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Abstract. We study a one-dimensional model of integrate-and-fire neurons that are allowed to
fire only one spike, and are coupled by excitatory synapses with delay. At small delay values,
this model describes a disinhibited cortical slice. At large delay values, the model is a reduction
of a model of thalamic networks composed of excitatory and inhibitory neurons, in which the
excitatory neurons show the post-inhibitory rebound mechanism. The velocity and stability of
propagating continuous pulses are calculated analytically. Two pulses with different velocities
exist if the synaptic coupling is larger than a minimal value; the pulse with the lower velocity
is always unstable. Above a certain critical value of the constant delay, continuous pulses lose
stability via a Hopf bifurcation, and lurching pulses emerge. The parameter regime for which
lurching occurs is strongly affected by the synaptic footprint (connectivity) shape. A bistable
regime, in which both continuous and lurching pulses can propagate, may occur with square or
Gaussian footprint shapes but not with an exponential footprint shape. A perturbation calculation
is used in order to calculate the spatial lurching period and the velocity of lurching pulses at large
delay values. For strong synaptic coupling, the velocity of the lurching pulse is governed by the
tail of the synaptic footprint shape. Moreover, the velocities of continuous and lurching pulses
have the same functional dependencies on the strength of the synaptic coupling strength gsyn: they
increase logarithmically with gsyn for an exponential footprint shape, they scale like (ln gsyn)

1/2

for a Gaussian footprint shape, and they are bounded for a square footprint shape or any shape with
a finite support. We find analytically how the axonal propagation velocity reduces the velocity of
continuous pulses; it does not affect the critical delay. We conclude that the differences in velocity
and shape between the front of thalamic spindle waves in vitro and cortical paroxysmal discharges
stem from their different effective delays.

1. Introduction

Spindle-like discharges propagate in thalamic slices composed of excitatory thalamocortical
cells and inhibitory reticular thalamic cells, coupled with reciprocal synaptic connections, in
which the excitatory cells possess post-inhibitory rebound mechanisms (see, e.g., Steriade et al
1993, von Krosigk et al 1993). The propagation velocity is around 1 mm s−1 (Kim et al 1995).
Numerical simulations have indicated that these discharges propagate as lurching travelling
waves (Destexhe et al 1996, Golomb et al 1996). At each recruitment cycle, a new group of
inhibitory cells is excited, and this group inhibits a new group of excitatory cells. After these
cells rebound from hyperpolarization, they excite a new group of cells and a new recruitment
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cycle starts. Therefore, the lurching wave has a periodic nature at the front. Rinzel et al
(1998) have reduced the model of a thalamic slice to a model of coupled inhibitory units, and
found that the model can also exhibit a lurching wave if the synaptic reversal potential is high
enough. With off-centre inhibition, the lurching wave can propagate in one direction while the
continuous wave can propagate in the other direction.

A different type of neuronal population discharge appears in disinhibited coronal
neocortical slices in response to electrical stimulation above a certain threshold. These slice
preparations were developed initially as experimental models for epilepsy (Connors 1984,
Gutnick et al 1982). Recently, experimental and theoretical investigations (Ermentrout 1998,
Golomb and Amitai 1997, Golomb 1998, Tsau et al 1998, Wu et al 1999) have tried to relate the
dynamics of propagating discharge to the underlying neuronal circuitry, and to use the dynamics
of cortical slices as a first stage towards understanding spatio-temporal dynamics in neuronal
networks (Nicolelis et al 1995, Prechtl et al 1997). The average discharge velocity is about
10–15 cm s−1 (Golomb and Amitai 1997); neurons are recruited to the wave because of the
excitatory recurrent interactions between neurons. Numerical simulations of a conductance-
based neuronal model with homogeneous architecture reveal that the discharge propagates at
a constant velocity, as a continuous travelling pulse (Ermentrout 1998, Golomb and Amitai
1997). Inhomogeneities in the velocity, which were discovered experimentally, were attributed
to spatial fluctuations in the synaptic and intrinsic neuronal properties along the slice (Chervin
et al 1988, Wadman and Gutnick 1993). In both theory and experiment, there was a minimal
velocity below which the discharge could not propagate. Propagating discharges with similar
properties and velocities have been found in other cortical structures, such as the hippocampus
(Miles et al 1988, Traub et al 1993) and the piriform cortex (Demir et al 1998).

In this work, we explore the propagation of the front of these two propagating discharges.
Specifically, we ask:

(1) What is the basis for the different types (continuous or lurching) of propagating discharge?
How is this type determined by the network architecture, the kinetics of the single cells
and synapses, and the synaptic delay?

(2) What is the relationship between the velocity of the pulse (or wave) and the intrinsic,
synaptic, and architecture properties of the system?

(3) Does the pulse have a finite minimal velocity with respect to the synaptic coupling?
(4) What are the effects of finite axonal delay on the velocity and the type of propagation?
(5) Why do thalamic networks exhibit slow, lurching discharges whereas cortical networks

exhibit fast, continuous discharges?

We develop a joint conceptual framework for the two types of network that enables us
to compare the two preparations and the two types of discharge propagation. We show that
under certain conditions and approximations, the discharge dynamics of both cortical and
thalamic slices can be reduced to a model of integrate-and-fire neurons in which each neuron
can fire only one spike. Neurons are coupled by excitatory synapses with delay, which is
small for cortical networks and large for thalamic networks. Using analytical and numerical
methods, we find that continuous pulses exist and are stable for small values of constant
(space-independent) delay. As the constant delay increases, this pulse loses stability and
lurching pulses are obtained. Such lurching pulses have not been obtained in models of wave
propagation in excitable media with diffusive coupling.

Aspects of the work presented here have appeared in an abstract form (Golomb and
Ermentrout 1999a) and in a brief report (Golomb and Ermentrout 1999b). Here we expand on
the range of issues covered in the brief report and expound in detail all aspects of our work.
Particular emphasis is placed on describing the calculations of the existence, velocity, and
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stability of the pulses for several footprint shapes. We have previously found cases for which
both continuous and lurching pulses can propagate for the same set of parameters (Golomb
and Ermentrout 1999b). Here we test whether this bistability occurs only if the synaptic
footprint shape has a finite support. We develop a method for calculating the spatial period of
lurching pulses for large delays for every footprint shape. Our results for the integrate-and-fire
model with one spike and large delay are compared with simulation results obtained using a
conductance-based model of thalamic networks (Golomb et al 1996).

2. The model

In this section we first show that for studying fronts of propagating discharges, models of both
disinhibited cortical networks and thalamic networks (with excitatory neurons being in the
bursting mode) can be reduced to simplified models of chains of integrate-and-fire neurons
with delay, in which each neuron can fire only one spike. Then, we describe this model and the
numerical methods. Finally, we briefly introduce the conductance-based model of thalamic
networks of Golomb et al (1996).

2.1. Reduction of models

2.1.1. Reduction of models of paroxysmal discharges in disinhibited cortical networks.
Simulations of conductance-based models of paroxysmal discharges in disinhibited cortical
slices reveal that the discharge velocity ν is determined primarily by the response of the
post-synaptic neuron to the first one or two spikes of the pre-synaptic neuron (Golomb and
Amitai 1997), especially with prominent synaptic depression. For example, if we assume that
only the first spike elicits an excitatory post-synaptic conductance (EPSC) for the parameters
of figure 8 in the work of Golomb and Amitai (1997), the velocity decreases by only 15%.
Therefore, with strong depression, taking only the first spike of each pre-synaptic neuron
into account and ignoring all the others is a good approximation (Ermentrout 1998). This
approximation becomes exact in the case of infinitely strong synaptic depression. Even without
strong depression, taking only one spike can be viewed as a simplified way for considering the
effects of all the burst discharges of fast spikes together, provided that the synaptic interaction
takes into account the combined contribution of all of the spikes of the discharge (a similar
approach is used in Wang and Rinzel (1992) and Golomb et al (1994, 1996)).

Adjacent cortical neurons have a delay of about 2 ms (Thomson et al 1993, Markram et al
1997); more distant neurons are expected to have a larger delay because of the finite axonal
connectivity. The delay τdelay between neurons at positions x and x ′ is therefore

τdelay = τd +
x − x ′

c
(1)

where τd is the constant delay and c is the axonal conductance velocity. Thus, we include both
fixed and distance-dependent delays in the simplified models.

2.1.2. Reduction of models of spindle-like discharges in thalamic networks. We consider a
spatially structured network of excitatory neurons, which may be interpreted as a reduction
from a two-population thalamic network composed of excitatory thalamocortical (TC) neurons
and inhibitory neurons in the thalamic reticular nucleus (RE). The idea is that because the RE-
to-TC projection is topographic and acts via GABAA and GABAB receptors, excitation of one
RE cell would result in a delayed barrage of EPSCs in the neighbouring RE cells through
the disynaptic RE–TC–RE loop. In this idealized view of the isolated thalamic circuit, the
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RE cell layer acts effectively as a cell population with reciprocal AMPA-mediated excitatory
interactions, with an effective delay of order 100 ms caused by the time needed for the TC cell
to rebound from inhibition. With the additional axonal delay, the delay in thalamic networks
can also be represented by equation (1). Because we are interested in this work only in the
recruitment process, we can model the system by considering only the first ‘spike’ that each
cell fires. The large effective delay ensures that the velocity at moderate coupling strengths is
determined mainly by the first spike, which represents a Ca2+ spike above which rides a train
of action potentials (Golomb et al 1996). This assumption of fixed effective delay only applies
if those TC cells that receive inhibitory input are in burst-capable mode.

2.2. Description of the integrate-and-fire model

We use the following version of the integrate-and-fire (Lapique) model (Tuckwell 1988,
Ermentrout 1998, Bressloff 1999, 2000):

∂V (x, t)

∂t
= −V (x, t)

τ0
+ Isyn(x, t) + Iapp(x, t) (2)

for 0 < V (x, t) < VT , where V (x, t) is the membrane potential of a neuron at a position x and
time t , τ0 is the passive membrane time constant of the neuron, Isyn is the normalized synaptic
input, and Iapp is the normalized applied current; Iapp = 0 unless otherwise stated. When V

for a neuron reaches the threshold VT at time T (x), the neuron fires a spike, and cannot fire
more spikes afterwards. We assume that the number of neurons within a footprint length is
large, and therefore use a continuum model and replace the sum over the pre-synaptic neurons
by an integral:

Isyn(x, t) = gsyn

∫ ∞

−∞
dx ′ w(x − x ′)α

[
t − T (x ′) − τdelay

]
(3)

where gsyn = g̃syn�/C, g̃syn is the synaptic conductance, C is the membrane capacitance,
and � = V − Vsyn is approximated here to be a constant (‘coupling by currents’; see,
e.g., Ermentrout 1998, Hansel et al 1995); τdelay is the delay between the post- and pre-synaptic
neurons. Equations (2), (3) are implicit equations of T (x). The temporal shape of the EPSC
that a post-synaptic cell at a position x receives following a spike of a pre-synaptic cell at a
position x ′ is given by the normalized α-function α[t − T (x ′)]:

α(t) =



e−t/τ1 − e−t/τ2

τ1 − τ2
t � 0

0 otherwise
(4)

where τ1 and τ2 are the synaptic rise and decay time respectively; τ1 � τ2. The spatial
dependence of the synaptic strength on the distance between neurons, w(x), is denoted as the
‘synaptic footprint shape’ (Golomb et al 1996, Golomb and Amitai 1997). We examine three
shapes:

w(x) = 1

2σ
e−|x|/σ exponential (5)

w(x) = 1√
2πσ

e−x2/(2σ 2) Gaussian (6)

w(x) =



1

2σ
|x| � σ

0 |x| > σ

square. (7)
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σ is called the ‘synaptic footprint length’. We consider a half-infinite network; i.e. the length
of the system is much larger than σ .

We define the response (Green) function G(t) for t > 0 as

dG

dt
= −G

τ0
+ α(t) G(0) = 0 (8)

and G(t) = 0 for t < 0. Then, for τ1 = 0,

G(t) =



τ0

τ0 − τ2
(e−t/τ0 − e−t/τ2) t � 0

0 otherwise.
(9)

The function G is the normalized excitatory post-synaptic potential (EPSP) developed in the
cell as a response to the EPSC (equation (4)). The Volterra representation of equations (2), (3)
for neurons that can fire only one spike is

VT

gsyn
=

∫ ∞

−∞
dx ′ w(x ′)G

[
T (x) − T (x − x ′) − τd − x ′

c

]
(10)

together with the condition that T (x) is the first time that the voltage crosses the threshold.
This condition requires that V increases with time just before the spike; i.e.,

dV [x, T (x)]

dt
> 0. (11)

The meaning of equations (10), (11) is that the summation of all of the contributions to the
voltage of one neuron from the other neurons is equal to VT when this neuron fires, and that
this neuron does not fire before.

2.2.1. Numerical methods. Equations (2), (3) are simulated numerically by discretizing
space. There are N neurons in the chain, and the density of neurons is ρ in a length σ .
The coupled system of ordinary differential equations for the integrate-and-fire neurons is
solved using exact integration (Hansel et al 1998). To stimulate the network, applied current
is ‘injected’ into a group of neurons on the ‘left’ of the system (small x-values), that span a
length at least equal to the footprint length σ (‘shock’ initial conditions). A neuron that has
fired does not participate any more in the simulation.

2.3. Brief description of the conductance-based thalamic model

Several results of the simplified integrate-and-fire model with a square footprint shape are
compared with simulation results of the full RE–TC network model (Golomb et al 1996).
In this model, each RE cell is represented by a conductance-based scheme including a T-type
calcium current, an after-hyperpolarization potassium current, and a leak current. Each TC cell
possesses a T-type calcium current, a sag (‘h’) current, and a leak current. RE cells inhibit TC
cells with GABAB-mediated inhibition (without GABAA-mediated inhibition), and TC cells
excite RE cells with AMPA-mediated excitation. No intra-RE connections are considered. To
simulate the conditions on which the integrate-and-fire model is based, each RE cell sends
synaptic input to only one TC cell, whereas each TC cell (far from the edges) projects to 17
TC cells; N = 256. Open boundary conditions are assumed. The strength of the GABAB

synapses is gGABAB = 0.06 mS cm−2. All of the parameters of the model are equal to those
given in Golomb et al (1996), except for those parameters that are explicitly mentioned.
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3. Results

3.1. Continuous and lurching pulses

A pulse can propagate along the network in response to ‘shock’ initial conditions. For zero
or small τd (below a critical value τdc), the pulse is continuous far from the stimulus region
(figure 1(A)), and the firing times of the neurons obey T (x) = T0 + x/ν, where ν is the
pulse velocity and T0 is an arbitrary time. The neuronal potential fulfils an equation for a
travelling pulse as well: V (x, t) = Ṽ (x − νt) (Golomb and Amitai 1997, Ermentrout 1998).
As τd approaches a critical value τdc from below, the convergence of the firing time T (x) to
a continuous propagating pulse decelerates. For τd > τdc, a lurching propagating pulse is
observed (figure 1(B)). Space is spontaneously divided into basic spatial units, each with a
spatial period length L, and the firing time in each unit can be obtained from the spatial period
in the previous unit according to

T (x + L) = T (x) + Tper (12)

whereTper is the time period of a lurching cycle. The average velocity of the pulse is ν = L/Tper.
Suppose that one lurching period starts at x = 0 and T (0) = 0. The firing time of a neuron at
a position x is given by

T (x) = nTper + f (x̂) (13)

where n is the integer part of T (x)/Tper (or x/L) and x̂ = x−nL. The function f , expressing
the firing time within one period relative to the starting point of the period in space and time,
is defined on the interval [0, L); f (0) = 0. Hence, the function

T (x) − x/ν = f (x̂) − x̂/ν (14)

is a periodic function of x with a period L. Equation (14) demonstrates the spatio-temporal
periodicity of the lurching pulse.

1300 1400
t (ms)

90

95

100

x 
/ 

σ

A. τd=10 ms

1400 1500
t (ms)

B. τd=12 ms

Figure 1. Rastergrams obtained from simulating equations (2), (3), (5), with the condition that each
neuron can fire only one spike. The solid circles represent the firing time of neurons as a function of
their normalized position x/σ ; spikes of only one out of every five neurons are plotted. Together, the
groups of solid circles looks almost like one continuous line. Parameters: τ0 = 30 ms, τ2 = 2 ms,
gsyn/VT = 10, c/σ = 5 ms−1, N = 5000, ρ = 50. For these parameters, τdc = 11.15 ms.
(A) For τd < τdc (10 ms), a continuous pulse is obtained. (B) For τd > τdc (12 ms), the pulse is
lurching.
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In the following, we calculate first the existence and stability regimes and the velocity of
the continuous and lurching pulses for c → ∞. In most calculations we will take τ1 = 0 for
simplicity. The effects of finite τ1 will be specifically evaluated. Then, we analyse the effects
of finite axonal velocity c. Finally, we show that several effects discovered in the integrate-
and-fire model are demonstrated also in conductance-based models of thalamic networks.

3.2. Existence, stability and velocity of continuous pulses

3.2.1. General formalism. Substituting the condition for a continuous pulse, T (x) = x/ν,
into the evolution equation (10), we obtain∫ ∞

0
dx ′ w(x ′ + τdν)G(x

′/ν) = VT /gsyn. (15)

We should also confirm that the condition of equation (11) holds. Stability of the continuous
pulse is calculated by considering T (x) = x/ν + s(x) and linearizing equation (10) near the
continuous solution, to obtain∫ ∞

0
dx ′ w(x ′ + τdν)G

′(x ′/ν)
[
s(x) − s(x − x ′ − τdν)

] = 0. (16)

This convolution equation has a general solution s(x) = exp(λx). Substituting this equation
in equation (16) yields∫ ∞

0
dx ′ w(x ′ + τdν)G

′(x ′/ν)
[
1 − e−λ(x ′+τdν)

]
= 0. (17)

λ = 0 is always a solution to equation (17), because of the translation invariance of the
continuous pulse. The continuous wave is stable if Re λ < 0 for all the λ-values that are
solutions of this eigenvalue equation (except for that single zero solution). This means that
a small perturbation at a specific, finite x will decay at larger x as the pulse propagates. A
similar method for studying stability was developed independently by Bressloff (1999, 2000).

3.2.2. Exponential footprint shape. The velocity ν is determined using equations (5), (9),
(15):

(τ0ν + σ)(τ2ν + σ)

τ0νσ
exp

(
τdν

σ

)
= gsyn

2VT
. (18)

This is an extension of the equation obtained in Ermentrout (1998) for τd = 0. From this
equation, one can see that:

(1) For τd = 0, the left-hand side of equation (18) has a minimum with respect to ν at
νmin = σ/

√
τ0τ2. Continuous pulses cannot propagate below this minimal velocity, which

is obtained for a minimal synaptic coupling gsyn,min. For gsyn > gsyn,min, there are two
branches of solutions to equation (18). In the fast branch, ν increases with gsyn, and in the
slow branch ν decreases with gsyn (Ermentrout 1998).

(2) Because exp(τdν/σ ) > 1 and increases with τd , νmin decreases with τd and is obtained
for larger gsyn,min.

(3) For τd > 0 and at large enough gsyn, the velocity is determined mainly by the exponential
factor in equation (18), and therefore ν depends logarithmically on gsyn to the highest
order. In contrast, for τd = 0, the velocity exhibits a power-law dependence on gsyn at
large gsyn (Ermentrout 1998). Graphs of ν/σ as a function of VT /gsyn for τd = 0 and
τd = 10 ms are shown in figure 2(A).
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Figure 2. Exponential footprint shape. The velocity of the continuous pulse is plotted as a
function of VT /gsyn. Solid lines represent stable pulses and the dashed lines represent unstable
pulses. (A) Parameters: τ0 = 30 ms, τ2 = 2 ms. Wide lines denote graphs with τ1 = 0, and narrow
lines denote graphs with τ1 = 0.3 ms. Calculations are done for two values of τd : 0 (right curves)
and 10 ms (left curves). For τ1 = 10 ms, the graphs for τ1 = 0 and τ1 = 0.3 ms almost overlap.
The velocity is calculated according to equations (18), (25), and the stability is determined from
equations (23), (24), (26). (B) Parameters: τ0 = 30 ms, τ1 = 5 ms, τ2 = 50 ms; these parameters
correspond to NMDA synaptic kinetics. Calculations are done for two values of τd : 0 (right curve)
and 50 ms (left curve). For τd = 50 ms, the lower part of the upper branch is unstable; this is
hardly visible in the graph.

In order to find the function V (x, t) before the spike (and thus verify that (11) holds), we
look without loss of generality at a neuron located at x = 0. The Volterra representation of
equations (2), (3) for the travelling wave T (x) = x/ν for time t < 0, taking into account that
G(t) = 0 for t < 0, is

V (0, t) = gsyn

∫ ∞

−∞
dx ′ w(x ′)G

[
t − T (−x ′) − τd

] = gsyn

∫ ∞

(τd−t)ν

dx ′ w(x ′)G
(
t +

x

ν
− τd

)
.

(19)
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Substituting equations (5), (9) into equation (19) yields

V (0, t) = gsynτ0νσ

2(τ0ν + σ)(τ2ν + σ)
exp

[
(t − τd)ν

σ

]
. (20)

The voltage V rises exponentially from 0 and reaches VT at t = 0 for all ν-values; both the
upper and lower branches fulfil† the condition of equation (11).

The stability of the continuous pulse is explored by substituting equations (5), (9) in
equation (17) to obtain

eλντd = (τ0ν + σ)(τ2ν + σ)(1 + λσ)

[τ0ν(1 + λσ) + σ ] [τ2ν(1 + λσ) + σ ]
. (21)

As mentioned above, λ = 0 is always a root due to translation invariance. In appendix A
we show in general that the lower branch, for which dν/dgsyn < 0, is unstable. This can be
easily demonstrated in the case τd = 0, in which there is another solution to equation (21),
λ = σ/(ν2τ0τ2) − 1/σ . The pulse is stable if ν > σ/

√
τ0τ2, and therefore the fast branch is

stable and the slow branch is unstable.
In order to examine whether the delay can destabilize pulses that belong to the fast branch,

we look for a pair of complex conjugate eigenvalues which cross the imaginary axis. If this
occurs, we generically expect a Hopf bifurcation to periodic solutions (lurching waves) for the
functional equation (15). At this point λ = iω, and

eiωντdc = (τ0ν + σ)(τ2ν + σ)(1 + iωσ)

[τ0ν(1 + iωσ) + σ ] [τ2ν(1 + iωσ) + σ ]
≡ Z(ω). (22)

As ω varies, the left-hand side traces out the unit circle. In order to solve this equation, we
search for the non-zero ω-value for which |Z(ω)| = 1. This value is given by

ω2 = [
σ 4 + 2σ 3ν(τ0 + τ2) + 4σ 2ν2τ0τ2 − ν4τ 2

0 τ
2
2

]
/(σ 2ν4τ 2

0 τ
2
2 ). (23)

For that ω we find τdc, the critical value of τd for which the arguments of the complex numbers
on the two sides of equation (22) are equal:

τdc = arg[Z(ω)]

ων
. (24)

Note that τdc does not depend explicitly on gsyn, but only through ν. Using equations (23),
(24), τdc is calculated as a function of ν. This solution shows that τdc increases with ν, and this
increase is steep at small ν and modest at large ν. As a result, for small values of τd , the Hopf
bifurcation occurs on the lower, slow branch and does not have an effect on the dynamics. For
larger values of τd , the Hopf bifurcation occurs on the upper, fast branch, and the continuous
pulse is unstable for low velocities, as shown in figure 2(A).

3.2.3. Behaviour near the bifurcation. In order to study the transition from a continuous pulse
to a lurching pulse near the critical delay τdc, we calculated analytically the velocity of the
pulse (equation (18)) and compared it with the velocity computed using numerical simulations,
as shown in figure 3(A). For τd � τdc, the velocity of the lurching pulse is slightly higher than
the velocity of the unstable continuous pulse. The difference between the velocity of the pulse
obtained in simulations and the velocity of the continuous pulse is shown in figure 3(B). For
τd � τdc, it is 0. For τd � τdc, the differences in velocities increase linearly with τd − τdc. The
continuous dependence of this velocity difference on τd−τdc suggests that the Hopf bifurcation
is supercritical. The calculation of the normal form of the bifurcation is very tedious, and is
not carried out here.

† In Golomb and Ermentrout (1999b), we erroneously claimed that the lower branch is not meaningful.
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Figure 3. Pulse velocities of the continuous and lurching pulses are plotted as a function of τd
near the critical delay τdc . Parameters: τ0 = 30 ms, τ2 = 2 ms, gsyn/VT = 20, c → ∞; for these
parameters, τdc = 13.23 ms. (A) The velocity of the continuous pulse (solid line: stable; dashed
line: unstable) calculated from equation (18), and the velocity of the wave that is actually obtained
in simulations with N = 105 and ρ = 500 (solid dots). For τd > τdc , the velocity of the lurching
pulse deviates from the analytical result for the continuous pulse. (B) The difference between the
velocity of the waves in simulations. The differences are 0 for the continuous pulse; they increase
linearly with τd − τdc for τd > τdc . The solid dots represent the τd -values for which simulations
were made. These dots are connected by a solid line in the regime where the continuous pulses
are stable, and by a dashed line in the regime where the continuous pulses are unstable. Note that
lines in (A) correspond to analytic solutions, while in (B) they just connect the dots.

3.2.4. Finite rise time τ1. Until now, the synaptic rise time has been assumed to be
instantaneous. In order to assess the effects of finite τ1, we calculate the velocity of the
continuous pulse for any τ1 and obtain

(τ0ν + σ)(τ1ν + σ)(τ2ν + σ)

τ0νσ 2
exp

(
τdν

σ

)
= gsyn

2VT
. (25)

The critical delay above which the continuous pulse is unstable is given by

eiωντdc = (τ0ν + σ)(τ1ν + σ)(τ2ν + σ)(1 + iωσ)

[τ0ν(1 + iωσ) + σ ] [τ1ν(1 + iωσ) + σ ] [τ2ν(1 + iωσ) + σ ]
. (26)

The dependence of ν on gsyn and the stability of the continuous pulses are shown in figure 2(A)
for τ1 = 0.3 ms and delay values τd = 0 and τd = 10 ms. Without delay, the velocity at high
gsyn is substantially lower for finite τ1. This is a result of the fact that at high gsyn, ν scales
linearly with gsyn for τ1 = 0 but as

√
gsyn for τ1 > 0 (Ermentrout 1998). The situation is

different, however, for finite values of τd ; even for τd = 10 ms, the graph of ν versus gsyn for
τ1 = 0.3 ms almost overlaps the corresponding graph for τ1 = 0. Indeed, equation (25) shows
that in both cases, ν � ln(gsyn) at high gsyn. We conclude that even for moderate values of τd ,
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small but finite τ1-values do not have a significant effect on the velocity and stability of the
continuous pulse.

Increasing τ2 to 50 ms and τ1 to 5 ms, to mimic the NMDA synaptic kinetics (Fleidervish
et al 1998), reduces the minimal velocity νmin (figure 2(B)). In addition, larger τd -values are
needed for destabilizing the continuous pulses. For example, for τd = 50 ms, gsyn,c is only
slightly larger than gsyn,min (25.4VT and 24.3VT respectively).

3.2.5. Square footprint shape. The velocity ν is determined using equations (7), (9), (15):

2VT
gsyn

= τ0ν

σ

{
1 − 1

τ0 − τ2

[
τ0 exp

(
τd − σ/ν

τ0

)
− τ2 exp

(
τd − σ/ν

τ2

)]}
. (27)

Graphs of ν/σ as a function of VT /gsyn for several values of τd are shown in figure 4. The
qualitative results regarding the minimal velocity and its dependence on τd are the same as
for the exponential case. The situation is different, however, for large gsyn. For ν = σ/τd ,
the right-hand side of equation (27) is zero. Hence, at the limit gsyn → ∞ the velocity of the
continuous pulse approaches the finite value σ/τd .
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Figure 4. Square footprint shape; parameters: τ0 = 30 ms, τ2 = 2 ms. The velocity of the
continuous pulse as a function of VT /gsyn for several values of τd . The wide solid lines represent
stable pulses and the narrow dotted lines represent unstable pulses. The number above each line,
from 0 to 50, denotes the value of τd . The velocity is calculated according to equation (27), and
the stability is determined numerically on the basis of equation (28).

The stability of the continuous pulse is explored by substituting equations (7), (9) in
equation (17) to obtain

(1 + λτ0ν)(1 + λτ2ν)

[
exp

(
τd − σ/ν

τ0

)
− exp

(
τd − σ/ν

τ2

)]

= λν(τ0 − τ2) exp(−λτdν) +

[
(1 + λτ2ν) exp

(
τd − σ/ν

τ0

)

− (1 + λτ0ν) exp

(
τd − σ/ν

τ2

)]
exp(−σλ). (28)
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To calculate the τdc-value for which the continuous pulse becomes unstable, we substitute
λ = iω in equation (28) and obtain two real transcendental equations for the real variables
τdc and ω. We solve these equations numerically for one large enough value of ν using
standard iteration methods (Press et al 1992). The fact that ω, which is the spatial period of
the expanding or decaying fluctuations, is of order 2π/σ helps us to choose initial conditions
for the iteration process. At small ν, it is numerically difficult to use this method to solve
the equations. Therefore, we write ordinary differential equations with these two equations as
their nullclines, and follow the their fixed-point solution using the program XPPAUT (Doedel
1981, Rinzel and Ermentrout 1998), starting from the solution at large ν that we have already
computed. Using equation (27), we calculate the range of stability as a function of gsyn and
τd . Our numerical calculation indicates that the critical delay τdc increases with gsyn linearly
at large gsyn (not shown). As a result, for a specific τd , there is a moderate gsyn-value for which
the continuous pulse is stable, as shown in figure 4.

Numerical investigation of the regime in the τd–gsyn plane in which lurching pulses are
obtained (Golomb and Ermentrout 1999b) revealed two apparent differences between the
situations in the case of square footprint shape and the case of exponential footprint shape.
First, lurching pulses exist in an area which is composed of ‘tongues’. Second, a bistable regime
exists, in which the two types of pulse can propagate, depending on the initial stimulation.
This bistability suggests that the Hopf bifurcation in which the continuous pulse loses stability
is subcritical.

3.2.6. Gaussian footprint shape. One major difference between the square and the
exponential footprint shapes is that the first shape has a finite support whereas the second
shape does not. Is the existence of bistability and tongues in the square case a result of the
finite support? In order to answer this question, we examine a third shape: a Gaussian, which
decays in space faster than exponentially but does not have a finite support.

The velocity ν for the Gaussian shape is determined using equations (6), (9), (15):

2VT
gsyn

= τ0

τ0 − τ2

[
exp

(
τd

τ0
+

σ 2

2ν2τ 2
0

)
erfc

(
τdν√

2σ
+

σ√
2ντ0

)

− exp

(
τd

τ2
+

σ 2

2ν2τ 2
2

)
erfc

(
τdν√

2σ
+

σ√
2ντ2

)]
(29)

where

erfc(z) = (2/
√
π)

∫ ∞

z

exp(−t2) dt.

At large ν and gsyn, we use the approximation

erfc(z) ≈ e−z2
/(

√
πz) (30)

to obtain

2VT
gsyn

≈
√

2τ0σ
3ν√

π(τdτ0ν2 + σ 2)(τdτ2ν2 + σ 2)
exp

(
−τ 2

d ν
2

2σ 2

)
. (31)

The velocity ν scales as
√

ln(gsyn) to the highest order.
The stability of the continuous pulse is explored by substituting equations (6), (9) in
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equation (17) to obtain

τ0 exp

(
τd

τ2
+

σ 2

2ν2τ 2
2

)
erfc

(
τdν√

2σ
+

σ√
2ντ2

)
− τ2 exp

(
τd

τ0
+

σ 2

2ν2τ 2
0

)
erfc

(
τdν√

2σ
+

σ√
2ντ0

)

= τ0 exp

(
τd

τ2
+

σ 2

2ν2τ 2
2

+
σ 2λ2

2
+

λ

ντ2

)
erfc

(
τdν√

2σ
+

σ√
2ντ2

+
σλ√

2

)

− τ2 exp

(
τd

τ0
+

σ 2

2ν2τ 2
0

+
σ 2λ2

2
+

λ

ντ0

)
erfc

(
τdν√

2σ
+

σ√
2ντ0

+
σλ√

2

)
. (32)

As in the case of the square footprint shape, we calculate τdc by substituting λ = iω in
equation (32). The two transcendental real equations for τdc and ω are solved using the
function FindMinimum of the software package Mathematica (Wolfram 1996). The different
behavioural regimes of the continuous pulse for a Gaussian footprint shape are presented in
figure 5(A). The solid line denotes the values of gsyn and τd for which the minimal possible
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Figure 5. Gaussian footprint shape; parameters: τ0 = 30 ms, τ2 = 2 ms. (A) Regimes of existence
and stability of the continuous and lurching pulses are shown in the τd–gsyn plane. The boundaries
of the regime in which the lurching pulse exists and is stable were computed from numerical
simulations, in which a pulse was initiated by a ‘shock’ initial stimulus; N = 20 000, ρ = 50.
The solid line denotes the values of gsyn and τd for which the minimal possible velocity gsyn,min is
obtained; At lower gsyn-values, the pulse cannot propagate. The continuous pulse becomes unstable
(via a Hopf bifurcation) on the dashed line of critical delay values τdc . The continuous pulse is
therefore stable above both the solid and the dashed line, as denoted by ‘s’. It is unstable between
the two lines, as denoted by ‘us’, and does not exist below the continuous line, as denoted by ‘ne’.
The light-grey shading represents the region for which lurching pulses (and not continuous pulses)
are obtained. The arrow to the right of the graph represents the minimal values of gsyn for which
the lurching pulse is found in simulations for τd → ∞. There is a bistable regime, in which the
continuous pulse coexists with the lurching pulse. This regime has a ‘tongue-like’ structure; it is
denoted by the dark-grey shading. (B) The bistable regime, that has a ‘tongue-like’ structure, is
narrow; it is shown here on a magnified scale.
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velocity gsyn,min is obtained; at lower gsyn-values, the pulse cannot propagate. The continuous
pulse becomes unstable (via a Hopf bifurcation) on the dashed line of critical delay values τdc.
The continuous pulse is therefore stable above both the solid and the dashed line, as denoted
by ‘s’. It is unstable between the two lines, as denoted by ‘us’, and does not exist below the
continuous line, as denoted by ‘ne’. The light-grey shading represents the region for which
lurching pulses (and not continuous pulses) are obtained. There is a narrow bistable regime in
which both the continuous pulse and the lurching pulse can propagate. This regime, which is
denoted by the dark-grey shading, is better displayed in figure 5(B) on a magnified parameter
scale. The bistable regime exhibits tongues, but their area in the τd–gsyn plane is smaller in
comparison to the case of the square footprint shape. The existence of a bistable regime and
tongues in this case shows that they can appear even when the footprint extends infinitely in
both directions.

3.3. Velocity of lurching pulses

How does the velocity of the lurching pulse depend on the synaptic strength? We can calculate
this velocity in the case where

τ2 � τ0 � τd . (33)

This case corresponds to a large delay and fast EPSCs (as in thalamic slices); note that τ1 = 0.
Simulations of such cases show that neurons fire only during a time period that is small in
comparison to the delay, and L is almost unaffected by the delay period as long as the delay
is large enough. Therefore, the pulse velocity is ν = L/τd . For τd � τ0, a neuron that fires
during the nth lurching period (with length L and time Tper) is affected only by neurons that
have fired during the previous lurching period. The contribution to the potential of that neuron
of neuronal EPSCs from neurons in earlier periods has already decayed, mostly because of
the large delay and also because of the fact that neurons in earlier lurching periods are more
distant from that neuron. The neuron is also not affected by neurons that fire during the same
lurching period. We assume that the lurching wave is initiated at very large, negative x, and
a lurching spatial period starts at x = 0. Neurons at a position 0 � x < L will be affected
only by neurons located in the interval −L � x < 0. From the definition of the function
f (x) (equation (13)), we see that T (x) = f (x) for 0 � x < L and T (x) = f (x) − Tper for
−L � x < 0. Equation (10) for neurons at 0 � x < L becomes

VT

gsyn
=

∫ 0

−L

dx ′ w(x − x ′)G
[
f (x) − f (x ′) + T̂

]
(34)

where T̂ = Tper − τd . In all of the simulations that we have performed, we found that T̂ > 0.
Here we calculate L by considering neurons with x � L such that the argument of G in
equation (34) is non-negative. Substituting equation (9) in (34) we obtain

VT

gsyn
=

∫ L

0
dx ′ w(x − x ′ + L)

τ0

τ0 − τ2

{
e−[f (x)−f (x ′)+T̂ ]/τ0 − e−[f (x)−f (x ′)+T̂ ]/τ2

}
. (35)

We continue by using the condition ε ≡ τ2/τ0 � 1. Using the ansatz

T̂ = O(ε) f (x) = O(ε) (36)

we define the scaled function and variable

φ(x) = f (x)/ε θ = T̂ /ε. (37)

This assumption is supported by the simulations for the exponential footprint shape shown in
figure 6, where the function φ(x) is plotted for several values of τ2 (A), and θ is plotted as a
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function of τ2 (B). In is seen that φ(x) converges to a constant function as ε decreases, and θ

converges to a limit value. Because exp{ε[φ(x)− φ(x ′) + θ ]/τ0} � 1, equation (35) becomes
approximately

VT

gsyn
�

∫ L

0
dx ′ w(x − x ′ + L) − e[θ−φ(x)]/τ0

∫ L

0
dx ′ w(x − x ′ + L)eφ(x

′)/τ0 . (38)

As x approaches L, φ increases. At the point where the firing time T (x) diverges (or at least
becomes larger than τd ), the lurching spatial period ends. In order to find L, we let φ(x) → ∞
as x → L, and hence limx→L exp [−φ(x)/τ0] = 0. Therefore, taking at the limit x → L,
equation (38) yields, after a change of variables,

VT

gsyn
=

∫ 2L

L

dx w(x). (39)

This is an implicit equation for L under the conditions of equation (33). The RHS of
equation (39) is zero forL = 0 and forL → ∞ (becausew(x) vanishes at largeL-values), and
is non-negative for finiteL. Therefore, it reaches a finite maximum at finiteL. If gsyn is smaller
than its value at that maximum, no lurching pulse can propagate, and therefore the lurching
pulse has a threshold. If gsyn is above this threshold value, there are (at least) two solutions to
equation (39). We consider only the solution for which dL/dgsyn > 0. The second solution is
probably unstable; this has yet to be proven. Here we discuss several specific footprint shapes.

3.3.1. Exponential footprint shape. By substituting equation (5) in equation (39), one obtains

L = σ ln 2 − σ ln(1 − √
1 − 8VT /gsyn). (40)

For large gsyn, expanding equation (40) yields

L = σ ln

(
gsyn

2VT

)
. (41)

Equation (40) has a solution only if gsyn > 8VT , which is the synaptic conductance threshold.
The theoretical result obtained here coincides exactly with simulation results (Golomb and
Ermentrout 1999b).

3.3.2. Gaussian footprint shape. By substituting equation (6) in equation (39), one obtains

2VT
gsyn

= erfc

(
L√
2σ

)
− erfc

(√
2L

σ

)
. (42)

For large gsyn and large L, we use the approximation of equation (30) and obtain

L2

2σ 2
+ ln

L

σ
= ln

gsyn

VT
− 1

2
ln(2π). (43)

This means that L scales at very large gsyn as
√

ln(gsyn), with some logarithmic corrections.
The dependence of the lurching spatial period L (in units of σ ) as a function of gsyn/VT is

shown in figure 7. The bent solid line on the logarithmic scale shows that L increases less than
logarithmically with gsyn. The open circles represent simulation results with τd = 1000 ms,
τ0 = 30 ms, and τ2 = 0.002 ms, and they fall exactly on the analytical curve.

Using simulations, we tested the validity of the perturbation calculation when the time
constants of the system do not fulfil equation (33). First, we reduced τd to 20 ms. This
change has almost no effect for large gsyn, and mildly increases L for small gsyn. This velocity
increase can be attributed to the excitatory effect on a neuron from neurons in cycles before



236 D Golomb and G B Ermentrout

A.

0.0 1.0 2.0 3.0
x / σ

0

200

400

φ

0.0002
0.002
0.02
0.2
2

τ2 (ms)

B.

0

10

20

30

θ

0.0001 0.001 0.10.01 101

τ2 (ms)

Figure 6. (A) The function φ(x) versus x/σ for several values of τ2. The values of τ2 (in ms) are:
0.0002 (solid line), 0.002 (dotted line), 0.02 (dashed line), 0.2 (long-dashed line) and 2 (dotted–
dashed line). The curve for τ2 = 0.0002 ms is almost identical to the curve for τ2 = 0.002 ms.
(B) θ as a function of τ2. Results for both (A) and (B) were obtained from simulations with
τd = 1000 ms, τ0 = 30 ms, N = 50 000, ρ = 500. These simulations show that φ(x) and θ reach
limit values as τ2 → 0.

the immediate previous lurching cycle; it is stronger for small gsyn because of the shorter
L. Second, we increased τ2 to 2 ms. As a result, L decreases somewhat, because the EPSP
developed in the post-synaptic cell (equation (8)) is smaller as a result of the interplay between
the EPSC and the leaky neuronal integrator. Third, we simulated a network with τ1 = 0.3 ms.
This finite rise time did not change L significantly in comparison to the case for τ1 = 0.
Note that for τ2 = 2 ms, continuous (and not lurching) pulses propagate for the third and
fourth parameter sets of figure 7 at high gsyn-values; we do not show simulation results when
lurching pulses are not obtained. These results show that our analytical theory yields a good
approximation even beyond the parameter regime for which it is derived.
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Figure 7. The normalized length of the lurching period L/σ as a function of gsyn/VT for the
Gaussian footprint shape. The analytical solution is given by equation (42). Simulations were
carried out with N = 200 000 and ρ = 500. The analytical solution for the case of τ1 = 0,
τ2 � τ0 � τd is represented by the solid line. Simulation results with a corresponding parameter
set: τd = 1000 ms, τ0 = 30 ms, τ1 = 0, τ2 = 0.002 ms, denoted by ◦, fit the analytical solutions
almost exactly. The symbol × denotes simulations with τd = 20 ms, τ0 = 30 ms, τ1 = 0,
τ2 = 0.002 ms; the symbol ' denotes simulations with τd = 20 ms, τ0 = 30 ms, τ1 = 0,
τ2 = 2 ms; and the symbol � denotes simulations with τd = 20 ms, τ0 = 30 ms, τ1 = 0.3,
τ2 = 2 ms.

3.3.3. Footprint shapes with finite support. Suppose that the footprint shape has a finite
support: w(x) = 0 for x > σ . The RHS of equation (39) is zero for L � σ , and therefore
L < σ for every gsyn. For the square footprint shape, substituting equation (7) in equation (39)
yields

VT

gsyn
=




L

2σ
0 � L � σ/2

1

2

(
1 − L

σ

)
σ/2 < L � σ .

(44)

The maximum of the RHS of equation (44) is obtained for L = σ/2 for VT /gsyn = 1/4.
Therefore, a threshold for the propagation of the lurching pulse is gsyn = 4VT , for which
L = σ/2. For larger gsyn-values, L is given by

L = σ

(
1 − 2VT

gsyn

)
. (45)

3.4. The nature of lurching pulses

The boundary condition that φ(x) → ∞ as x → L is necessary for obtaining equation (39).
The meaning of this condition is that for the spatially continuous dynamical system defined
by equations (2), (3), the function T (x) for the lurching pulse is continuous in x (although
not smooth). The firing time of neurons at the edge of each lurching spatial period increases
rapidly as x approaches the edge. When this time reaches the value Tper (of order τd ), a new
lurching period starts. As seen in figure 6, φ(x) increases considerably only in a narrow spatial
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regime near x = L. The discontinuous lurching period seen in figure 1 is a result of the discrete
nature of our numerical simulation. On a discrete lattice, the value of φ (and that of f ) must be
finite. Our numerical simulations show that for τd � τdc, the value of f for the last neuron in a
spatial lurching period is smaller than Tper, creating an effect which looks like a discontinuity.

3.5. Finite axonal velocity

The effects of finite axonal velocity c on the velocity ν are studied by substituting the condition
for a continuous pulse into equation (10) to obtain∫ ∞

0
dx ′ w

(
x ′ +

τd

1/ν − 1/c

)
G

[
x ′

(
1

ν
− 1

c

)]
= VT

gsyn
. (46)

This equation is similar to equation (15) except that the velocity ν in equation (15) is replaced
by the term ν∞, where

1

ν∞
= 1

ν
− 1

c
. (47)

The velocity ν∞ is the pulse velocity in the limit c → ∞. This means that the effects of axonal
conduction velocity on the velocity of the continuous waves can be deduced from first studying
the properties of a model with c → ∞ and calculating the velocity ν∞, and then substituting
for the value ν∞ with the value 1/ν − 1/c (figure 8). Similarly, the stability of the continuous
pulse is determined by an equation similar to equation (17), except that the variable ν in that
equation is replaced by ν∞. As a result, the value of τdc for a specific value of gsyn does not
depend on c.
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Figure 8. Effects of finite axonal conductance velocity c. The normalized velocity of the continuous
pulse ν/σ is plotted as a function of σ/c. Analytical results (equation (47)) are denoted by a
continuous line for τd = 0 and by a dashed line for τd = 10 ms. Simulation results are denoted
by solid circles (τd = 0) and by solid squares (τd = 10 ms). Parameters: τ0 = 30 ms, τ2 = 2 ms,
gsyn/VT = 10, N = 5000, ρ = 50.

3.6. Thalamic model

Concerning the square footprint shape, three main new results have emerged from studying
the present integrate-and-fire model in which each neuron can fire only one spike:
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(I) The continuous pulse is stable over a broader parameter range in comparison to that for
the exponential footprint shape.

(II) A bistable parameter regime, in which both continuous and lurching pulses can propagate,
is observed.

(III) There are ‘tongues’ in the phase diagram.

These results can be tested in a biophysical, conductance-based model of thalamic networks.
Here, we choose the RE–TC model of Golomb et al (1996). The TC-to-RE AMPA conductance
gAMPA corresponds to gsyn in the reduced model. The effective delay depends on several
parameters of the model, In particular, it depends on the strength of the RE-to-TC GABAB

conductance.
Computing the phase diagram of the full biophysical model in practice is a difficult and

time consuming. Moreover, in addition to the states of the integrate-and-fire model, there
are other, more disordered states (see below). We have run several simulations to examine
whether the three predictions of the integrate-and-fire model listed below are confirmed also
in the conductance-based model.

(I) Continuous pulses. For the square footprint shape, the wave can lurch at low gAMPA

and propagate continuously at the front at larger gAMPA, as shown in the rastergrams in
figure 9. After the front has propagated, oscillations remain, because neurons in the full
model can fire many (calcium) spikes. At very large gAMPA, the front may be aperiodic
(not shown), probably because of the effects of secondary (and more) spikes. With all the
simulations with exponential footprint shape, we have not found continuous pulses. This
is consistent with our theory for the integrate-and-fire model, in which, for exponential
shape, continuous pulses are observed only for relatively small τd .

(II) Bistability. Finding the full extent of the continuous and lurching regimes in the full model
is difficult. To show that there is bistability, however, it is enough to find one parameter set
for which different types of propagation occur for different initial conditions. The network
dynamics is demonstrated in the rastergrams in figure 10. When the wave is initiated by a
‘shock’ in the RE cells, a lurching wave emerges. When the wave is initiated by a ‘shock’
in the TC cells, a continuous wave emerges. With these particular two initial conditions,
we have found bistability in a restricted parameter regime.

(III) Tongues. In our simulations of the full RE–TC model with square pulses, we have not
successfully found ‘tongues’ as in the integrate-and-fire model. As gAMPA increases, we
see a transition from a lurching wave to a continuous wave (with some bistable regime),
and then a transition to a disordered front. A possible factor that may smear the tongues is
the effect of subsequent spikes (following the first one) on the propagation of the discharge
front.

4. Discussion

In this work, we have studied the propagation of pulses in one-dimensional networks of
integrate-and-fire neurons. The simplification that each neuron can fire only one spike enables
us to study the model analytically. The main results of this work are:

(1) Continuous pulses can propagate along one-dimensional neuronal networks with small
constant delay τd , and lurching pulses can propagate with large τd .

(2) The propagation velocity is hardly affected by the pulse type.
(3) The propagation velocity of both continuous and lurching pulses at large gsyn depends on

the tail of the footprint shape w(x). The velocities depend logarithmically on gsyn for an
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Figure 9. Rastergrams of the RE–TC model (Golomb et al 1996): firing times of RE cells are
shown in the upper panels, and firing times of TC cells are shown in the lower panels. Each RE cell
projects to one TC cell; each TC cell projects to RE cells with a square footprint shape and density
of cells ρ = 8 (eight cells within a footprint length σ ). Activity is initiated by a ‘shock’ in the RE
cells. (A) For small AMPA conductance (gAMPA = 0.3 mS cm−2, left), the wave lurches at the
front, as the front is not continuous. (B) For larger AMPA conductance (gAMPA = 0.6 mS cm−2,
right), the wavefront is continuous, with an oscillatory wake.

exponential footprint shape; they increase as
√

ln(gsyn) for a Gaussian footprint shape,
and are bounded by σ/τd for any footprint shape with finite support, including the square
footprint shape.

(4) The footprint shape strongly affects the types of pulse that are obtained with intermediate
τd and gsyn. In particular, bistability can occur with Gaussian or square shape (or with an
off-centre shape (Rinzel et al 1998)) but not with exponential shape.

(5) Bistability and tongues can be obtained even with footprint shapes that do not have finite
support.

(6) Finite, small values of the rise time τ1 do not have a significant effect on the velocity and
the stability of either continuous or lurching pulses, as long as τd is not too small.

(7) The axonal conductance velocity c reduces the velocity of continuous pulses according to
the rule 1/ν = 1/ν∞ + 1/c, and does not affect the critical delay τdc.

4.1. Contribution of analytical treatment and effects of approximations

In the present work, we are interested in the process of recruitment of neurons into the activity.
It does not deal with the period of firing and its termination. The simplification that each neuron
is allowed to fire only one spike is justified for cortical tissues, in particular with prominent
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Figure 10. Rastergrams of the RE–TC model as in the previous figure, with the same architecture
and parameters as in figure 9, and AMPA conductance gAMPA = 0.46 mS cm−2. When activity is
initiated by a ‘shock’ in the RE cells (A), the wavefront lurches. When the shock is given to the
TC cells (B), the wavefront is continuous.

synaptic depression, because the velocity is determined primarily by the response to the first
pre-synaptic spike. It is justified for the thalamic network because of the large effective delay,
except for the parameter regimes discussed below.

The one-dimensional integrate-and-fire model with one spike only is simple enough to
be amenable to analytical treatment. This treatment enables us to understand the general
properties of continuous and lurching pulses. Specifically, it explains the mathematical reason
for the existence of a minimal velocity below which the continuous pulse cannot propagate:
there is the saddle-node bifurcation in which the upper branch of pulses coalesces with the
lower, unstable branch, and they both disappear. The analysis shows that the lurching pulse
emerges as a result of the destabilization of the continuous pulse via a Hopf bifurcation when
the delay is larger than a critical value τdc. It enables us to calculate the pulse velocity as a
function of the network parameters, and yields a simple formula for estimating the effects of
finite axonal velocities. Our work shows that the functional dependencies of the velocities of
the continuous and the lurching pulses on gsyn are similar for large gsyn, and are determined by
the tail of the synaptic footprint shape. If the Hopf bifurcation is supercritical, the deviation
of the velocity of the lurching pulse from the velocity of the unstable continuous pulse grows
linearly with τd − τdc for τd � τdc.

The generality of the results obtained by analysing our simple model can be assessed by
comparing them with results obtained from more biophysical, conductance-based models. For
large τd , the simple model is compared with a model of thalamic slices (Golomb et al 1996).



242 D Golomb and G B Ermentrout

The dependences of the velocity of lurching pulses in the two models seem consistent; in
both cases the velocity increases logarithmically with gsyn for an exponential footprint shape
and is bounded for a square footprint shape. In the conductance-based model with a square
footprint shape, there is a transition from a lurching pulse to a continuous pulse as the AMPA
conductance strength gAMPA increases, with possible bistability. This is analogous to the
similar transition obtained in the integrate-and-fire model as gsyn increases. For small τd , the
simple model is compared with a model of disinhibited cortical slices (Golomb and Amitai
1997). The dependences of the velocity on gsyn in the two models are similar. In particular,
both systems have a minimal velocity below which the pulse cannot propagate.

Investigating the dynamics of sparse neuronal networks (Golomb and Hansel 2000,
Golomb et al 2000) revealed that when synchrony of spikes is concerned, integrate-and-
fire models exhibit qualitatively different behaviour to conductance-based models. Here we
show that when propagation of discharge fronts is concerned, integrate-and-fire models can
sufficiently describe important aspects of the network dynamics. The difference between the
two cases probably stems from the different roles the details of the spike-generating mechanism
play in the two dynamical phenomena. Synchronization of spikes depends strongly on these
details. In contrast, the propagation of a discharge front is mainly determined by the level
and rate of depolarization a cell receives before it reaches the threshold and fires; details of
the spike-generating mechanism play only a minor role. Intrinsic ionic properties, however,
strongly affect the spatio-temporal properties of the discharge beyond the front, as well as the
mechanisms for discharge termination.

The approximation that each neuron can fire only one spike has several consequences
for the discharge activity. With respect to thalamic networks, the effect of subsequent spikes
enables the propagation of lurching discharge with very low velocities (Golomb et al 1996),
whereas there is a minimal finite velocity for lurching pulses with only one spike. This effect
of subsequent spikes probably contributes to the smearing of the bistable tongues, that are
seen, for square or Gaussian footprint shapes, with the integrate-and-fire model but not with
the conductance-based model. In order to describe the behaviour of the discharge after the
front has passed and the process that leads to its termination, one has to take into account all
of the spikes that a neuron can fire, in addition to the intrinsic and synaptic ionic processes
that cause the spike termination (Bal and McCormick 1996, Destexhe et al 1996, Golomb and
Amitai 1997).

4.2. Comparison with previous work

The instability of continuous pulses with large τd has been shown independently by Bressloff
(2000). Here we find that lurching pulses are obtained at these values of τd , and sometimes even
coexist with the continuous pulses, and study the dependence of the properties of continuous
and lurching pulses on the footprint shape. Traub and colleagues (Miles et al 1988, Traub et al
1993) have studied numerically the velocity reduction due to finite c. Here, we find a simple
analytical formula that relates the velocity with finite c to the velocity in the limit c → ∞.
A heuristic argument showing that the velocity of the lurching pulse increases logarithmically
with gsyn at large gsyn was presented in the work of Golomb et al (1996) (but see also Chen
et al 1998). Here we derive, using a perturbation calculation (asymptotic expansion), the exact
relationship between the velocity and gsyn in the limit τ2 � τ0 � τd for any footprint shape
w(x). For the exponential and the Gaussian cases, we show that this result is still a good
approximation well beyond this limited parameter regime.

In this work, the thalamic network model is reduced to a network of reticular thalamic
neurons coupled with effective excitation with delay. Rinzel et al (1998) have reduced the same
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network to a system of thalamocortical cells coupled by effective inhibition. The two pictures
are complementary. Our reduction is exact in the limit σIE � σEI, where σIE and σEI denote the
inhibitory-to-excitatory and the excitatory-to-inhibitory footprint length respectively, whereas
the reduction of Rinzel et al (1998) is exact in the limit σIE � σEI. Experimental results
and computational models indicate that the sum of these two lengths is small, of order 100
µm (Destexhe et al 1996, Golomb et al 1996), but there is as yet no direct measure of each
length separately. Rinzel et al (1998) showed that propagation can proceed smoothly with an
off-centre footprint shape in a parameter regime in which lurching occurs with an on-centre
footprint shape; in some parameter regime, the wave can lurch in one direction and propagate
smoothly in the other direction. Here we show more generally that the parameter regime in
which lurching or smooth propagation occurs depends on the footprint shape. The different
types of propagation in the two directions are an indication of bistability in that system, as we
find with a square footprint shape.

In Terman et al (2000) a conductance-based model related to that in Rinzel et al (1998) is
analysed using singular perturbation methods. The existence of smooth and lurching waves is
established by rewriting the integro-differential equations as a boundary-value problem. Since
the footprint used in this work is the ‘square’ footprint, the resulting equation is defined on a
finite spatial interval and can be numerically solved using AUTO (Doedel 1981). Formulae for
the velocity of the waves are given as functions of the synaptic strength and the time constants
of the synapses. The velocity does not depend so strongly on the synaptic strength as in the
present model, but this is probably due to the limited range of strengths studied in Terman et al
(2000). The strongest effect on the wave velocity comes from a parameter which governs the
effective delay (related to our parameter τd ). Since there is no a priori assumption that a single
spike is emitted, a variety of other types of waves are described in Terman et al (2000), and
the behaviour of the medium after the wave has passed is also described.

Pulse propagation in networks of integrate-and-fire-type neurons has also been studied by
Fohlmeister et al (1995), Horn and Opher (1997), and Kistler et al (1998). The application of
the Volterra formulation (equation (10)) of the integrate-and-fire model for pulse propagation
in locally coupled networks was introduced also by Kistler et al (1998). This formalism
resembles the spike response model of Gerstner and colleagues (Gerstner 1995, Gerstner et al
1996, Kistler et al 1997).

4.3. Consequences for experimental preparations

Our model constitutes a framework for comparing and explaining the velocities and types of
pulses and waves in various tissues, whose dynamics can be reduced to that of equation (2),
(3). The main reason that thalamic spindle-like waves propagate much more slowly than
paroxysmal discharges in the neocortex, hippocampus, and piriform cortex is that the effective
delay in the thalamic network is much longer (∼100 ms in comparison to ∼2 ms in the cortex).
When inhibition is mediated by GABAB inhibition only, the time needed for a TC neuron to
rebound from hyperpolarization is larger in comparison to the case when GABAA inhibition is
intact; the number of Na+ action potentials within a burst is more prolonged (Bal et al 1995a, b),
which may result in a stronger effective gsyn. The combined effect is that the velocity is reduced
with GABAA blockade (Destexhe et al 1996, Golomb et al 1996, Kim et al 1995).

Paroxysmal discharges propagate in slices of neocortical layer IV with a velocity which is
about an order of magnitude smaller than the propagation velocity in cortical slices (Fleidervish
et al 1998). The slow velocity is partly explained by the fact that these discharges are mediated
by slow NMDA receptors (larger τ1 and τ2; see equations (4), (18), (25)) but assuming that the
footprint length in layer IV is small in comparison to that in layer V, which mediates mostly
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the propagation in coronal slices (Telfeian and Connors 1998), is also necessary to explain the
slow velocity. Measurements of the critical velocity νc, together with our theoretical model,
should be carried out in order to estimate the footprint length in layer IV networks.
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Appendix A. Stability of the lower branch

Here, following the ideas of Bressloff (2000), we prove that the branch of solutions with slow
velocity are unstable. Recall that the velocity satisfies the implicit equation (equation (15))

VT

gsyn
=

∫ ∞

0
w(x ′ + ντd)G(x

′/ν) dx ′. (A.1)

We differentiate this implicitly to get dν/dgsyn:

− VT

g2
syn

dgsyn

dν
=

∫ ∞

0
dx ′

[
τdw

′(x ′ + ντd)G(x
′/ν) − x ′

ν2
w(x ′ + ντd)G

′(x ′/ν)
]
. (A.2)

Using the fact that G(0) = 0, an integration by parts of the first term in the integral yields

− VT

g2
syn

dgsyn

dν
=

∫ ∞

0
dx ′

[
−τd

ν
w(x ′ + ντd)G

′(x ′/ν) − x ′

ν2
w(x ′ + ντd)G

′(x ′/ν)
]
. (A.3)

Thus, we have the following result:

VT

g2
syn

dgsyn

dν
= 1

ν2

∫ ∞

0
dx ′ (x ′ + ντd)w(x

′ + ντd)G
′(x ′/ν). (A.4)

This means that on the slow branch (where dν/dgsyn < 0 and therefore dgsyn/dν < 0), the
integral is negative.

The stability equation (equation (17)) is

0 = H(λ) ≡
∫ ∞

0
dx ′ w(x ′ + τdν)G

′
(
x ′

ν

) [
1 − e−λ(x ′+τdν)

]
. (A.5)

Clearly H(0) = 0 (corresponding to translation invariance). Differentiating this with respect
to λ and evaluating at λ = 0 yields

dH

dλ
(0) =

∫ ∞

0
dx ′ w(x ′ + τdν)G

′
(
x ′

ν

)
(x ′ + ντd) (A.6)

and from (A.4), we see that

dH

dλ
(0) = ν2VT

g2
syn

dgsyn

dν
. (A.7)

Thus, on the slow branch, dH/dλ(0) < 0. Thus, for λ real and close to zero, H(λ) < 0. Now,
clearly,

H(∞) =
∫ ∞

0
dx ′ w(x ′ + ντd)G

′
(
x ′

ν

)
. (A.8)
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Suppose that w(x) is differentiable. Then we can integrate the above by parts, obtaining

H(∞) = −ν

∫ ∞

0
dx ′ w′(x ′ + ντd)G

(
x ′

ν

)
. (A.9)

If w(x) is monotonically decreasing and G(t) � 0, then we see that H(∞) > 0. Since
H(λ) < 0 for λ small and H(λ) > 0 for sufficiently large λ, we conclude that there must be
at least one positive real root λ0 of H(λ) and therefore the slow (lower) branch is unstable.
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