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Synapses that rise quickly but have long persistence are shown to have
certain computational advantages. They have some unique mathematical
properties as well and in some instances can make neurons behave as if
they are weakly coupled oscillators. This property allows us to determine
their synchronization properties. Furthermore, slowly decaying synapses
allow recurrent networks to maintain excitation in the absence of inputs,
whereas faster decaying synapses do not. There is an interaction between
the synaptic strength and the persistence that allows recurrent networks to
�re at low rates if the synapses are suf�ciently slow. Waves and localized
structures are constructed in spatially extended networks with slowly
decaying synapses.

1 Introduction

There has been a great deal of recent interest in the mechanisms that underlie
persistent activity in the cortex during various cognitive tasks (Camperi &
Wang, 1998; Lisman, Fellous, & Wang, 1998; Wang, 1999, 2001; Compte,
Brunel, Goldman-Rakic, & Wang, 2000; Gutkin, Laing, Colby, Chow, &
Ermentrout, 2001; Laing & Chow, 2001; Rubin, Terman, & Chow, 2001).
The most notable of these are delayed-response experiments (Fuster, 1973;
Goldman-Rakic, 1987). In these tasks, an animal �xates on a point in its vi-
sual �eld. Another spot, peripheral to the �xated spot, comes on brie�y. The
second spot is removed, and the animal must maintain its current gaze until
a third signal is given. The animal then makes a saccade (eye movement) to
the point of the second spot and is rewarded. During this task, the animal
must “remember” the location of the peripheral spot for up to several sec-
onds after it disappears. Recordings in cortex have revealed that neurons
whose receptive �elds are in the area of the second spot continue to �re after
the stimulus is removed. Thus, many people have asserted that this activity
is a consequence of spatially localized persistent activity. However, since
it is dif�cult to record from many points simultaneously, the experimental
evidence for this mechanism is circumstantial.

Persistent activity is more readily found in cortical slice preparations
(Sanchez-Vives & McCormick, 2000) in which various pharmocological
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agents have been applied, such as blockers of inhibition. This activity typi-
cally takes the form of slowly moving wave (Wu, Guan, & Tsau, 1999; Wu
& Guan, 1999) but has been cited as being a possible direct physiological
correlate of persistent activity seen in vivo (Sanchez-Vives & McCormick,
2000).

Nonlinear recurrent neural networks have many computational advan-
tages over simple feedforward systems. This is because the recurrent con-
nections allow the network to maintain many different stable states. The
nonlinearity in these simple models is manifested by their ability to switch
between a high and low state of “�ring.” There are several ways in which
a network can become bistable. It can be an intrinsic property of neurons
comprising the network (such as in the two-compartment models of Booth
& Rinzel, 1995), or bistability can arise from recurrent network properties
properties. Since “neural network” models are more representative of net-
works of cells where the detailed properties of the membranes are averaged
out, in this article, we will consider the role of recurrent synaptic excita-
tion in creating bistability in networks. Bistability and recurrent excitation
have been implicated in many aspects of cortical physiology. For example,
epileptic activity is thought to be maintained by the strong recurrent excita-
tion between neurons (Traub & Miles, 1991). In disinhibited cortical slices,
recurrent excitation is responsible for the propagation of synaptically gen-
erated bursts (Golomb & Amitai, 1997). Delayed-response tasks as well as
localized attractors have been modeled via neural nets by recurrent exci-
tatory interactions between model cells (Amari, 1977; Lisman et al., 1998;
Compte et al., 2000; Laing & Chow, 2001; Gutkin et al., 2001; Wang, 1999,
2001) Indeed, Lisman et al. (1998) use the nonlinear voltage dependence
of the NMDA synapse to construct a bistable neuron model. Here, we will
consider a simpler scenario, where just the slowness of the excitatory decay
leads to the bistability in a recurrent network.

There has been a large amount of theoretical analysis of the delayed-
response task using neural network or �ring-rate models. The earliest mod-
els were those of Amari (1977), who analyzed a neural network with lateral
inhibition and self-excitation,

ut.x; t/ D ¡u.x; t/ C
Z 1

¡1
w.x ¡ y/F.u.y; t// dy; (1.1)

where u.x; t/ is the activity of a neuron at spatial point x and w.x/ is a weight
function that is similar to a difference of gaussians. The nonlinear function
F.u/ is a step function in Amari’s original analysis and in a later paper
(Kishimoto & Amari, 1979) is allowed to be smooth. Amari shows that net-
works such as this exhibit a localized region of maintained activity (which
we call a bump); furthermore, formal stability is also proven. More recently,
we (Pinto & Ermentrout, 2001a) examined multilayer models of this type
in which the excitation and inhibition are separated into two populations.
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Camperi and Wang (1998) analyze a similar network, but the individual
units are themselves bistable. They claim that this stabilizes the bump to
noise. The evidence for bistability in individual neurons is not clear, but
one can circumvent this assumption by assuming that there are strong self-
connections in the network. In a more recent article and one that is more
directly related to this study, Wang (1999, 2001) studied the roles of recur-
rent excitation, NMDA synapses, and negative feedback via spike frequency
adaptation on the existence of persistent states in a network. Compte et al.
(2000) and Laing and Chow (2001) studied spatially localized activity in
a network of spiking neurons. Laing and Chow showed the necessity of
maintaining an asynchronous state within the localized bump and demon-
strated the loss of stability to traveling waves. Both Gutkin et al. (2001) and
Laing and Chow (2001) showed that synchronizing the neurons leads to
the destruction of the localized activity. Recently, Netoff and Schiff (2002)
showed a similar effect in experimentally induced epilepsy.

Excitatory connections between cortical neurons are mediated by the
neurotransmitter glutamate. Two important classes of receptors are the
AMPA and NMDA receptors. When glutamate binds to AMPA receptors,
there is a brief depolarization of the neuron (that is, the potential is in-
creased), which decays within a few milliseconds. The rise time of AMPA-
mediated synapses is almost instantaneous. In contrast, NMDA receptors
are more complicated. In normal conditions, the receptors do not open un-
less the neuron is already depolarized. However, it is possible to remove the
voltage dependence of the receptorby bathing the neurons ina medium with
a low concentration of magnesium. NMDA receptors rise rather quickly but
decay at a much slower rate—anywhere from 50 to 150 milliseconds. This
is the type of synapse that we will study in this article.

There have been several studies of neuronal models and networks with
slow synapses. In these articles, both the rise time and the decay time of the
synapses are slow. That is, the synapses obey equations of the form

ds
dt

D ²F.s; v/;

where v is the membrane potential of a neuron associated with the synapse.
This enables one to apply the method of averaging when the potential, v.t/,
is a periodic function. Frankel and Kiemel (1993) were the �rst to study this
when coupling between neurons is weak. (We discuss their results in detail
in section 3.) Bressloff and Coombes (2000) analyzed phase instabilities in
coupled integrate-and-�re neurons brought on when the synapses become
suf�ciently slow. In Ermentrout (1994), we studied spatially organized net-
works of neurons with slow synapses and showed how one could obtain
simpler neural network models by applying formal averaging. The synaptic
dynamics in this article are governed by equations of the form

ds
dt

D a.v/.1 ¡ s/ ¡ ²s:
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Only the decay is slow, so that the resulting dynamics are a cartoon for the
mechanism of NMDA receptors.

This article is divided as follows. In section 2, we characterize the re-
quirements for a synaptically coupled network to be bistable. That is, we
will assume that the neurons are excitable and that the coupling between
them is what enables a maintained activity state. We assume that the indi-
vidual neuron models are channel based and that the synapses obey simple
�rst-order dynamics. We will �rst give a detailed geometric analysis of a sin-
gle self-coupled neuron. Next, we numerically examine globally connected
networks of synaptically coupled neurons. We also analyze the minimum
�ring rate possible in these networks as a function of the number of neu-
rons and the decay rate of the synapse. In particular, we show that the �ring
rate of the recurrent network can be arbitrarily low if we use suf�ciently
slow synapses. In section 3, we assume that the synapses decay slowly, an
assumption that is required based on results of section 2. We show that this
reduces a pair of coupled neurons to a simple phase model of two weakly
coupled oscillators. We show that the synchronous state is unstable and the
neurons tend to oscillate asynchronously. We contrast this to synapses that
both rise and decay slowly. Finally, we show how a spatially organized net-
work of neurons with slowly decaying synapses can be formally reduced
to networks with piecewise constant nonlinearities for which we can apply
the classical Amari analysis.

2 How a Network Becomes Bistable

In this section, we geometrically describe how recurrent excitatory synapses
lead to bistability in a neuron. Wang (1999) has extensively analyzed this
question using an integrate-and-�re model and a self-consistent theory. We
will discuss his results in the light of our own analysis later in this section.

To motivate the analysis in this section, we �rst look at a single self-
coupled neural network model:

ut D ¡u C f .u C I/: (2.1)

As usual, f .u/ is a nonlinear monotone increasing function. Here, u repre-
sents the �ring rate of the neuron. If the nonlinearity is suf�ciently sharp,
then for a range of values of the input, I, the model is bistable. That is, there
are two stable �xed points—one low and the other high. In many models,
f .u/ is de�ned to be piecewise continuous and vanishes identically if the
argument is below a threshold. This means that if the input is small, the
unit does not �re, and as the input increases, the neuron �res at some �nite
rate. For continuous functions f , there is in addition to the two stable �xed
points an unstable �xed point. As the input decreases, the unstable �xed
point merges with the stable nonzero �ring rate and disappears. Let us inter-
pret this from the point of view of a spiking neuron that has a self-synapse.
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The zero state of equation 2.1 corresponds to the neuron sitting at rest with
insuf�cient input to cause it to �re. The stable nonzero state corresponds
to the neuron �ring at a �xed nonzero frequency, that is, a stable periodic
orbit for the spiking system. The unstable �xed point thus corresponds to
an unstable periodic orbit of the spiking neuron. This state will never be
experimentally observed. However, as the input to the neuron is decreased,
the stable and unstable periodic orbits will merge and disappear.

Consider next a pair of mutually excitatorily coupled neurons:

u1t D ¡u1 C f .u2 C I/

u2t D ¡u2 C f .u1 C I/: (2.2)

This system can be readily analyzed in the phase plane; the only equilibria
are those in which u1 D u2: As in the scalar case, as the common input
changes, these �xed points appear or disappear symmetrically. There is es-
sentially no difference in the global behavior between equations 2.1 and
2.2. Let us now look at the same situation with a spiking model such as a
pair of coupled Hodgkin-Huxley (HH) type models. If the synapses decay
slowly enough and the coupling between the two cells is excitatory and
suf�ciently strong, then the reciprocal interactions enable both cells to �re
repetitively. (We assume there are no slow processes that act to hyperpolar-
ize the neurons and stop the persistent �ring, as in van Vreeswijk & Hansel,
2001.) Thus, the stable active state corresponds to both neurons �ring at
the same �ring rate. However, there is no information about phase con-
veyed by the neural network models equation 2.2, while in the HH models,
the relative phases of the spiking could be any of an in�nite number of
possibilities. These considerations lead us to ask several questions about
self-coupled and network-induced bistability in HH models. For a scalar
network (�ring-rate) model with self-coupling, loss of bistability is through
a saddle node of equilibria. But these nonzero equilibria correspond to pe-
riodic �ring of the neuron so that the loss of bistability is equivalent to the
merging of an unstable and a stable periodic orbit. However, �ring-rate
models do not make it clear how the periodic orbits arise in the HH-type
models. Thus, we ask how a single self-coupled HH neuron can maintain
persistent activity; that is, how does repetitive �ring arise?

2.1 The Dynamics of a Single Self-Coupled Neuron. There are in-
�nitely many possible models for neurons in which one could analyze the
behavior of self-coupling. Rather than attempt this hopeless task, we instead
take a different approach. We will assume a certain class of neural models
and then use a canonical reduction of these models and analyze that system.
We will then use numerical bifurcation methods to show that full-�edged
models behave the same as the canonical model. The systems of interest



2488 B. Ermentrout

have the following form:

C
dV
dt

D I ¡
X

k

gk.t/.V ¡ Ek/ ¡ gsyns.V ¡ Esyn/ (2.3)

dzk

dt
D F.zk; V/

ds
dt

D as.V/.1 ¡ s/ ¡ s=¿ (2.4)

Here, gk.t/ is a nonlinear conductance gated by the variable(s) zk, I is an
applied current, gsyns is the self-synaptic conductance, as.V/ is the rate at
which the synapse is turned on, and ¿ is the synaptic time constant. The
synapse, equation 2.4, is typical of the models that are used in the analysis
and simulation of neural models (Destexhe, Mainen, & Sejnowski, 1994).
We will assume that in the absence of external input and in the absence of
the synapse that the neuron has a stable resting state, and this is the only
steady solution. Suppose that there is no synapse and suppose that as the
applied current, I, is increased, the neuron begins to �re repetitively. There
are several ways in which a neuron can begin to �re rhythmically. We will
assume that the onset of repetitive �ring is through a saddle node on a
limit cycle (see Figure 1). This type of spiking behavior is called type I and
has been the subject of numerous theoretical articles (Ermentrout & Kopell,
1986; Ermentrout, 1996; Izhikevich, 1999; Rinzel & Ermentrout, 1998). Many
models of cortical neurons have this property (in contrast to the HH squid
axon model, type II, for which the onset of repetitive �ring is through a
subcritical Hopf bifurcation.)

The main difference between type II and type I �ring is that in the lat-
ter, the frequency of �ring can be arbitrarily low. This is crucial in cortex,
since it leads to a very broad gain function. There are also other important

I < I * I = I * I > I *

Figure 1: Bifurcation from a stable rest point to a stable limit cycle as the current
I is increased. Below I¤ is a closed circle containing two �xed points. These merge
and disappear, leaving the closed circle representing repetitive �ring.
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computational consequences of this type of �ring (Ermentrout, 1998a; Er-
mentrout, Pascal, & Gutkin, 2001). Given that we have type I �ring, we can
now ask what happens with a single self-synaptic connection. If the neu-
ron is at rest, then the synapse will have no effect. However, if we inject a
brief depolarizing current that causes the neuron to �re, then the synaptic
current may be enough to sustain the neuron in a repetitively �ring state.
There are two conditions that are necessary to maintain repetitive �ring: (1)
the conductance must be suf�ciently large, and (2) the synapse must persist
longer than the refractory period of the neuron. If these two conditions are
met, then it is possible to reexcite the neuron and thus produce a repetitively
spiking neuron. (Here, we ignore such effects as adaptation and synaptic
fatigue, which may cause the neuron to cease �ring eventually.) A strong
enough hyperpolarizing input will stop the �ring; the self-synapse has led
to a “bistable” switch. Although the neuron has no intrinsic currents that
make it bistable, the self-synapse is enough to induce this bistability. We
now attempt to determine the dynamics that underlie this bistability.

The key to understanding the conditions for synaptic bistability is to con-
sider a simpli�ed model that has all of the properties of a type I neuron but
can be easily analyzed. Ermentrout and Kopell (1986) and Hoppensteadt
and Izhikevich (1997) have shown that near the bifurcation, all type I mem-
branes are equivalent to a simple one-dimensional model on the circle

µ 0 D 1 ¡ cos µ C .1 C cos µ/R.t/; (2.5)

where R.t/ represents all the inputs to the neuron and µ describes the phase
around the circle depicted in Figure 1. Note that when R is a negative con-
stant, then there are two �xed points for equation 2.5 while for R positive,
there are none and µ increases monotonically around the circle representing
the periodic solution. It is a simple procedure to add a “synapse” to this
reduced model. Firing takes place when µ crosses ¼: Thus, we let

R.t/ D I C gs (2.6)

s0 D K.µ/.1 ¡ s/ ¡ s=¿ (2.7)

K.µ / D ® exp[¡¯.1 C cos µ/]: (2.8)

The input, R, to the neuron consists of a constant bias I and a “synaptic
input.” (Note that the dimensions of g are not conductance since the reduced
model no longer has physical units associated with it; however, the synaptic
input appears in the reduction in this manner (see Ermentrout, 1998a).) The
synapse obeys the same dynamics as equation 2.7, with the exception that
the rate at which the synapse is turned on depends on µ rather than the
voltage V. If ¯ is large, then the function K is close to zero except for µ

near ¼ , when it peaks to ®: We now have a two-dimensional system on the
cylinder S £ R and can use phase-plane methods to analyze the onset of
bistability in the self-coupled system.
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We assume I < 0; since there must be a stable resting state in the absence
of the synaptic activation. Since the synapse has essentially no effect on the
model unless the neuron is �ring, the equilibria for this model are those of
equation 2.5, when g D 0: Thus, there are two �xed points given by .µ§; 0/

where

µ § D § arccos
1 C I
1 ¡ I

:

The positive �xed point is a saddle point, and the negative one is a stable
node. The stable manifold of the saddle point is nearly tangent to the line
µ D µC; while the unstable manifold is tangent to the line s D 0: The way to
understand the transition to a bistable system is to study the stable and un-
stable manifolds of this saddle point as the conductance is varied. In Figure
2, I sketch the conjectured global behavior of the system in equations 2.5 and
2.7 as the “conductance” g is decreased. For strong enough conductances,
the system has a stable periodic solution and a stable �xed point. The stable
manifold of the saddle point acts as a separatrix between the two behaviors;
for small perturbations from the resting state, the solution decays to rest.
For perturbations that take µ past the saddle point (i.e., cross threshold), the
model sustains repetitive activity. The loss of bistability takes place through
the series of bifurcations shown in the �gure. The stable and unstable man-
ifolds of the saddle point merge to form a homoclinic. This leads to an
unstable periodic solution, which collides with the stable periodic orbit and
annihilates it, leaving only the stable rest state. A similar sequence occurs
if instead of the conductance, the time constant of the synapse is changed
from a larger (longer-lasting synapses) to a smaller (faster synapses) value.

Recalling the neural net model, equation 2.1, the bistability was lost when
the unstable �xed point coalesced with the stable �xed point. Since the
nonzero �xed points of the neural network model correspond to periodic
orbits (they represent a �ring rate), the loss of bistability through a fold
bifurcation is analogous. However, the formation of the unstable limit cycle
is never clearly delineated in the neural network system. Here, we see that
it is quite subtle.

Obviously, the sequence above may not be relevant to a full conductance-
based model. We have numerically analyzed a model that incorporates fast
spiking channels (see the appendix for the model used in the simulations)
and �nd the same sequence of behavior. The conditions for this to occur
are straightforward. Suppose that the decay of the synapse is the slowest
timescale in the model equations. The saddle point has a one-dimensional
unstable manifold and an .n ¡ 1/-dimensional stable manifold. The return
to the stable manifold will be dominated by the slowest rate, which in this
case is the synapse. Thus, we can essentially reduce the high-dimensional
system to a two-dimensional system, as we considered. Finally, the unstable
manifold leaves the saddle point at a rate ¸u > 0, and the slowest rate of the
stable manifold is approximately ¸s D ¡1=¿ . Since ¿ is large, this means that
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Figure 2: Bifurcation as the conductance is decreased. (A) There is a stable limit
cycle (SLC), and the unstable manifold (UM) of the saddle point wraps around
it. The stable manifold (SM) is close by. (B) The stable and unstable manifolds
of the saddle point coalesce, leaving an unstable homoclinic orbit (H). (C) The
homoclinic is broken into an unstable limit cycle (ULC). (D) The stable and
unstable limit cycles merge and disappear for low conductance.

¸u C ¸s > 0, which implies that the periodic solution bifurcating from the
homoclinic is unstable. Geometrically, this is why we need the time constant
of the synapse to be large.

This description, along with the two-dimensional analysis shown in Fig-
ure 2, imply that the limiting factors in determining whether the neuron
can maintain an active state are the size of the synaptic conductance and the
time constant of the synapse. We expect an inverse relationship: the larger
is ¿ , the smaller that gsyn can be. Since the minimum value of the synaptic
strength for a given value of the time constant occurs when the stable and
unstable periodic solutions merge, it is a simple matter to determine this
boundary numerically. Figure 3 shows this curve computed for the biophys-
ical model de�ned in the appendix. We later show that there is a minimal
gsyn below which it is impossible to maintain repetitive �ring; thus, there is
a vertical asymptote for this curve. Because the rate at which the synapse
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Figure 3: The boundary separating sustained from transient activity. If .¿ gsyn/

is above the curve, the neuron is capable of self-sustained activity.

rises is �nite, we expect that as gsyn ! 1, ¿ .gsyn/ will tend to a nonzero
limit.

The ideas laid out in the previous paragraphs are for a single self-coupled
neuron. A more dif�cult question arises if we consider a network of neurons
instead. The self-coupled case is relevant only if all of the neurons synchro-
nize. However, as we show below, in general, we do not expect neurons to
synchronize. Thus, we can ask what is different about the “out-of-phase”
case. It turns out that other than quantitative details, there is no difference
between the two cases. That is, there is a curve that looks almost identical to
Figure 3 for a reciprocally coupled pair of neurons oscillating in antiphase.
However, the curve is shifted to the left. That is, for a given ¿ , the min-
imal gsyn for which persistent behavior exists is smaller than that of the
self-coupled (synchronous) model.

If the neuron contains another slow process, such as a spike-frequency
adaptation current, then the restriction to two dimensions is not generally
correct. If we add adaptation to the conductance-based model, the picture is
more complicated; bursting and other behavior are possible (van Vreeswijk
& Hansel, 2001). Wang (1999) has studied these cases in a model integrate-
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Figure 4: The minimum period of sustained activity as a function of the synaptic
time constant for a self-excited conductance-based model. The solid curve is an
asymptotic approximation valid for large ¿syn: The leading term is ¿ 1=3:

and-�re network in which there is both inhibition and possibly adaptation.
One of the main issues that he and others are interested in is maintaining low
�ring rates in the presence of recurrent excitation. The minimum �ring rate
that can be sustained by the system occurs at the saddle-node bifurcation,
where the unstable and stable periodic solutions merge. Thus, it is of interest
to plot this minimum period. In Figure 4, we show the plot of the minimum
period as a function of the synaptic time constant for the model (with no
adaptation) described in the appendix. On a log-log plot, this is close to a
straight line with a slope of one-third.

2.1.1 An Asymptotic Approximation. To understand the scaling of the
period with the time constant, we employ a self-consistent theory in the
same manner as Wang (1999). The synapse satis�es the equation

s0 D aq.V/.1 ¡ s/ ¡ s=¿syn;

where q is the voltage-dependent gate for the synapse. If the �ring rate is
fast compared to the time constant of the synapse, ¿syn, then we can average



2494 B. Ermentrout

this in the manner of Ermentrout (1998a), obtaining

s0 D af .1 ¡ s/ ¡ s=¿syn; (2.9)

where f is the �ring rate of the neuron. The key point is that the �ring rate
depends on the strength of the conductance, g, and the bias current, I: Up
to rescaling, we can write

f D F.I C gs/;

where F is essentially the �ring rate versus current (FI) curve. Thus, at
equilibrium, the gating average of the synaptic gating variable satis�es

0 D aF.I C gs/.1 ¡ s/ ¡ s=¿syn: (2.10)

We proceed generally, making no assumptions on the FI curve other than
that it vanishes at some critical value of the current (say, F.0/ D 0) and F0.I/
exists for I > 0 and is positive. This means that F.I/ invertible for I ¸ 0:

Let Finv. f / be the inverse of the FI curve. We remark that Finv.0/ D 0 and
F0

inv. f / > 0 for f > 0: We also require that

lim
f!0

f F0
inv. f / D 0:

(Note that for reasonably behaved functions, Finv. f / satisfying Finv.0/ D 0
and F0

inv. f / > 0, this last property holds automatically.) We now show that
the minimum �ring rate possible, f , in a self-coupled neuron with FI curve
F.I/, satis�es

f 2F0
inv. f /a¿syn C f F0

inv. f / ¡ Finv. f / D ¡I; (2.11)

where I < 0 is the applied bias. At equilibrium, we have f D F.I C gs/ and
af .1 ¡ s/ ¡ s=¿syn D 0: Combining these two equations, we must solve

N. f; g/ ´ a¿syn f
³

1 ¡ Finv. f / ¡ I
g

´
¡ Finv. f / ¡ I

g
D 0:

Recall that the minimum frequency occurs at the value of g for which there is
a saddle-node point; that is, @N. f; g/=@ f D 0: Differentiating N with respect
to f and solving for g gives the critical value of g:

gmin D
a¿syn

F0
inv. f /

C Finv. f / ¡ I C f F0
inv. f /:

We substitute this into the equation N. f; gmin/ D 0 and after rearranging,
we obtain equation 2.11. We are interested in what happens as ¿syn ! 1: As
¿syn ! 1, this can be solved only if f ! 0; since f F0

inv. f / ! 0, we obtain

f 2F0
inv. f / »

¡I
a¿syn

: (2.12)
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Before looking at several examples, we examine the validity of averaging to
obtain equation 2.9. Averaging is valid only if the �ring rate is considerably
larger than 1¿syn: This means that f ¿syn À 1: Equation 2.12 implies

f a¿syn »
¡I

f F0
inv. f /

;

and since the denominator of the right-hand side tends to zero, we conclude
that f ¿syn À 1, as required.

As a �rst example, suppose that near the origin, F.I/ D .CI/p for C; p
positive. Then Finv. f / D f 1=p=C, so that F0

inv. f / D f ¡1C1=p=.pC/, and asymp-
totically, we �nd

f »
³

¡pCI
a¿syn

´ p
pC1

(2.13)

as ¿syn ! 1: In particular, for type I excitable systems, p D 1=2, and so
the minimum frequency scales as ¿ ¡1=3, as we observed. In fact, for the
particular case of a square root FI curve, equation 2.11 becomes the cubic
equation,

a¿syn f 3 C f 2=2 D ¡IC=2;

from which we obtain

f D
³

¡IC
2a¿syn

´ 1
3

¡ 1
6a¿syn

C O..a¿syn/¡ 5
3 :

As a second example, suppose that the FI curve is that of the leaky
integrate-and-�re model:

f D F.I/ D .¿m log.[I C I0]=I//¡1:

Then Finv. f / D I0[exp[1=.¿m f /]]¡1 and

f »
µ

¿m log
³

a¿synI0

¡¿mI

´¶¡1

:

Remarks.

1. We note that this averaging approximation gets better if there are
many neurons coupled together in an all-to-all fashion, which oscillate
asynchronously since they are then all subjected to the same nearly
constant synaptic current (see for example, Golomb & Rinzel, 1993;
Hansel & Mato, 2001). Hansel and Mato (2001) rigorously show that
the �ring rate of a large population of excitatory neurons that are
�ring asynchronously satis�es an equation similar to 2.10. They also
demonstrate that when there are inhibitory neurons, it is possible to
get low �ring rates if there is suf�cient inhibitory-inhibitory coupling.



2496 B. Ermentrout

2. Saturation of synapses is necessary for the minimum rate to depend
on the decay constant. To see this, we repeat the asymptotic expansion
for the analogue of equation 2.10, but without saturation,

0 D aF.I C gs/ ¡ s=¿syn;

from which we �nd that the critical value of g is

gmin D F0
inv. f /

a¿syn

so that

f F0
inv. f / ¡ Finv. f / D ¡I:

The minimal �ring rate is dictated by how far away the resting neuron
is from the threshold and is independent of the time constants for the
synapse. For example, for type I neurons, fmin D C

p
¡I:

3. We provideone moreapproximationto the solution to equation 2.10. If
¿ ¡1

syn is small, then s is approximately 1 and the �ring rate of the neuron
is F.I C g/ as a function of g: For a type I neuron, we expect the �ring
rate to be close to a square root of the current past threshold. Thus,
F ¼ F0

p
g ¡ g0 where F0; g0 are model-dependent parameters. From

this, we obtain a simple approximation of the steady-state average of
the synapse, Ns, which solves equation 2.10:

Ns ¼ aF0
p

g ¡ g0

aF0
p

g ¡ g0 C 1=¿syn
: (2.14)

In Figure 5, we plot this approximation for the self-coupled ionic
model described in the appendix. For this model with ¿syn D 20,
aF0 D 0:6 and g0 D 0:032: The approximation is very good; the range
of frequencies is from 25 Hz to 400 Hz.

Summarizing, if the synaptic strength is large enough and the synapse
is slow enough, there can be bistability. The transition from bistability to
monostability is marked by the collision of an unstable periodic orbit, with
the stable periodic orbit representing the sustained �ring state. The mini-
mum frequency of the sustained activity occurs at the saddle-node point of
the oscillators and scales as the one-third power of the time constant of the
synapse. A simple approximation for the averaged synaptic gating variable
can be easily obtained.

2.2 Phase Relations in a Coupled System. If we now consider a pair
of mutually coupled neurons in analogy to equation 2.2, then we can ask
a similar question: What is the mechanism for bistability, and what are
the constraints on the coupling strength and the synaptic time course? For
example, if both neurons are �ring, then they could �re synchronously or
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Figure 5: Numerically computed mean value, Ns, of the synaptic gating variable
for the Traub model described in the appendix as a function of the strength of
the self-coupling, g: The solid line is the approximation given by equation 2.14.

out of phase with each other. If they �re synchronously, then the analysis in
section 2.1 holds, and there is no difference between this and a single self-
coupled neuron. However, if they �re out of phase with each other, then
the above analysis does not hold, although, as we discussed, there is little
qualitative difference in the existence of bistability.

Weshow three things in this section. First, a pairof mutually coupled neu-
rons with slowly decaying synapses is shown to behave like a pair of weakly
coupled oscillators. Second, we show that in general, the synchronous state
isunstable. Finally,we contrast the behavior of the slowly decaying synapses
with that of synapses that both rise and decay slowly.

Consider the following general model of a single cell with synaptic in-
puts:

C
dV
dt

D ¡Iionic.V; : : :/ ¡ gsyn.V ¡ Vsyn/: (2.15)

We regard gsyn as a constant parameter for the moment. The dots in the
function Iionic represent all the other variables and gates that are responsible
for the intrinsic propeties of the cell. We can now lay out our assumptions.
We assume that for gsyn below some critical value, G¤, equation 2.15, has
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a single asymptotically stable equilibrium point, and this is the only stable
behavior. We assume that at gsyn D G¤, there is a saddle-node bifurcation
to a periodic solution so that for gsyn > G¤, there is a stable branch of
large-amplitude periodic solutions that bifurcate from the saddle node at
arbitrary low frequency. This assumption was used in the previous section
and holds for a wide class of conductance-based neurons. Recall that these
are called type I neurons. Neurons that have type I spiking behavior have
an important property: their phase-response curve (the change in phase due
to transient perturbations) is nonnegative (Hansel, Mato, & Meunier, 1995;
Ermentrout, 1996). Later in this section, we exploit this property.

Now let us consider a model synapse that has a slow decay. For mathe-
matical purposes,we will treat the decay of the synapse as a small parameter,
and then we can use asymptotics to understand the bistable nature between
two coupled neurons and the phase relationship between their spikes. Con-
sider the model synapse,

ds
dt

D K.V/.1 ¡ s/ ¡ ²s; (2.16)

where ² is a small, positive parameter. The function K.V/ vanishes when the
neuron is below some threshold and is bounded otherwise. For example,
K.V/ D a[tanh.b.V ¡ VT//]C, where [x]C means the positive part of x. What
happens once V crosses threshold? Then s is incremented by some amount.
If the neuron continues to �re, then s reaches 1, and since ² is small, s will
decay by only a very small amount. Indeed, if the �ring rate of the neuron
exceeds 1=², then s will be within ² of 1 during each cycle of �ring. We now
couple two identical neurons with this type of synapse:

C
dVi

dt
D ¡Iion.Vi; : : :/ ¡ gsynsj.Vi ¡ Vsyn/

dsi

dt
D K.Vi/.1 ¡ si/ ¡ ²si:

We assume that gsyn is large enough so that when sj D 1, the neuron �res
at a rate large compared to ²: Figure 6A shows the result of coupling two
biophysical models with such synapses. The neurons oscillate out of phase;
synchrony is unstable. si ¼ 1 so that the coupled pair will keep each other
on, and we have achieved bistability. Let us look at the phase relationships.
Since si is close to but less than 1, we can write

si D 1 ¡ ²Si:

Then

dSi

dt
D 1 ¡ K.Vi/Si C O.²/
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Figure 6: Coupling between two excitatory neurons with slow decay. The model
is as in the appendix, with gsyn D 0:25 and ¿syn D 50 (² D 0:02). (A) The potentials
of the two coupled neurons showing stable antiphase locking. (B) The rescaled
synaptic variable OS.t/. (C) The adjoint, V¤ and the quantity, Z.t/ D V¤.t/.Vsyn ¡
V.t//. The peak of the voltage occurs at t D 0, and the adjoint has been scaled
so that the magnitudes match.) (D) The interaction function for slow coupling.
The arrow shows H.T=2/:

and

C
dVi

dt
D ¡Iion.Vi; : : :/ ¡ gsyn.Vi ¡ Vsyn/ C ²gsynSj.Vi ¡ Vsyn/: (2.17)

Note that if we set ² D 0, the two neurons are decoupled. In other words,
slowly decaying synapses behave like weak synapses. We have assumed
that gsyn > G¤, so that the neurons are oscillating; thus, we have a system
of two weakly coupled oscillators. The theory of averaging implies that the
behavior of the coupled cells is determined by a pair of phase equations.
That is, Vi.t/ D V.µi/ C O.²/ where V satis�es

C
dV
dt

D ¡Iion.V; : : :/ ¡ gsyn.V ¡ Vsyn/

and is the unique T¡periodic solution found for gsyn > G¤:
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A Brief Digression. Before continuing, we brie�y review the theory of
weakly coupled oscillators. Consider a pair of identical mutually coupled
oscillators,

X0
1 D F.X1/ C ²C.X1; X2/ X0

2 D F.X2/ C ²C.X1; X2/;

where ² ¿ 1: We de�ne:

1. X0.t/ is the unique phase asymptotically stable P-periodic function to
X0 D F.X/I

2. X¤.t/ is the unique solution to

U0.t/ D ¡.DXF.X0.t///TU.t/ U.t/ ¢ X0
0.t/ D 1;

where AT is the transpose of A: X¤.t/ is called the adjoint solution to
the linearization around the limit cycle.

Then for ² small, we can apply averaging to the coupled system, and we
�nd that X1;2.t/ D X0.µ1;2/ C O.²/ where

µ 0
1 D 1 C ²H.µ2 ¡ µ1/

µ 0
2 D 1 C ²H.µ1 ¡ µ2/

and

H.Á/ D 1
P

Z P

0
X¤.t/ ¢ C.X0.t C Á/; X0.t// dt:

We can apply these averaging results to the present problem. We note
that the coupling is only through the potentials, Vi.t/, so that the term that
de�nes H is a scalar product. The phases, µi, of the two oscillators evolve
according to the equations

µ 0
1 D 1 C ²H.µ2 ¡ µ1/ µ 0

2 D 1 C ²H.µ1 ¡ µ2/; (2.18)

where

H.Á/ D ¡
gsyn

T

Z T

0
V¤.t/ OS.t C Á/.Vsyn ¡ V.t// dt; (2.19)

where V¤.t/ is the voltage component of the adjoint. The function Z.t/ ´
V¤.t/.Vsyn ¡ V.t// is closely related to the phase-response curve (PRC) for
the oscillator. It vanishes when the neuron �res and is nonnegative between
spikes. Figure 6C shows both the adjoint, V¤.t/; and Z.t/ for a model neuron.
The function OS satis�es

d OS
dt

D 1 ¡ K.V.t// OS: (2.20)
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Figure 6B shows OS for the model. Let Á D µ2 ¡µ1 denote the phase difference
between the two neurons. Then

dÁ

dt
D ².H.¡Á/ ¡ H.Á// ´ G.Á/:

Clearly, G.0/ D 0 so that the synchronous solution is a �xed point, and
there is a synchronous solution to the coupled system. It is stable if G0.0/ < 0:

From the de�nition of G, we see that synchrony is stable if and only if
¡2H0.0/ < 0 or H0.0/ > 0: From equation 2.19,

H0.0/ D ¡
gsyn

T

Z T

0
Z.t/ OS0.t/ dt: (2.21)

We now show that we can expect H0.0/ < 0: To do this, we want to show that
the integral is positive. We �rst consider Z.t/: For type 1 neurons, the voltage
adjoint, V¤.t/ is positive (Hansel et al., 1995; Ermentrout, 1996; Izhikevich,
1999) and vanishes at 0; T: Since the synapses are excitatory, V.t/ < Vsyn
except perhaps when the neuron spikes. Thus, Z.t/ D V¤.t/.Vsyn ¡ V.t// is
positive except, perhaps, for a small amount of time near t D 0 and t D P:

Now consider OS0.t/: The function K.V.t// vanishes when the neuron is away
from the peak of its action potential. From equation 2.20, we see that in a
neighborhood of the spike, OS0.t/ is sharply negative, but during the rest
of the period, OS0.t/ D 1: During the spike, Z.t/ is nearly zero and perhaps
even negative. Thus, the product Z.t/ OS0.t/ is positive over the majority of the
period of the oscillation so the integral is positive and H0.0/ < 0: This means
that synchrony is unstable. Figure 6D shows the numerically computed
function H.Á/ for the biophysical model; clearly H0.0/ < 0, as dictated by
this simple argument.

Since G.Á/ is a continuous odd periodic function, it also has a �xed point
at T=2 corresponding to the antiphase solution. The antiphase state is stable
if and only if

H0
³

T
2

´
D ¡ g

T

Z T

0
Z.t/ OS0

³
t C T

2

´
dt

is positive. Now, in contrast to the synchronous case, the steep negative
slope of OS.t/ occurs during the part of Z.t/ where it is nearly maximal. Thus,
the integral could be negative, implying stability of the antiphase state. This
is not so clear-cut as the instability of synchrony; however, Figure 6D shows
very clearly that the slope of H.Á/ is positive at T=2 so that synchrony is
stable.

2.2.1 Comparison with Slow Coupling. Frankel and Kiemel (1993) and
more recently Izhikevich and Hoppensteadt (in press) studied a similar
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class of models but instead replace equation 2.16 with

ds
dt

D ²[K.V/.1 ¡ s/ ¡ s]:

(In fact, both use a more general form of coupling, but for purposes of
discussion, we will consider this simple example.) They assume that there
is a pair, .V0.t/; s0/, such that when s D s0 in the membrane equation, there
is a periodic solution V0.t/ with period, T, such that

s0 D .1 ¡ s0/

Z T

0
K.V0.t// ds:

They then expand around this �xed point of the averaged equation, sj D
s0 C²uj, and obtain two equations for each oscillator: one for the phase of the
oscillation (as above) and one for the perturbation, uj: If the oscillators are
identical and mutually coupled only through the voltages as above, then
equations have the form

µ 0
1 D h.µ2 ¡ µ1/ C cu2

µ 0
2 D h.µ1 ¡ µ2/ C cu1

u0
1 D ¡bu1 C k.µ2 ¡ µ1/ ¡ ° ¡ h0.0/u2

u0
2 D ¡bu2 C k.µ1 ¡ µ2/ ¡ ° ¡ h0.0/u1

where the coef�cients are:

c D g
T

Z T

0
Z.t/ dt

h.Á/ D g
T

Z T

0
Z.t/3.t C Á/ dt

k.Á/ D g
T

Z T

0
30.t/Z.t/3.t C Á/ dt

° D 1
T

Z T

0
[®.V.t// C 1]3.t/ dt

b D
1
T

Z T

0
[®.V.t// C 1] dt

Z.t/ ´ V¤.t/.Vsyn ¡ V.t//

3.t/ ´
Z t

0
[®.V.t0//.1 ¡ s0/ ¡ s0] dt0
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(These calculations are derived in Izhikevich & Hoppensteadt, in press, for
the general case.) We note the quantity, Z.t/, which again appears as in our
previous calculations. We recall that Z.t/ is positive except, perhaps, for
a small region near the spike. The function 3.t/ vanishes at 0 and T, and
for t slightly larger than zero (after the spike), ®.V.t// is essentially zero;
thus, 30.t/ is negative for most of the period. Since 3.T/ D 0, this function
must have the following shape. It starts at zero, the time of the spike, rises
quickly, and then linearly decreases to zero. Its derivative is positive for a
short period of time during the spike, and then for the remainder of the
period, 30.t/ D ¡s0 is negative. Thus, we can conclude the following about
the functions:

² c > 0 since Z.t/ is positive except near the short-lasting spike.

² h0.0/ ´ f < 0 since

h0.0/ D g
T

Z T

0
Z.t/30.t/ dt;

and this is negative since 30.t/Z.t/ is negative after the spike.

² k0.0/ ´ d > 0 since

k0.0/ D g
T

Z T

0
[30.t/]2Z.t/ dt;

and the integrand is positive over most of the interval.

² b > 0 since the integrand is everywhere positive.

With these heuristic observations, we can determine the stability of the
synchronous state. Subtracting the phase equations, Á D µ2 ¡ µ1, the third-
order system is obtained:

Á0 D c.u1 ¡ u2/ C h.¡Á/ ¡ h.Á/

u0
1 D k.Á/ ¡ ° ¡ h0.0/u2 ¡ bu1

u0
2 D k.¡Á/ ¡ ° ¡ h0.0/u1 ¡ bu2:

The synchronous state satis�es Á D 0,

u1 D u2 D k.0/ ¡ °

b C h0.0/
:

In the regrettable case that the denominator is zero (which is possible since
b > 0 and h0.0/ < 0), there is no synchronous state. Assuming that the
denominator is nonzero, we can check the stability of the synchronous state.
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The linearization is

M D

2

4
¡2 f c ¡c

d ¡b f
¡d f ¡b

3

5 :

The characteristic polynomial can be easily factored:

Â.¸/ D .¸ C b ¡ f /.2 f . f C b/ ¡ 2dc C .b C 3 f /¸ C ¸2/:

Since f < 0 and b > 0, there is at least one negative real root. Consider the
second factor. The roots of this have negative real parts if and only if the
coef�cients are positive. Thus, if b C 3 f < 0, then synchrony is unstable.
Suppose to the contrary that b C 3 f > 0: Since f < 0, then b > ¡ f , so that
f .bC f / < 0, and thus the constant coef�cient is negative since dc > 0: Thus,
we conclude that synchrony is also unstable with synapses that both slowly
rise and slowly decay.

The existence of the antiphase state is clear. We know that there is a root,
T=2 to h.¡Á/ ¡ h.Á/ D 0, corresponding to the antiphase solution. From
the Á0 equation, this implies that u1 D u2. The u1;2 equations imply that
this can be a �xed point only if k.¡T=2/ D k.T=2/: However, this is true
since k.t C T/ D k.t/: Stability of the antiphase solution can likewise be
determined. The linearization factors to

Â.¸/ D .¸ C b ¡ f /.2g. f C b/ ¡ 2ec C .2g C f C b/¸ C ¸2/;

where

g D h0.T=2/ D 1
T

Z T

0
Z.t/30

³
t C T

2

´
dt

e D k0.T=2/ D 1
T

Z T

0
30.t/Z.t/30

³
t C T

2

´
dt:

As above, since f < 0 and b > 0, there is at least one negative root. For
stability of the antiphase solution, we require 2g C f C b > 0, so that if g is
large enough and positive (as it was for the fast-rising, slow-decaying case),
then this will hold. However, f C b could be negative, so for stability, we
need ec to be negative enough. Since c > 0, this means e D k0.T=2/ should be
negative. Thus, as in the slow-decay case, the stability of antiphase solutions
seems possible but is not qualitatively guaranteed.

3 Networks with Slowly Decaying Synapses

One of the main reasons that slow synapses have been of recent theoretical
interest is that their persistence enables one to maintain spatially localized
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structures that have been used as models for working memory. In this sec-
tion, we �rst consider a single layer of cells with recurrent connections and
slowly decaying synapses. We consider a purely excitatory network and
show the existence of traveling fronts of activity. We show that it is possible
to estimate the speed of propagation of wave fronts by solving a particular
boundary value problem. Next, we show that if the connections have local
excitation and long-range inhibition (the standard assumptions for pattern
formation), then the velocity of the fronts above tends to zero as the in-
hibition increases and further increases of the inhibition lead to localized
structures for any type I biophysical model. The interesting point about this
is that with fast-rising and slow-decaying synapses, the resulting model
looks just like the classic Amari model.

The general spatially discrete network has the following structure:

C
dVj

dt
D ¡Iion.Vj; : : :/ ¡

X

k

Je.j ¡ k/sk.t/.Vj ¡ Ve/

¡
X

k

Ji. j ¡ k/sk.t/.Vj ¡ Vi/; (3.1)

where Je;i.l/ is the synaptic conductance magnitude of a connection between
two cells that are l units apart, Ve;i are the reversal potentials of the excitatory
and inhibitory synapses, and sk.t/ are the synapses satisfying

dsj

dt
D ®.Vj/.1 ¡ sj/ ¡ ²sj: (3.2)

We have (somewhat unrealistically) lumped the inhibitory and excita-
tory interactions together. That is, rather than having a distinct population
of inhibitory neurons, we have assumed that the inhibition is instantaneous
and gated by the excitatory neurons. Such reductions to single-layer models
have a long history going back to Amari (1977) but usually in the context
of �ring-rate models (however, see Gutkin et al., 2001 or Wang, 2001, for
examples of spiking models with lateral inhibitory coupling). For the pur-
poses of analysis, we will consider the continuum analog of this discrete
coupling where the sums are replaced by integrals:

Z

Ä

Je;i.x ¡ y/s.y; t/ dy:

In numerical experiments, we obviously consider the discrete network and
choose the sums to extend only as far as the network exists. For analysis,
we will consider an in�nite domain. (Note that this is clearly a requirement
to study wave propagation but unneccesary for localized structures.)
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Figure 7: Wave front provided by synaptically coupling a network of 100
conductance-basedmodel neurons with excitatory synapses. All cells are started
at rest. The synaptic variables, sj, of the �rst �ve cells are set to 1 to initiate the
wave. (A) The space-time behavior of the synaptic gating variables, sj. (B) The
behavior of s40.t/; s50.t/. (C) The velocity as a function of the strength of the cou-
pling, ge: Velocity is measured by computing the times when s40; s50 are 0.5. The
velocity is 10 divided by the time difference. The solid curve is a theoretical ap-
proximation. (D) The velocity versus inhibitory coupling for the network with
lateral inhibition along with a theoretical approximation (see the next section.)

3.1 Wave Fronts. In this section, we assume there is no inhibition. There
have been a number of experimental studies of wave propagation in corti-
cal slices in which the inhibition is pharmacologically blocked (Golomb &
Amitai, 1997; Pinto & Ermentrout, 2001b). Later, we extend the analysis to
the case where the inhibition is nonzero. We begin with a simulation of a
wavefront to illustrate the phenomena. Figure 7A shows the evolution of
the synaptic gating variable, sj, for a biophysical model with 100 cells. The
time constant of the synapse is 20 msec (corresponding to ² D :05). The wave
is initiated by turning on the synapses of the �rst �ve cells. The velocity of
the front is 1/1.72 cells per millisecond, and the asymptotic period of the
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oscillations in the wake of the front is 4.50 milliseconds. The average of the
synaptic gating variable, Ns, is 0.836. Arguments such as given in the previous
sections allow us to self-consistently determine the steady-state frequency
and mean value of the synapse. However, since we have no explicitequation
for the frequency-current curve, we simply substitute Ns into the membrane
equation and explicitly compute the period; that is, we numerically solve

CdV=dt D ¡Iion.V; w/ ¡ gNs.V ¡ Vsyn/

and �nd the period from this. The value we obtain is 4.45 milliseconds,
which is quite good. Repeating the same calculation for ² D :01, a 100 msec
time constant for the synapse, we numerically �nd Ns D 0:965, and the period
of the oscillations in the wake of the front is 4.10 msec. The period from the
single cell using the above value of Ns is 4.10 msec.

Figure 7B shows the behavior of the synaptic gating functions for two
different cells. Both have the same characteristic rise followed by low-
amplitude �uctuations around a mean value. Figure 7C shows the velocity
of the fronts as a function of the strength of the excitatory coupling. There are
several approaches that we could take to estimate analytically the velocity
of network using the approximation of slowly decaying synapses.

One approximation that comes to mind is the same as used in Chen,
Ermentrout, and Wang (1998) and is valid if the synapses are both slowly
rising and slowly decaying. That is, we analyze

@s
@t

D aF
µ

g
Z 1

¡1
J.x ¡ y/s.y; t/ dy

¶
.1 ¡ s/ ¡ s=¿syn;

where F is the �ring rate as a function of the total synaptic conductance
(which we earlier approximatedwith a square root; cf. equation 2.14). This is
of questionable validity when the synapses are rapidly rising. Furthermore,
we are left with solving a nonlinear integral equation. Replacing the �ring
rate F with a step function makes it possible to compute the velocity of
fronts explicitly (Chen et al., 1998) however this turns out to be a very bad
approximation for our problem. (There are two possible reasons: a step
function is not particularly close to the square root or the approximation of
slow-rising synapses is not very good.)

An alternative approach is suggested by Figure 7B, we note that s.t/ is
well aproximated by

S.t/ ¼ smax.1 ¡ exp.¡bt//; (3.3)

where b; smax are chosen to �t the pro�les shown in the �gure and t is the time
after the neuron associated with the variable s crosses some prescribed volt-
age, VT: (For example, we might take VT as the voltage at which point ®.V/

in equation 3.2 is half its maximum.) Here we have exploited two aspects of
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the model: slow decay, so there is little modulation, and saturation, so that
the synapses do not increase without bound. With this approximation, we
need to solve the following equation:

C
@V
@t

D ¡Iion ¡ ge

³Z 1

¡1
J.x ¡ y/S.t ¡ t¤.y// dy

´
[V.x; t/ ¡ Ve];

where t¤.x/ is the time at which the neuron at x �rst �res. When we say
“solve” this, we mean that we seek a traveling wave solution, t¤.x/ D x=º,
where º is the velocity and V.x; t/ D U.ºt ¡ x/: We require U.¡1/ D Vrest
and U.0/ D VT , where VT is as above. Additionally, we have equations for
all the gating variables, and they must be at rest at ¡1: This approach was
taken in Ermentrout (1998b) in order to �nd traveling waves for synapti-
cally coupled membrane models that elicited exactly one action potential.
In contrast, here we assume that the neuron �res in�nitely many times once
it crosses threshold. Since this model does not admit a simple closed-form
solution, we still must solve a nonlinear boundary value problem. This
can be done using AUTO (Doedel, 1981) by either treating the problem on a
large �nite domain or using the boundary-projection method. In Ermentrout
(1998b), we observed that the simple integrate-and-�re model provides a
fairly good approximation for the single-spike system We thus try that here
as well. The integrate-and-�re model has the form:

1
a

@V.x; t/
@ t

D ¡V.x; t/ ¡ RmIsyn.x; t/; (3.4)

where

Isyn D ge. NV ¡ Ve/

Z 1

¡1
Je.x ¡ y/S.t ¡ t¤.y// dy: (3.5)

1=a is the membrane time constant of the neuron, Rm is the bulk resistance,
and Ve¡ NV is the difference between some average potential and the synaptic
drive. ( NV could be chosen as the resting potential, but that is not accurate
especially when the cell is �ring, so we allow it to be a “free” parameter.)
For the integrate-and-�re model, we de�ne t¤.x/ to be the time at which the
potential of the cell at x D x¤ reaches a prescribed value, VT: Integrating
equation 3.4, we obtain the following system,

VT D Rmgesmax.Ve ¡ NV/

Z 1

¡1
Je.x ¡ y/G.t ¡ t¤.y// dy;

where

G.t/ D
1

b ¡ a
.a.1 ¡ e¡bt/ ¡ b.1 ¡ e¡at//: (3.6)
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We look for solutions to this of the form V.x; t/ D U.ºt¡x/ with U.¡1/ D 0
and U.0/ D VT: For J.x/ D exp.¡jxj=¾/=.2¾/ (as well as many others), this is
easy to solve. Plugging this form into the equation just before equation 3.6,
we obtain

g¤ ´ VT

Rm.Ve ¡ NV/smax
D ge

Z 1

0
J.y/G.y=º/

D ge
¾ 2ab

.º C b¾/.º C a¾/
´ geF.º; a; b; ¾ /: (3.7)

Without loss of generality, we set ¾ D 1 since we can easily rescale the spatial
interactions. It is simple to solve this equation for the velocity, º, but before
doing this, we make a few remarks. First, F is monotonically decreasing as
a function of º, so that for each value of ge > g¤, there is a unique velocity
for the front. This contrasts with the single-spike case, where there are two
values of the velocity, º, for each ge > g¤: The monotonicityof F can be traced
to the monotonicity of the synaptic gating variable, S.t/, in the present case,
which implies that G.t/ is monotone. (In fact, G0.t/ > 0:) Clearly, if J.y/ ¸ 0,
@F=@º < 0 for all positive º, so F is monotone. For the single spike wave (and
forwave packets whichspike �nitely many times), the synaptic conductance
envelope, S.t/ is nonmonotone, so we can expect F to be nonmonotone in
general. Second, as g approaches g¤ from above, the velocity of the front
tends to zero (F.0; ¢/ D 1). Again, this contrasts with the �nite spike case
where the wave terminates at a �nite nonzero velocity. Finally, we remark
that at very low velocities, we expect that the approximation for S.t/ will
break down since the time between successive voltage spikes will increase,
allowing the synaptic gates, s.t/ to relax to zero. This will be a problem only
if the velocity, º, and the decay of the synapses, ², are roughly the same order
of magnitude. The detailed asymptotics in this case remain to be done; we
expect them to be very dif�cult since we can no longer approximate s.t/
by the envelope, S.t/: In Osan, Curtu, Rubin, and Ermentrout (in press),
two-spike, three-spike, and in�nite-spike wavefronts have been calculated
for the integrate-and-�re models. For the multiple-spike solutions, a series
of complicated algebraic expressions is derived. For the in�nite-spike case,
the velocity of the front is required in order to solve the equations for the
spike times. A related calculation was done for integrate-and-�re models,
where Je.x/ has �nite support (Osan, Rubin, Curtu, & Ermentrout, in press).

Returning to the velocity relationship, equation 3.7, for the integrate-and-
�re model and assuming that ¾ D 1, we can easily solve for ge to obtain a
relationship between ge and º:

ge D g¤

F.º; a; b; 1/
:
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There are two free parameters, a and g¤; the parameter b is speci�ed from the
synaptic rise time. The two free parameters have a nice intuitive meaning:
1=a is the effective membrane time constant, and g¤ is the minimal conduc-
tance required to induce repetitive �ring of the neuron. Figure 7C shows the
numerically computed velocity as a function of the synaptic strength for the
full conductance-based model and the approximation from the integrate-
and-�re model using g¤ D 0:0194; a D 2:5; b D 0:08: The agreement is
excellent over the whole range of values of g. (The �t was done manually
with an effort to make the theoretical value at ge D 1 match closely.) We
close with the following remarks.

If we change the synaptic time constant from 20 to 100, we �nd that the
velocity does not change very much at all. This is to be expected since the
rise time does not change; only the parameter smax should be altered by the
change in the time constant. At a �xed �ring frequency, F,

smax D aF
aF C 1=¿syn

;

so that we would expect changes in smax only when F is very small.
If, however, we decrease the decay rate to 2 milliseconds(the approximate

decay rate of fast AMPA synapses), then the theory provides a very bad
estimate of the velocity. The theory depends strongly on the fact that the
synapses remain close to saturation once they have become activated. If
synapses decay quickly, then the approximation in equation 3.3 does not
hold. This changes the form of equation 3.7, so that it becomes similar to the
“single-spike” assumption for travelling waves made in Ermentrout (1998b)
and Golomb and Ermentrout (2001). One of the main theoretical differences
between propagating fronts and propagating pulses is that the existence of
fronts disappears at zero velocity (cf. Figures 7C and 7D). The existence of
propagating pulses disappears at a �nite nonzero velocity, which depends
on the details of the spatial interaction function among other things.

3.2 Inhibition and the Transition to Localized Structures. In the analy-
sis of the waves, we assumed that Wi.x/ D 0, so that there was no inhibition.
The analysis of the conductance-based model as well as the integrate-and-
�re approximation can just as easily be done with the inhibition included.
Consider the synaptic current:

Isyn D ge

µZ 1

¡1
Je.x ¡ y/s.y; t/ dy

¶
.V.x; t/ ¡ Ve/

C gi

µZ 1

¡1
Ji.x ¡ y/s.y; t/ dy

¶
.V.x; t/ ¡ Vi/: (3.8)

We can again solve the network equations to compute the velocity as a
function of the parameter gi for �xed values of all the other parameters.
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Alternatively, we can solve a boundary value problem for the wave using
the synaptic gate, s.t/ D S.t/ ´ smax.1 ¡ exp.¡bt//: Figure 7D shows the
wave velocity computed in a network of 160 cells as the inhibition gi varies.
To gain some insight into the shape of this curve, we again appeal to the
simple integrate-and-�re model, equation 3.4 with

Isyn D ge. NV ¡ Ve/

Z 1

¡1
Je.x ¡ y/S.t ¡ t¤.y// dy

C gi. NV ¡ Vi/

Z 1

¡1
Ji.x ¡ y/S.t ¡ t¤.y// dy:

Asbefore, we solve this for the traveling wave frontand obtain a relationship
between the velocity, º, and the various parameters:

g¤ ´ VT

Rm.Ve ¡ NV/smax
D geF.º; a; b; 1/ ¡ girF.º; a; b; ¾ /;

where F is de�ned in equation 3.7 and r D .Ve ¡ NV/=. NV ¡ Vi/: Here, ¾ is
the space constant for the inhibitory interaction (with the excitatory set to
1). We can solve this for gi to obtain a relationship between the velocity and
the inhibitory conductance:

gi D geF.º; a; b; 1/ ¡ g¤

rF.º; a; b; ¾ /
:

Using the values for g¤; a; b from Figure 7C, we have one adjustable pa-
rameter, r, the ratio of the effective driving potentials of the inhibitory to
excitatory synapses. Adjusting r manually, we �nd that r D 0:24 �ts all but
the lowest-velocity values quite well, as can be seen from Figure 7D. For
Ve D 0; Vi D ¡80, this value of r corresponds to NV D ¡64:5, which is just
slightly more depolarized than the rest state of the biophysical model. The
critical amount of inhibition that stops the wave (that is, º D 0) is

gºD0
i D .ge ¡ g¤/=r:

This is independent of the space constant of the inhibition as well as the
temporal parameters, a; b: Naturally, for synapses that do not have slow
decay, this approximation breaks down.

Remark. The inhibition that we have considered here is “instantaneous”
(there is no subpopulation of inhibitory cells) and has a longer range than
the excitation. The lack of dynamics for the inhibition as well as the fact that
we consider only fronts and not traveling pulses are likely reasons for the
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Figure 8: Localized structures in the biophysical model. (A) The space-time
evolution of the synaptic gating variables, s.x; t/, for a network of 200 cells in a
domain of length 10 (±x D 0:05). All cells are started at rest except the synaptic
variables, s.x/ D exp.¡.x ¡ 5/2/. Parameters are ge D 1; gi D 3; ¾e D 1; ¾i D 2:

(B) A time slice of s.x; t/ at t D 36 for two different inhibitory conductance
strengths, gi D 3; 4: The larger the inhibition, the narrower the width. (C) How
the width varies as a function of gi, with ge D 1; ¾e D 1; ¾i D 2: The dotted
line is the theoretical curve found by solving two algebraic equations. (D) The
minimum and maximum allowable amounts of synaptic inhibition vary with
the inhibitory space constant.

lack of multiple stable wave speeds observed in Golomb and Ermentrout
(2001).

What happens for gi > gºD0
i ? It turns out that for slowly decaying

synapses, the loss of traveling waves coincides with the emergence of local-
ized regions of activity. We now turn to an analysis of these localized struc-
tures (bumps) in the model with lateral inhibition. In many ways, these
are simpler to analyze than the waves since the structures are stationary.
Figure 8A shows the evolution in space and time of a localized structure
for equation 3.1. Here, the domain in the interval [0,10] divided into 201
cells of width 0:05: The interaction kernels are normalized exponentials,
Wz.x/ D exp.¡jxj=¾z/=.2¾z/, for z D e; i: We choose ¾e D 1 without loss in
generality. For initial data of various widths, the system evolves into a local
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structure with a constant width independent of the initial data. However,
the width is strongly dependent on the strength of the inhibition and the
width of the inhibitory interactions. Figure 8B shows a plot of the spatial
pro�le of s.x; t/ for two different values of the inhibitory conductance, gi:

Figure 8C shows the width of the structure as a function of the inhibition
over a range of conductances. There is a minimal value of gi, say, gmin

i , below
which we �nd that the structure occupies the whole domain. There is also
a maximal value, say, gmax

i , above which the network collapses to the stable
equilibrium point. Figure 8D shows how the minimum and maximum con-
ductances depend on the inhibitory space constant. The minimum value,
gmin

i , is nearly independent of the space constant, while the maximum varies
nearly linearly.

As with wave fronts, if the synapses decay slowly but rise quickly, then
when a neuron, j, is �ring, sj ¼ 1, and when the neuron is not �ring, sj D 0:

Thus, the synaptic gates are almost piecewise constant, at least in the limit
as ² ! 0: This makes the analysis of this equation considerably easier than
in the case for which the rise time and the decay time are slow (Ermentrout,
1994; Bressloff & Coombes, 2000). Then it is necessary to perform averaging,
and one gets a complex nonlinear equation for the synapses.

We discuss the analysis of the present model by taking the continuum
limit. We �rst brie�y review the analysis of Amari (1977) so that it is easy
to see the similarity of our methods. Amari was interested in stationary
solutions to

ut.x; t/ C u.x; t/ D
Z 1

¡1
W.x ¡ y/H.u.y; t/ ¡ µ/ dy;

where W.x/ is of the form shown in Figure 9A and H.u/ is the Heaviside
step function. He supposes that u.x/ > µ for x 2 [0; M] and u.x/ < µ on the
rest of the line. Continuity implies that u.0/ D u.M/ D µ , which leads to the
equation

µ D
Z M

0
W.y/ dy ´ Q.M/:

(Note that u.0/ D u.M/, so there is actually only one equation to solve.) As
seen in Figure 9B, for a range of threshold values, µ , there are two possible
roots to this. Amari showed that only the larger root is stable. We emphasize
that in order for the function Q to be nonmonotone, it is necessary that
the inhibition extend further than the excitation. Without this assumption,
there will be only one possible width (since Q is monotone), and this root is
unstable.
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Figure 9: The Amari construction of localized structures in the continuous
piecewise-constant model, u.x/ D

R 1
¡1 W.x ¡ y/H.u.y/ ¡ µ/ dy, and its ana-

log in the biophysical system. (A) The interaction kernel, W.x/, for the Amari
model. (B) The solution to Q.x/ ´

R x

0 W.y/ dy D µ for the bump width, M. (C)
The two-parameter bifurcation curve for the biophysical model (solid line) and
the cumulative sums for �nding the width (see the text). (D) The interaction
kernel and the relative position of the width.

With these preliminaries, we are interested in solutions to

C
@V.x; t/

@t
D ¡Iionic.V; w/ ¡ Isyn.x; t/;

where Isyn.x; t/ is as in equation 3.8. We seek solutions to this in which
neurons in the interval [0; M] are active and neurons outside this interval
are at rest. For a neuron at rest, s.x; t/ D 0. Thus, the synaptic current felt by
a neuron at x is

Isyn.x; t/ D ge

"Z M

0
Je.x ¡ y/s.y; t/ dy

#
.V.x; t/ ¡ Ve/

C gi

"Z M

0
Ji.x ¡ y/s.y; t/ dy

#
.V.x; t/ ¡ Vi/; (3.9)
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where Je; Ji are the normalized interaction functions de�ned previously. We
now exploit the fact that the synapses decay slowly. This implies (as above),
that s.x; t/ ¼ smax for all x 2 [0; M], so that equation 3.9 is

Isyn.x; t/ D smax[geQe.x; M/.V.x; t/ ¡ Ve/ C giQi.x; M/.V.x; t/ ¡ Vi/];

where

Qe;i.x; M/ D
Z M

0
Je;i.x ¡ y/ dy:

In order to �nd M, we need an additional condition. We ask how a neuron
goes from rest to repetitive activity. In the models that we have analyzed
here, this occurs through a saddle-node bifurcation in which the rest state is
lost. Thus, we want neurons within the localized activity to have no stable
�xed point and neurons outside the “bump” to be at rest. This implies that
we must choose M so that Isyn.M; t/ lies on the curve of saddle-node points
for the biophysical model. There are at least two ways to solve this. Consider
the following equation,

C
dV
dt

D ¡Iion.V; w/ ¡ Ge.V ¡ Ve/ ¡ Gi.V ¡ Vi/;

where Ge;i are constants. We assume that when Ge D Gi D 0, this system has
a stable rest state. As Ge increases, the rest state is lost at a saddle node. For
each Gi, there is a Ge for which the �xed point is on a saddle-node point.
Figure 9C shows the curve of saddle nodes as computed using AUTO for
our biophysical equation. Now consider the curve parameterized by M,

0.M/ D .smaxgeQe.M; M/; smaxgiQi.M; M//:

We want 0.M/ to intersect the saddle-node curve. Figure 9C shows 0.M/ at
discrete values of M, indicating a crossing at about M D 1:45: Thus, we see
that formally, the construction of bumps in ionic models with slowly decay-
ing synapses is identical to Amari’s construction; the curve of saddle-node
points de�nes the threshold for �ring, and the curve 0.M/ plays the role of
Q.M/ in Figure 9B. The width of the bump as a function of some parameter
such as gi can be computed in the following manner. From the numerical
calculation of the curve of saddle-node points, we obtain a parameteriza-
tion, .Ge.¸/; Gi.¸//, which we can interpolate to form a smooth curve. The
width of the bump is found by solving the two equations in two unknowns,
.M; ¸/:

smaxgeQe.M; M/ D Ge.¸/;

smaxgiQi.M; M/ D Gi.¸/: (3.10)
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We have done this using the curve computed in Figure 8B, with the results
of the width as a function of gi shown in Figure 8C. The agreement with
the numerically computed widths (found by integrating a network of 400
cells and measuring the width) is very good, particularly given that the time
constant of the synapse is only 20 milliseconds, so that the synaptic gates
have fairly large temporal �uctuations near the edges of the bump. We point
out two important features of the analytic calculation.

First, as gi decreases to a �xed value, the width of the bump goes to
in�nity. As M tends to in�nity, Qe.M; M/ D Qi.M; M/ D 1=2 independent
of ¾i, the space constant of the inhibition. Thus, the minimum value of the
inhibitory conductance supporting bumps is independent of the space con-
stant. Figure 8D shows the constant value of gi where this occurs; it is quite
close to the value determined by simulating the full network. Importantly,
we note that the minimum allowable value of gi for the existence of a bump
appears to coincidewith the maximum value of gi which allows for traveling
wave fronts.

Second, as gi increases, the bump disappears at a saddle-node point. This
is analogous to crossing the peak of Q.x/ in Figure 9B. Unlike the minimal
value of gi , the maximum value of gi is expected to depend on ¾i. Using
the interpolated curve for .Ge.¸/; Gi.¸//, we can follow the two-parameter
curve using gi and ¾i as parameters to get the maximum value of gi as a
function of ¾i: This leads to the curve shown in Figure 8D. The curve agrees
at least qualitatively with the numerically computed curve. Since this is the
curve of points for which the width of the bump is minimal, it means that the
cells inside the bump are getting relatively small excitation. Thus, they are
�ring at low rates compared to cells that are in a bump far from criticality.
Thus, we expect that the effective synaptic excitation maintaining the bump
is far less than smax so that the theory is expected to predict a much greater
amount of inhibition required to kill the bump.

An alternate way to compute the bump width is to solve directly the
steady-state equations for the full biophysical model with

Isyn D gesmaxQe.M; M/.V.x; t/ ¡ Ve/ C gismaxQi.M; M/.V.x; t/ ¡ Vi/:

To see how the width varies with gi, we start with gi large and M �xed at
some value. We �nd the �xed points for the full ionic model. We then follow
this as a function of gi with M �xed until a saddle node is found. Then we
follow the curve of saddle nodes in the two-parameter plane .gi; M/: This is
shown in Figure 8C. The agreement with our �rst method is almost exact.
This method has the disadvantage of making it very dif�cult to compute the
maximum amount of inhibition as a function of ¾i since we have to compute
a three-parameter curve using gi; M; and ¾i:

We can construct bumps in the integrate-and-�re model as we computed
the waves. Here, the computations are much simpler since we need only
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lookat steady-state potentials. That is, we determine the width of the bumps
by requiring that

VT=Rm D gesmaxQe.M; M/.Ve ¡ NV/ ¡ gismaxQi.M; M/. NV ¡ Vi/

´ Q.M/:

The function Q.M/ is identical in shape to that in Figure 9, and VT=Rm plays
the role of µ: We cam rewrite this as

g¤ D geQe.M; M/ ¡ girQi.M; M/; (3.11)

where g¤; r have the same meanings as above. In the limit as M goes to
in�nity, we obtain

2g¤ D ge ¡ gir;

so that the minimal value of gi to obtain a bump is

gMD1
i D .ge ¡ 2g¤/=r:

Since g¤ is typically quite small, the difference between this criticalvalue and
the value of inhibition that stops a wave, gºD0

i , is very small. Nevertheless,
the integrate-and-�re calculations suggest that it may be possible to obtain
coexistence of localized structures and traveling fronts. In the biophysical
model, the threshold for obtaining fronts is very small, so that it would
be hard in practice to �nd this region. However, by injecting a constant
hyperpolarizing current into the biophysical model, it may be possible to
�nd both types of behavior.

Remarks.

1. That the width of the bumps tends to in�nity as the inhibition de-
creases is a consequence of assuming that the interaction functions,
Je;i, have in�nite support. If they have a �nite extent, then Q®.M; M/

reaches its maximum value of 1/2 at a �nite value of M: Furthermore,
bumps that are separated by a distance exceeding the inhibitory ex-
tent do not interact, so that it is possible to put many bumps in a given
domain.

2. We can get some handle on the dependence of the width on the rel-
ative extent of the inhibition to the excitation. Suppose that J®.x/ D
exp.¡jxj=¾®/=.2¾®/ for® D e; i: Then Q®.M; M/ D [1¡exp.¡M=¾®/]=2:

Let p D ¾i=¾e: Then equation 3.11 can be rewritten as

h.x/ D bx ¡ xp D b C 2c ¡ 1;
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where x D exp.¡M=¾i/, c D g¤=ge and b D gir=ge: We require that
0 < x < 1 and note that b C 2x > 1 since we assume that gi is larger
than gMD1

i : The function h.x/ has roots at, x D 0 and x D b1=.p¡1/: This
gives a lower bound to the width of the bump of

Mmin D ¾i

¾i=¾e ¡ 1
ln

ge

rgi
:

For ¾i À ¾e, the minimum width is proportional to ¾e:

4 Discussion

One of the major classes of excitatory synaptic receptor is the NMDA recep-
tor. It has two de�ning characteristics: its activation requires that the post-
synaptic neuron be active, and it has a long decay time. In this article, we
have ignored the voltage dependence of the receptor. This is justi�ed within
the active regions since the postsynaptic neuron is �ring. Alternatively, we
point out that in low magnesium medium, there is no voltage dependence.
Indeed, the experiments in Wu and Guan (1999) were in low magnesium.
The main property we exploited here was the slow decay of the synapses.
The slow decay allows neurons to maintain an active state and thus pro-
duce a variety of dynamical patterns. We showed that slow synapses make
single self-coupled neurons bistable. Furthermore, when excitable cells are
coupled together, the persistent excitation transforms them into oscillators,
and the slow decay forces them to oscillate asynchronously. In networks of
neurons, the slow decay enables patterns of activity that include propagat-
ing wave fronts and localized stationary patterns. Our analysis lumps the
inhibitory neurons into the excitatory pool. Thus, one question is whether
this makes it more dif�cult to produce spatial patterns of persistent activ-
ity. Wang’s recent models (2001) indicate that it is still possible to obtain
localized activity even when there is a separate population of inhibitory
neurons. In Golomb and Ermentrout (2001), we show that single-spike trav-
eling waves are still possible when there are inhibitory neurons. Similarly,
Hansel and Mato (2001) show that persistent activity is also possible in such
networks as long as the neurons remain asynchronous. However, inhibition
is known to be synchronizing (Ermentrout et al., 2001; Kopell, Ermentrout,
Whittington, & Traub, 2000; Ermentrout & Kopell, 1998) when involved in
excitatory networks. Thus, there is a danger that the fronts and bumps con-
structed here can lose stability due to increased temporal correlations in
the spikes. This type of instability was described in Bressloff and Coombes
(2000) for integrate-and-�re models and more recently in Hansel and Mato
(2001) for neurons near a saddle-node bifurcation. Laing and Chow (2001)
describe a destabilization of the persistent state as the time constant of the
excitatory coupling decreases, leading to synchrony within the bump and
then its disappearance. However, for slow enough decay of the synapses,
persistence is possible to maintain even if all the neurons are synchronous,
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as we showed in section 2. Spike-frequency adaptation through intrinsic
potassium currents or indirectly through synaptic depression is a more dif-
�cult problem in that it can overcome the long-lasting decay of the excita-
tory synapses due to its own long-lasting effects. In Pinto and Ermentrout
(2001b), we exploited this to produce traveling pulses of activity instead
of fronts, and in van Vreeswijk and Hansel (2001), they produce bursting
oscillations.

Laing and Chow (2001) found that the bumps that they constructed using
the integrate-and-�re model were quite susceptible to noise and thus moved
around quite a bit. This appears to be due to the irregular �ring at low rates
at the edge of the bumps. Thus, at the edges, small amounts of noise can
cause the slow-�ring neurons to drop out of the bump. This reduces the in-
hibition and allows previously silent cells to be recruited so that the bump
will move in a random fashion. Camperi and Wang (1998) felt that this was
a suf�ciently dif�cult problem that they suggested that making individual
neurons bistable would help stabilize the bump. Slowly decaying synapses
appear to prevent wandering of the bump and encourage stabilization. As
we saw in section 2, slowly decaying synapses act to make individual self-
coupled neurons bistable, so this could explain the robustness to noise. Sim-
ulations of bumps with noise (not shown) indicate that the bumps are quite
stable until a critical level of noise is reached. At this point, the noise is suf�-
cient to cause extraneous bumps to appear in the medium,so that rather than
a single wandering bump, the medium breaks into multiple bumps. This is
possibly due to a so-called Turing instability induced by the noise. That is,
the noise allows the neurons to �re in a subthreshold regime, and the lateral
inhibition leads to a destabilization of this low (but nonzero) �ring rate.

We found that wave fronts can go to zero velocity as the inhibition in-
creases. This contrasts with the case of single spike waves (Golomb & Er-
mentrout, 2001) where there is a nonzero minimal velocity. The reason is that
there are slow and fast velocities for traveling pulses but only fast waves
for traveling fronts. The zero velocity we �nd here is likely to be due to the
assumption that the synaptic pro�le, s.x; t/, is monotone in t. However, as
the velocity gets suf�ciently slow, the synapses should have time to decay
enough that this monotone assumption is no longer valid. Thus, in reality,
we expect that there will be a limiting velocity whose value depends on the
decay rate of the synapses. Indeed, this was shown for single-spike waves
in Golomb and Ermentrout (2001).

Appendix: The Biophysical Model

We use a model based on fast currents found in hippocampalneurons (Traub
& Miles, 1991). The equations are

C
dV
dt

D I ¡ gL.V ¡ VL/ ¡ gKn4.V ¡ VK/ ¡ gNam
3h.V ¡ VNa/ ¡ Isyn;
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where

Isyn D gsyns.V ¡ Vsyn/:

When there is a network, the synaptic current is the sum of many simi-
lar terms (the details are in the main text). Each of the variables, n; m; h; s
satis�es equations of the form

dx
dt

D ax.V/.1 ¡ x/ ¡ bx.V/x:

In our model, am.v/ D :32.54 C v/=.1 ¡ exp.¡.v C 54/=4//; bm.v/ D :28.v C
27/=.exp..v C 27/=5/ ¡ 1/; ah.v/ D :128 exp.¡.50 C v/=18/; bh.v/ D 4=.1 C
exp.¡.v C 27/=5//, an.v/ D :032.v C 52/=.1 ¡ exp.¡.v C 52/=5//; bn.v/ D
:5 exp.¡.57Cv/=40/, and as.v/ D 4=.1Cexp.¡v=5/; bs D 1=¿:The parameters
are gL D 0:2; VL D ¡67; gNa D 100; VNa D 50; gK D 80, and VK D ¡100:

Typically, we vary gsyn and ¿: All potentials are in millivolts, conductances
are in mS=cm2 , current in ¹A=cm2, and C D 1¹F=cm2: All equations were
solved using XPPAUT (Ermentrout, 2002). The equation �les are available
upon request.
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