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Abstract

This paper extends some of the previous work on synaptically generated traveling waves
from one dimension to two dimensions. Numerical simulations of networks of the so-called
theta neurons were used for exploration of the existence, stability and the nature of these waves.
The symmetric nature of the traveling waves was justi"ed and a numerical scheme for
evaluating the velocity of the traveling waves was constructed. Adding adaptation in the
network and imposing special initial conditions gave rise to spiral waves. Moreover, adding
delays allowed the formation of the traveling lurching waves. Finally, direction for future work
is suggested. � 2001 Published by Elsevier Science B.V.

Keywords: Traveling waves; Spiral waves; Convolutions

1. Introduction

Traveling waves have received much attention lately due to recent experimental
and theoretical work [1,5,7,8]. Previous work explored the one-dimensional aspect of
the problem as the "rst step toward a better understanding of the underlying neural
circuitry. Traveling activity waves are encountered in vivo, either in neurological
disorders or in animals drugged with synaptic inhibitors [2,3]. However most of the
experimental data are taken from in vitro recordings from brain slices since the
experimental conditions are more easily controlled this way [2]. Here we use a re-
duced equation, the theta model, for the individual neurons.

0925-2312/01/$ - see front matter � 2001 Published by Elsevier Science B.V.
PII: S 0 9 2 5 - 2 3 1 2 ( 0 1 ) 0 0 3 9 0 - 3



Fig. 1. (a) The � neuron regimes. (b) Evolution of � vs time for solitary spike. (c) Evolution of synapse vs
time for solitary spike.

2. The model

The equation for the theta neuron is

d�
dt

"(1!cos �)#(1#cos �)(�#I(t)), (1)

where � is the phase variable, I(t) is the time dependent inputs and � is a bias
parameter that controls the excitability of the cell. If I#�(0, there is a stable rest

state. If I#�'0 the neuron "res at a rate �/�I#�. The di!erent regimes for the
�-neuron are represented in Fig. 1a. A solitary spike in the phase space is represented
in Fig. 1b. A solitary spike in the synapse space is represented in Fig. 1c. Assuming no
external current, the rest state is given by

�
����

"2�!cos���
1#�
1!��, �(0. (2)
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Fig. 2. 1D regular traveling wave: (a) multiple spikes, (b) single spike.

3. Regular traveling waves

We can generate a traveling wave if we allow each cell to send a signal to the
neighboring cells. The strength of the coupling is proportional to a gaussian function
of the distance between two cells. Depending on the excitability of the cell it is possible
to have one or more spikes for each cell. The equations for the individual neurons
become

��(x, t)

�t
"(1!cos �(x, t))#(1#cos �(x, t))(�#J�s), (3)

�s(x, t)

�t
"�e�������� �������(1!s)!

s(x, t)

�
, (4)

where J(x)"e��
�����, J�s"�dy J(x!y)s(y, t), the synapse obeys (4) (see [6,7]), �, �,

and � are constants speci"c to the synapse, and 	 is the space constant for the
coupling.

Fig. 2a shows a simulation of the one-dimensional traveling wave that contains
a line of 150 cells. The "rst cell (upper left corner) is given an initial depolarization.
Time is represented on the horizontal axis, the line of 150 cells is represented on the
vertical axis. The phase of the cells is coded in the grayscale and the spiking occurs
when the color of the cells becomes white (for illustration purposes the phase is
represented from !� to �). When a cell spikes its synapse increases and through
coupling this increase is propagated to the neighboring cells that start "ring too. As
a consequence a traveling wave is formed. Note that in this case the cells can "re more
than once.

We were interested to see to what extent the subsequent spiking of the neurons
in#uences the speed of the traveling wave. In order to do that we modi"ed Eq. (4) so
that the synapses are no longer updated after one spike. Due to this modi"cation the
neurons return to the rest state after the "rst spike. A solitary wave is presented in
Fig. 2b.
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Fig. 3. (a) Two-dimensional regular traveling wave, (b) initial region of excitation will evolve towards
a more symmetrical state, (c) the small perturbation is unstable.

For each individual neuron one can record the times when that neuron spikes. The
records for all neurons constitute the "ring map of the network. The "ring maps were
recorded for both cases. Suppressing the subsequent spikes has only a small e!ect on
the speed of the traveling wave. For the cases presented in Fig. 2a and b the relative
error was 2.6 percent.

Fig. 3a presents a snapshot in the dynamical evolution of the two-dimensional
network. A group in the center of the network, in the shape of a rectangle, is given an
initial depolarization. The wave starts propagating toward the edges and since the
cells may spike more than once, one notices the formation of subsequent traveling
waves. Also of interest is the fact that the stable traveling wave is symmetrical, even
though the initial conditions were slightly asymmetrical.

This can be understood easier from Fig. 3b. Here the zone that "res at t"0 is
a rectangle, similar to the one used as an initial region of excitation in Fig. 3a. The
neuron in the middle of the larger side, at point A, receives more input than the neuron
in the middle of the smaller side, at point B. Consequently, the neuron A is going to
"re faster than the neuron B. Therefore, the speed of the wave is going to be greater on
the larger side, on point A, than on the smaller side, on point B. Hence the wave will
evolve into to a more symmetrical shape and, eventually, the front will be circular.
Once this situation occurs, any small perturbation, as the one described in Fig. 3c, will
be unstable, based on similar arguments. The velocity of the wave on the perturbation
points will be smaller than on the other points and the perturbation will fall back to
the regular circular wavefront.

4. Asymptotic traveling speed

We use the observation from Section 3 that subsequent spikes do not contribute
much to the speed of the traveling wave. In this case the temporal evolution of the
synapse would have the shape of the one from Fig. 1c. This can be approximate by
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a function of form: �(t)"e��� �!e��� �, for t'0, and 0, for t(0, where we assume
that the neuron spiked at t"0. We can then rewrite Eq. (3), for the one-dimensional
case (the two-dimensional case is similar):

��(y, t)

�t
"(1!cos �)#(1#cos �)��#�dx J(y!x) �(t!t(y))�. (5)

We use the one-dimensional version of the previous equation for clarity, but the
two-dimensional case is similar. Using the same technique described in [5], we look
for traveling wave solutions of the previous equation, that is �(x, t)"�(vt!x).
Denoting vt!x,
, we obtain s(x, t)"�(t!x/v)"�(
/v). For this model the cells
cross the threshold at 
"0, so cells with positive 
 already "red and the ones with
negative 
 have not "red yet. The net input to cell at position x will be
J�s"��

	
d
�J(
!
�)�(
�/v), and the equation in � will be now

v
d�
d


"(1!cos �)#(1#cos �)��#�
�

	

d
�J(
!
�)�(
�/v)�. (6)

This equation has to satisfy the following conditions:

(i) �P�
����

, as 
P!R;
(ii) �(0)"�;
(iii) �P�

����
#2�, as 
PR;

There is no analytic solution to the boundary problem. However this can be solved
numerically using shooting procedures since the integral can be evaluated.

5. Spiral waves

Spiral-like and rotating waves have been observed in the visual cortex of the turtle
[9]. Because the strong excitability of the theta model, adaptation is added in order to
increase the refractory period and make it less excitable. This allows the propagation
of solitary pulses in one dimension and spiral waves in two dimensions. The spiral
wave presented in Fig. 4a rotates clockwise. After the initial transient state the spiral
wave continues to rotate around. This model can be used to suggest suitable initial
conditions for producing a spiral wave as long as the time constant of adaptation is
not too long. On the other hand, if adaptation is too short lasting then synaptic
re-excitation occurs through the mechanism of Fig. 3a, also destroying the spiral. The
modi"ed equations plus the equation for the adaptation z are

��
�t

"(1!cos �)#(1#cos �)(�#J�s!g
�
z), (7)

�s

�t
"�e�������� ��(1!s)!

s

�
, (8)

�z

�t
"�

�
e��� ������ ��(1!z)!

z

�
�

. (9)
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Fig. 4. (a) Spiral wave, (b) 1D section of the 2D lurching wave.

6. Lurching waves

Adding delays to the propagation of the signal from one cell to its neighboring cells
may lead to the formation of lurching waves by choosing the appropriate delay times
[4,8]. The characteristic of the lurching waves is the existence of segregated regions
that "re almost simultaneously. The evolution of a symmetrical 2D lurching wave is
presented in a 1D section taken along the central horizontal line of the 2D network
(Fig. 4b). The middle region belongs to the original excited region. The equations for
the individual neurons are now

��
�t

"(1!cos �)#(1#cos �)(�#J�s!g
�
z), (10)

�s

�t
"�e�������� �������	
��(1!s)!

s

�
, (11)

�z

�t
"�

�
e��� ������ ��(1!z)!

z

�
�

. (12)

7. Proposed future work

Using the numerical scheme from (6) one can "nd the velocity of the traveling
front, but this is not the only feature of interest. We would like to know how
big the initial region of excitation should be to evoke a wave and how much time it
would take the process to `ignitea. For the lurching wave the interesting features that
we would like to be able to compute are the average speed of the front and the
lurching length.
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