(54 C v)/ (1 ¡ exp(¡(v C 54)/4))

bm(v) D 0.28(v C 27)/ (exp((v C 27)/5) ¡ 1)

ah(v) D 0.128 exp(¡(50 C v)/18)

bh(v) D 4/ (1 C exp(¡(v C 27)/5))

an(v) D 0.032(v C 52)/ (1 ¡ exp(¡(v C 52)/5))

bn(v) D 0.5 exp(¡(57 C v)/40)

tw(v) D 100/(3.3 exp((v C 35)/20.0) C exp(¡(v C 35)/20.0))

w1(v) D 1.0/(1.0 C exp(¡(v C 35)/10.0)).
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Synaptic gates satisfy

s0 D a(1 ¡ s)/ (1 C exp(¡(v C 10)/10)) ¡ bs. (A.1)

Units are mS/cm2 for the conductances, milliseconds for time, millivolts for
voltage, m F/cm2 for capacitance, and m A/cm2 for currents.

The parameters are ek D ¡100, ena D 50, el D ¡67, eca D 120, gl D
0.2, gk D 80, gna D 100, c D 1, gca D 1, a D 2, b D 0.1. The parameters
gm, gahp, and I varied from simulation to simulation depending on whether
the adaptation was on. Typically, gm, gahp were on the order of 1–2.

Simulations with inhibitory neurons consisted of a single excitatory (E)
and inhibitory (I) pair (cf. Figures 3 and 7). I cells have the same intrinsic
dynamics as the E cells but lack any adaptation currents. The E cells receive
a bias current I D 3.5, and the I cells receive no bias current. Connection
strengths are ge!i D 0.1 and gi!e D 1. E synapses obey equation A.1 with
a D 10 and b D 5, while for the inhibitory synapses, a D 2 and b D 0.1.
Synaptic reversal potentials were 0 for the excitatory synapses and ¡80
for the inhibitory synapses. These small subnetworks (of one E and one I
cell) are coupled together through excitatory-excitatory interactions with
ge!e D 0.01 for Figure 3.

A.1 The Canonical Maps. Here we derive all of the maps and PRCs
for the theta model with instantaneous adaptation and synapses. It is more
convenient to work with the untransformed equations,

dx
dt

D x2 C 1, (A.2)

where we have assumed without loss in generality that the applied current,
I D 1. This is an integrate-and-�re model, but �ring occurs when x goes
to in�nity and the reset is x D ¡1. The quadratic nonlinearity enables the
system to blow up in a �nite amount of time. The solution to equation A.2
for x(0) D a is

x(t) D tan(t C arctan(a)).

This calculation shows that the next “spike” occurs (i.e., x goes to in�nity)
at

Tf (a) D p /2 ¡ arctan(a). (A.3)

If x(0) D ¡1, then x(t) D 1 when t D p . Thus, the period of the unper-
turbed system is p . Now suppose that at t D 0, x is reset to ¡1, and at
t D s < p a delta function pulse of strength g is applied. Then right after
the pulse,

x(sC ) D x(s¡) C g D tan(s ¡ p /2) C g.
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Thus, from equation A.3, the time of �ring is now

OT(s) D s C p /2 ¡ arctan(tan(s ¡ p /2) C g),

from which we deduce the PRC:

D(t) D
p ¡ OT(t)

p
D

1
2

C
1
p

arctan(tan(t ¡ p /2) C g) ¡
t
p

. (A.4)

As a by-product of this calculation, we can obtain the phase-resetting
curve for the theta model. That is, given that h D h0 when the impulse
comes in, what is the new value of h? Since h (t) D ¡p C 2t, we see that
t D p /2 C h /2. Thus, in terms of h , the value of x after an impulse is

x D tan(h /2) C g,

and thus

hnew D 2 arctan(tan(hold /2) C g). (A.5)

Next, suppose that we add the delayed adaptation with strength ga and
delay ta. First, we compute the unperturbed period. At t D t C

a ,

x(ta) D tan(ta ¡ p /2) ¡ ga,

so that the period of the oscillation is

Ta D ta C p /2 ¡ arctan(tan(ta ¡ p /2) ¡ ga).

Note that if ga D 0 or ta D 0, then Ta D p , the unperturbed period. We
compute the PRC for this model assuming a pulse arises at a time t after
�ring. Suppose that t < ta. Then

x(t) D tan(t ¡ p /2) C g ´ x1.

We next compute the value of x when the delayed adaptation kicks in, x2:

x2 D tan(ta ¡ t C arctan(x1)) ¡ ga.

The time of �ring is then

OT D Tf (x2) C ta.

This gives us the PRC for perturbations that arise before t D ta. Similar
calculations are done for the case in which the perturbation occurs after the



1308 Bard Ermentrout, Matthew Pascal, and Boris Gutkin

adaptation occurs. These two cases together allow us to derive the function
for the PRC with the adaptation that is shown in Figure 9.

Finally, we derive the map for two theta models with instant adaptation
and instant synapses. We will suppose for simplicity that the timing differ-
ence between them is less than the adaptation time. The following events
occur. Cell 1 �res, cell 2 �res, cell 1 receives adaptation, cell 2 receives adap-
tation, cell 1 �res, and cell 2 �res, completing the cycle. Cell 1 �res at t D 0
and cell 2 at t D w . Thus, cell 1 receives synaptic input and has the value

x1(w ) D tan(w ¡ p /2) C g.

The next thing to occur is the adaptation of cell 1, which occurs at a time ta,
leaving cell 1 with the value

x2(w ) D tan(ta ¡ w C arctan(x1)) ¡ ga.

At t D w C ta, cell 2 receives adaptation so that its value is

y1 D tan(ta ¡ p /2) ¡ ga D ¡(ga C cot ta).

Next cell 1 �res at

T1(w ) D p /2 ¡ arctan(x2(w )) C ta,

which induces a phase shift on cell 2:

y2(w ) D tan[T1(w ) ¡ w ¡ ta C arctan y1] C g.

Finally cell 2 �res at

T2 D T1 C p /2 ¡ arctan y2(w ).

Thus the new timing difference is

w 0 D T2 ¡ T1 D p /2 ¡ arctan y2(w ) ´ M(w ).

Thus, the map M is the composition of several readily computable maps.
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