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NOISY OSCILLATORS

Synchronous oscillations occur throughout the central nervous system. Record-
ings of population activity such as the electorencephalogram (EEG) and local
field potential (LFP) often show a strong peak in the power spectrum in certain
frequencies. This synchronous activity is sometimes observed across multiple
recording sites and over distant brain areas. While local circuitry in cortex is
ideal for the production of local rhythms, the mechanisms for synchronization
across different regions is more complex. Furthermore, the rhythms observed in
real biological networks are not perfect oscillations. Instead, correlations between
cells are often weak and the width of peaks in the power spectrum can also be
quite broad. There are many reasons for this imperfect synchronization. Among
them are heterogenity in properties of individual neurons, heterogenities in the
connectivity between cells and their inputs, and finally, intrinsic noise (due, e.g.
to channel fluctuations as well as the aforementioned heterogenities). The goal of
this chapter is to analyze the role of noise in synchronizing and desynchronizing
coupled oscillators using a particularly simple class of model oscillators.

There is a long history of the study of noise in oscillators, going back to the
work of Stratonovich (31; 32) where the interest was on how noise could disrupt
oscillatory radio circuits. Our focus in this chapter concerns how noise affects
neural oscillators, both in isolation and when coupled to each other. Further-
more, I will mainly consider the behavior when the noise and coupling are small
and the oscillators are nearly identical. This allows one to significantly reduce
the dimensionality of the problem and treat each oscillator as a single variable
coding its phase. In other chapters of this book (notably Longtin), the effects of
larger noise will be studied on systems which may not even intrinsically oscillate
(coherence resonance).

The overall organization of this chapter is as follows. First we consider the
general question of perturbed oscillators and introduce the phase resetting curve.
We then look at how correlated noise can serve as a synchronizing signal for
uncoupled oscillators. We study how noise can desynchronize coupled oscillators.
We first study a pair and then a large network of globally coupled oscillators using
population density methods.

1.1 The phase resetting curve & weak perturbations.

1.1.1 Preliminaries.

Many authors (particularly in physics) define an oscillator to be any dynami-
cal system which makes repeated (although not necessarily predictable) transits
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through some local reagion in phase space. For example, chaotic systems are often
called oscillators. In this chapter, we confine our attention to systems in which
there is an underlying attracting limit cycle, X0(t) such that X0(t+T ) = X0(t).
We suppose that this satisfies an ordinary differential equation:

dX

dt
= F (X(t)) (1.1)

All autonomously generated limit cycles have an arbitrary phase associated with
them. Thus, let us define the phase of the limit cycle to be tmodulo T , with t = 0
defined as some identifiable point on the cycle. Since our main examples come
from neuroscience, the 0 phase, is often defined as the time of the spike. Thus a
rhythmically firing neuron produces spikes at multiples of T . Now, suppose that
we add to this a possibly noisy, time dependent perturbation, which is “weak” in
the sense that it does not destroy the overall shape of the limit cycle. Formally,
the limit cycle attractor is a closed orbit in phase space and there is a local
tubular neighborhood of the cycle in which all points of this neighborhood are
attracted to the limit cycle with a well-defined asymptotic phase. The perturba-
tion should be small enough so as not to leave this neighborhood. In practice,
it can be quite large. Since each point in the neighborhood has a well-defined
phase, there are curves called isochrons which parametrize the phase of every
point on the limit cycle. Figure 1.1A shows a neighborhood (dashed ellipses)
around a limit cycle with the zero phase, θ = 0 defined to be the maximum
in the horizontal direction. Phase increases at a constant rate in the counter-
clockwise direction. The curve passing through θ = 0 is the 0-phase isochron.
Any points on this curve will asymptotically approach the unshifted oscillator.
Consider a brief (instantaneous) stimulus in the horizontal direction occurring at
phase φ. The perturbation will cause the dynamics to leave the limit cycle, but,
if it is sufficiently small, it will remain in a neighborhood where the asymptotic
phase is defined. Figure 1.1A shows that the perturbation moves the limit cycle
from its current phase, φ to a new phase, ˆphi. The mapping from φ to φ̂ is called
the phase transition curve (PTC). The net change in phase is the phase resetting

curve (PRC), ∆(φ) := ˆphi−φ. Note that in this example, the change in phase is
negative and the time of the next maximum will be delayed. An alternate way
to look at the PRC is through the spike (or event) time. Figure 1.1B shows how
the PRC is constructed in this manner. The perturbation is given at phase φ
producing the next spike/event at a time T̂ . The PRC is then, ∆(φ) := T − T̂ .
As above, in this example, the next spike is delayed so PRC at this value of
phase is negative. I should remark that the PRC is often defined in terms of a
phase between 0 and 1 or 0 and 2π. In this case, one only needs to divide by the
period T and multiply by 2π. I prefer to work using the real time of spike, but
it doesn’t matter.

In the above geometric example, the perturbation was a horizontal kick;
of course, there could also be a vertical kick which would give a PRC in the
y−direction. If the kicks are small, then the effects add linearly, so that we can
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Fig. 1.1. (A) Definition of the phase of an oscillator. Isochrons for 0, ˆphi are
shown; (B) The phase resetting curve.

regard the actual PRC as a vector quantity corresponding to small perturba-
tions in each of the n−directions of an n−dimensional dynamical system. If we
parametrize the jth component of the PRC by the amplitude of the perturbation,
aj , where aj has the dimensions of the given quantity, e.g. voltage for membrane
deflections or millimolar for, say, calcium perturbations, then we can define:

Zj(t) = lim
aj→0

∆j(t, aj)

aj

(1.2)

which is called the adjoint for the limit cycle; it is also called the infinitesimal
PRC. The adjoint is the unique periodic solution to:

dZ

dt
= −DXF (X0(t))

TZ(t) (1.3)

such that Z(t)TX ′

0(t) = 1. (Here Z(t) := (Z1(t), . . . , Zn(t)).) Z(t) can also be
defined geometrically. In figure 1.1A, every point in the dashed region can be
assigned an asymptotic phase; let Q(Y ) be the asymptotic phase of any point
Y in the dashed region. Then, Z(t) = ∇XQ(X0(t)); that is, Z is the gradient
of the asymptotic phase with respect to the vector field evaluated along the
limit cycle. This geometric definition is quite intuitive and matches precisely
with equation (1.2), when the reader recalls the definition of the derivative. The
advantage of equation (1.3) is that it enables us to calculate Z(t) numerically by
solving a linear ODE. Experimentalists measure the PRC in the direct manner
illustrated in figure 1.1B; by delivering brief perturbations and measuring the
phase shift. As we will see in the next sections, the PRC is to limit cycles what
the linearization is to fixed points and tells us how the timimg of spikes is altered
by perturbations.

We close this section with a short discussion on PRCs since they are so
important. Figure 1.2 shows some PRCs from a variety of CNS neurons. In each
case the zero phase corresponds to the time of the spike. One property which is
quite common among neurons is that the PRC vanishes at 0, T corresponding to
the times of the spikes. Another aspect of PRCs is that for some cells they are
strictly non-negative while others have a negative region which always occurs
right after the spike. Several authors have noted that these shapes can be loosely
matched to different bifurcations. Specifically, the PRC near a saddle-node on
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Fig. 1.2. PRCs from different neurons (A) Reyes, 2005, somatosenory cortex in
rat (B) Tateno et al (2007); (C) Galan et al (2005).

a limit cycle (SNIC) (the so-called theta model or quadratic integrate and fire
model) has the form ∆(t) = K(1 − cos 2πt/T ) while near a Hopf bifurcation,
the PRC has the form ∆(t) = K sin 2πt/T. Thus, in many of the examples
we discuss, we will use different variants of these PRCs. In particular, a nice
parameterization has the form

∆(t) =
sin(t+ α) − sin(α)
√

π(3 − 2 cosα)
(1.4)

which has an L2 norm of 1. By varying α, we can smoothly transition from the
PRC assoicated with the Hopf to that associated with the SNIC.

1.1.2 Perturbations.

We now add a small perturbation to equation (1.1):

dX

dt
= F (X(t)) + ǫG(X(t), t). (1.5)

Here 0 < ǫ≪ 1 is a small parameter. Since the perturbation is small, we expect
that solutions will stay close to the stable limit cycle attractor and thus there
is a well-defined notion of phase. If we introduce the phase variable, θ(t) and
write X(t) = X0(θ(t)) + Y (t) where Y (t) represents coordinates orthogonal to
the limit cycle, then

X ′

0(θ(t))
dθ

dt
+
dY

dt
= F (X0(θ(t))) +DXF (X̂(t))Y (t) + ǫG(X0(θ) + Y (t), t)
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where X̂ is close to X0 and X. If we multiply this equation by Z(t)T , we obtain

dθ

dt
= 1 + Z(t)T [−Y ′(t) +DXF (X̂(t))Y (t)] + ǫZ(t)TG(X0(t) + Y (t), t).

(Note that we have used the fact that Z(t)TX0(t)
′ = 1.) This is an exact equation

for the evolution of the phase; it is not an approximation. However, it still involves
Y (t) and X̂(t) which are unknown. Note also, that we have not used the smallness
of ǫ except to assume that the perturbation remains in a region for which phase is
defined. If ǫ is small, Y (t), too, will be of order ǫ and X̂ will be close toX0.We will
exploit this to obtain an approximate equation for the phase. The linear operator,
L(t)Y := −Y ′ + DXF (X0(t))Y has a one dimensional nullspace spanned by
X ′

0(t) and its adjoint (under the usual inner product for periodic systems) has
a nullspace spanned by Z(t). Thus, with the approximation X̂ ≈ X ≈ X0, we
obtain the self-contained phase model:

dθ

dt
= 1 + ǫZ(θ)TG(X0(θ), t). (1.6)

This is the main equation of this chapter and we will use it to analyze the effects
of noise and coupling of oscillators. We note that in the case of neuronal models,
the perturbations are typically only through the somatic membrane potential so
that the all but one of the components ofG are zero and we can more conveniently
write

θ′ = 1 + ǫ∆(θ)g(θ, t).

Remarks.

1. If the perturbation is a white noise, then we have to be a bit more careful
and make sure we interpret this process correctly since the normal changes
of variables that we take need to be adjusted in accordance to the rules
of stochastic calculus. Thus, if the perturbation is white noise, then the
correct stochastic differential equation is

dθ = [1 + ǫ2∆′(θ)∆(θ)/2]dt + ǫ∆(θ)dW (t) (1.7)

where dW (t) is a zero mean unit variance Gaussian.

2. The perturbations incorporated in G in equation (1.5) could be the effects
of other oscillators to which our example oscillator is coupled via, e.g.,
synapses or gap junctions. We will consider this in later sections.

1.1.3 Statistics.

In this section, we derive equations for the mean and variance of the interspike
interval for noisy oscillators as well as show that the variance of the phase-
resetting curve is phase-dependent. We first consider the nonwhite case for which
the perturbation is zero mean:

θ′ = 1 + ǫ∆(θ)ξ(t).
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Here ξ(t) is the “noise.” We look for a solution of the form: θ(t) = t + ǫθ1(t) +
ǫ2θ2(t) + . . . and obtain:

θ1(t) =

∫ t

0

∆(s)ξ(s) ds.

Similarly,

θ2(t) =

∫ t

0

∫ s

0

∆′(s)∆(s′)ξ(s)ξ(s′) ds ds′.

The unperturbed period is T , so that we want to find the value of t∗ such that
θ(t∗) = T. Thus, we expect t∗ = T + ǫτ1 + ǫ2τ2 + . . ., which results in

τ1 = −
∫ T

0

∆(s)ξ(s) ds

and

τ2 = −∆(T )ξ(T )τ1 −
∫ T

0

∫ s

0

∆′(s)∆(s′)ξ(s)ξ(s′) ds ds′.

Let C(t) := 〈ξ(0)ξ(t)〉 be the autocorrelation function for the noisy perturbation
(which we assume is stationary with zero mean. We see that the expected period
of the oscillation is just

T̄ = T + ǫ〈τ1〉 + ǫ2〈τ2〉.
To order ǫ, there is no effect of the signal since the mean of τ1 is zero. However,
there are second order effects:

〈τ2〉 = ∆(T )

∫ T

0

∆(s)C(s− T ) ds−
∫ T

0

∫ s

0

∆′(s)∆(s′)C(s− s′) ds ds′. (1.8)

The variance (to order ǫ2) is

var = ǫ2〈τ2
1 〉 = ǫ2

∫ T

0

∫ T

0

∆(s)∆(s′)C(s− s′) ds ds′. (1.9)

For a simple low-pass filtered white noise process (Ornstein-Uhlenbeck), C(t) =
exp(−|t|/τ)/2 so that these integrals can be readily evaluated for simple PRCs
such as (1.4).

Figure 1.3 shows some numerical as well as analytical results on the effects of
the noise color on the statistics of weakly perturbed oscillators. As noted above,
there is a weak effect on the mean period of the oscillator for colored noise
as seen in figure 1.3A that is well-accounted for by the theoretical expression
in equation (1.8). For a purely sinusoidal PRC, there is a “resonance” in the
variance as a function of the noise color. That is, the variance has a maximum
when the temporal correlations are proportional to the period of the oscillator
as seen by the width of the histograms in figure 1.3B. Using equation (1.9),
we can make this more explicit by evaluating the double integrals. Figure 1.3C
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clearly shows a resonance in the variance (here we have scaled out ǫ2) for PRCs
that are nearly sinusoidal (cf equation (1.4) with α small). However as the PRC
becomes more like the SNIC case, α near to π/2, this resonance is lost and
the variance increases monotonically with the correlation time, τ. We remark
that the PRC for the integrate and fire neuron is strictly positive and shows the
same monotonic behavior of variance with respect to noise color. The key feature
shared by both the SNIC and the integrate-and-fire PRCs is the large 0−mode
Fourier component. The pure sinusoidal PRC lacks this component.

The case of white noise is more straightforward and does not require pertur-
bation theory since we can write explicit equations for the mean first passage
time, T1 and second moment, T2.:

−1 = [1 + ǫ2∆′(t)∆(t)]T ′

1 + (ǫ2/2)∆(t)2T ′′

1 (1.10)

−2T1 = [1 + ǫ2∆′(t)∆(t)/2]T ′

2 + (ǫ2/2)∆(t)2T ′′

2 . (1.11)

Here we assume that ∆(t) is 1-periodic. These equations have to be solved with
the appropriate boundary conditions, which are found by setting t = 0 and
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exploiting the fact that ∆(0) = 0, thus, T ′

1(0) = −1, T1(1) = 0 and T ′

2(0) =
−2T1(0), T2(1) = 0. The mean period is T1(0) and the variance is T2(0)−T1(0)2.
Explicit expressions for these quantities could be found (see Longtin & Lindner),
but they involve integrals that are not readily evaluated. Instead, we can solve the
boundary value problem by shooting or some other technique and compute how
the variance depends on shape of the PRC. Figure 1.3D shows this dependence
for ǫ = 0.2. The variance remains less than would be the case for a constant
PRC (var=ǫ2 = 0.04) and is maximal when α = π/2 corresponding to the SNIC
bifurcation.

As a last look at statistics, we can study the effect of noise on the actual
calculation of the phase resetting curve. In particular, we consider the following
simple model:

dθ

dt
= 1 + [ǫξ(t) + βδ(t− φ)]∆(θ) (1.12)

which represents the noise ξ(t) along with a Dirac delta function perturbation
for the PRC. Here φ is the time of the perturbation and lies between 0 and T ,
the period. The net gain in phase given θ(0) = 0 is found by evaluating θ(T ).
In absence of any stimuli (noise or experimental perturbations), θ(T ) = T. For
a completely noise-free system, θ(T ) = T + β∆(φ) so that the gain (or loss) in
phase is just θ(T )−T = β∆(φ) as it should be; the PRC of the noise free system
should be proportional to ∆(τ). With noise, θ(T ) is a random variable. Using
perturbation theory, it is possible to show that the mean value of θ(T ) is the
same as the noise-free case, but that the variance is phase-dependent. In fact,
we have shown (unpublished work) that for white noise:

var(φ) = ǫ2

(

[1 + β∆′(φ)]2
∫ φ

0

∆2(s) ds+

∫ T

φ

∆2(s+ β∆(φ)) ds

)

. (1.13)

That is, the variance is phase-dependent. Figure 1.4 shows the phase-dependence
of the PRC for two different phase models. Solid lines are equation (1.13) and
points are from Monte Carlo simulations of 1000 repetitions of an impulse at
each phase point. Phase-dependence of the PRC was shown experimentally in
several papers (netoff, ,....) and Ermentrout and Saunders (2005) showed how
this phase-dependence had interesting consequences for the synchronization of
coupled oscillators.

In conclusion, by using PRC theory and perturbation theory, we can study
how various types of noise affect the regularity of spiking of neurons and how the
properties of the PRC and the noise factor into these effects. Furthermore, we
have provided an explanation for phase-dependence in the variance of the PRC.

1.2 Noise induced synchrony.

Suppose that we have a population of nearly identical oscillators which are un-
coupled but receiving some kind of common input. A well-known example would
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be independent oscillators receiving common periodic input. E.g., most living or-
ganisms contain in internal clock with a period of about 24 hours which is locked
to the light-dark cycle as the earth circles the sun. Thus, even though these os-
cillators are not directly coupled, the periodic drive they receive is sufficient for
them to partially synchronize. Of course, the frequency of the periodic drive
must match that of the individual oscillators in order for this to work. What is
surprising is that the common signal received by the uncoupled oscillators need
not be periodic.

Pikovsky and his collaborators were among the first to describe models and
theory for the synchronization of dynamical systems to common noisy input.
These authors look not only at oscillators but also at chaotic systems and other
systems with complex dynamics. They have also shown that for strong noise,
synchrony is disrupted. Jensen studied an abstract phase model for oscillators
receiving a common signal and Ritt (2003) analyzed synchronization of a specific
model (the theta model) to white noise. In this section, we will use phase response
curves once again to explore synchrony when they are uncoupled but receive a
common noisy input. The methods described here are close to those of Teramae
and Tanaka .

Figure 1.5 shows an example of a synchronization due to a common input for
two Hodgkin-Huxley oscillators. The cells are identical and start with a phase
difference of half a cycle. They are driven by weak white noise and after several
cycles, the phase-difference disappears and the oscillators are completely synchro-
nized. This phenomena is not restricted to models; Galan et al demonstrated that
filtered white noise stimuli could synchronize mitral cells in the olfactory bulb.
This mechanism is called the Moran effect in ecology and has also been suggested
as a means to synchronize intracellular signalling oscillations. The goal in this
section is to use phase models to study how noise can synchronize uncoupled
oscillators. The mechanism for this type of synchronization is closely related to
the issue of spike time reliability as first discussed by Bryant and Segundo and
popularized by Mainen and Sejnowski. To see the connection, suppose that we
apply a constant current to a neuron to induce it to fire repetitively and mark
the times of the spike. We repeat this experiment many times and create a his-
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shown.

togram of the spike times. In a completely noise-free environment, the spikes will
line up perfectly. However, if there is noise and it is uncorrelated from trial to
trial, then as time progresses, spikes will occur less and less reliably. In contrast,
suppose that in addition to the uncorrelated noise, there is a fast signal (e.g.
correlated noise) common to each trial. With this background signal, both of the
above experimental groups found that the spike times were considerably more
reliable from trial to trial. Figure 1.6 shows an illustration of this effect with the
Hodgkin-Huxley equations when there is just extrinsic noise and then when there
is an additional signal on top. The histogram of the spike times is much thinner
around later spikes when there is a stimulus. The mechanism for reliability and
for noise synchronization is the same. If the signal is such that the dynamics is
an attractive, then initial data nearby will fall into the attractor induced by this
stochastic force. As it is attractive, it is also robust against small enough pertur-
bations, such as extrinsic noise. Brette analyzed these spike-time attractors for
the integrate-and-fire model; Troyer also analyzes these attractors in a context
similar to that described here. We will formalize the notion of stability in the
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next several pages and introduce the so-called Lyapunov exponent.

1.2.1 White noise.

Pikovsky (1983) was among the first to analyze synchronization to noise when he
studied Poisson inputs. More recently, this work has been extended to white noise
and to more general synchronization issues. We will follow Teramae and Tanaka
for the white noise case and sketch the analysis for the Poisson case as well. We
start with a single oscillator driven by white noise and reduced to a phase model.
As our motive is to study neuronal oscillations, we will confine ourselves to the
case when white noise appears only in the voltage equation. For any regular
perturbations, equation (1.6) is valid, however, when the noise is white, we have
to be careful and make the correct change of variables using the Ito stochastic
calculus, so that we start with equation (1.7). Solutions to this equation have an
invariant density found by solving the steady state Fokker-Planck equation:

0 = [(1 +D∆′(x)∆(x))ρ(x) +D(∆(x)2ρ(x))′]′

where D = ǫ2/2 and ρ(x) is the invariant density; that is the probability that

θ ∈ [a, b] is
∫ b

a
ρ(x)dx. This differential equation must be solved subject to ρ(x)

is periodic and
∫

0Tρ(x) dx = 1, the normalization. Solutions can be found by
integrating or, since D is small, using perturbation theory. For our purposes,
the invariant density is close to being uniform when D is small, so that we will
approximate ρ(x) by 1/T. Consider two oscillators driven with the same white
noise signal:

dθ1 = [1 +D∆′(θ1)∆(θ1)]dt+ ǫ∆(θ1)dW (1.14)

dθ′2 = [1 +D∆′(θ2)∆(θ2)]dt+ ǫ∆(θ2)dW.

We are interested in whether or not they will synchronize. That is, we would like
to assess the stability of the state θ2 = θ1. We let θ2 − θ1 = y(t) and thus study
the variational equation which has the form
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dy = [D∆′(θ)∆(θ)]′ydt+ ǫ∆′(θ)ydW.

Here θ(t) satisfies equation (1.7). This is a linear SDE in y(t) and we would like
to solve it. Let z(t) = log y(t) be a change of variables. Then appealing to Ito’s
formula, we find that

dz = D[(Delta′(θ)∆(θ))′ − ∆′(θ)2]dt+ ∆′(θ)dW.

This is now a standard stochastic equation and we can integrate it to obtain the
mean drift in z(t) :

λ := D lim
t→∞

∫ t

0

[(Delta′(θ(s))∆(θ(s)))′ − ∆′(θ(s))2] ds.

This is the mean rate of growth of y(t) so that if λ < 0, then y(t) will decay and
synchrony will be stable. The quantity, λ is called the Lyapunov exponent and
since our system is ergodic, we obtain a simple expression:

λ = D

∫ T

0

[(Delta′(x)∆(x))′ − ∆′(x)2]ρ(x) dx.

Using the approximation that ρ(x) ≈ 1/T , we find

λ = −D 1

T

∫ T

0

∆′(x)2 dx. (1.15)

This is the main result on the stability of synchrony with identical white noise
stimuli. It was derived by Teramae and Tanaka for the white noise case. What it
tells us is that the details of the oscillator are irrelevant, the Lyapunov exponent
is always negative for weakly forced oscillators.

As we begun this section out by discussing reliability, it is interesting to relate
reliability to the magnitude of the Lyapunov exponent. In (Galan -reliable) we
show that the reliability (measured as the ratio of the cross correlation of the
output and the auto-correlation) is

R =
|λ|

|λ| + c

where c ≥ 0 is the magnitude of the extrinsic noise which is uncorrelated between
the neurons. Note that if c = 0, then reliability is 1, which is perfect. For small λ,
reliability decreases which is why we generally want to maximize the magnitude
of λ.

1.2.2 Other noise.

Pikovsky and others have also studied the case of Poisson inputs. Let θn denote
the phase of an oscillator right before the nth impulse where the train of impulses
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obeys some type of distribution. Assume each has an amplitude ǫ and we obatin
a model for the phase:

θn+1 = θn + In + ǫ∆(θn) mod T

where In is the time between impulses. As with the white noise case, it is pos-
sible to write an equation for the invariant density. Let Q(I) denote the density
function for the intervals, In modulo the period, T. (Thus, the support of Q is
the interval [0, T ).) Then the invariant density for the phase θ, ρ(x) satisfies the
linear integral equation:

ρ(x) =

∫ T

0

Q[x− y − ǫ∆(y)]ρ(y) dy.

(See eg Lasota & mackey, Ermentrout & Saunders, Nakao, etc.) In this case, the
Lyapunov exponent satisfies:

λP =

∫ T

0

log[1 + ǫ∆′(x)]ρ(x) dx.

For ǫ small, ρ(x) is nearly uniform and expanding in ǫ, we find the same expres-
sion for λP as for the white noise case.

We can use equation (1.6) for colored noise in order to study the stability of
synchrony. As in the rest of this section, the single oscillator satisfies

dθ

dt
= 1 + ǫ∆(θ)ξ(t)

where ξ(t) is a general process. The variational equation satisfies

dy

dt
= ǫ∆′(θ(t))ξ(t)y(t)

and the Lyapunov exponent is

λξ = ǫ lim
t→∞

1

t

∫ t

0

∆′(θ(s))ξ(s) ds.

Using perturbation theory, as above, θ(t) = t+ǫ
∫ t

0
∆(s)ξ(s) ds can be substituted

into the equation for λξ and obtain:

λξ = lim
t→∞

1

t

∫ t

0

∆′′(s)

∫ s

0

∆(s′)C(s− s′) ds′ ds (1.16)

where C(t) is once again the autocorrelation of the common noise. For low pass
filtered noise and ∆(t) as in equation (1.4), we obtain:

λξ = −ǫ2 1

2π(3 − 2 cosα)

τ

1 + τ2
.

This shows that the Lyapunov exponent shows “resonance” with respect to the
PRC shape. For this model, the minimum occurs when τ = 1. Figure 1.7A shows



14 Noisy oscillators

A B

Fig. 1.7. Reliability of real and model neurons (from Galan-reliab). (A) Reli-
ability is a nonmonotonic function of the correlation time of the signal for
both real (mitral and pyramidal neurons) and model neurons. (B) Reliability
increases monotonically with signal amplitude.

an experimental verification of the dependence of reliability on the correlation
time of the signal, ξ(t). Since reliability is a monotonic function of the Liapunov
exponent, this shows that the above calculations hold in realistic settings for
both real and model neurons. Reliability is also a monotonic function of the
noise amplitude for a given correlation time as can be seen from 1.7B.

1.2.3 Heterogeneity and extrinsic noise.

In figure 1.5, we showed that perfectly correlated noise produces a perfectly
synchronized state. How does this change in the presence of heterogenities or in
uncorrelated noise. Nakao et al consider the white noise problem when there is
a mixture of identical and uncorrelated noise. We can generalize that slightly to
study the case when there is additionally heterogeneity in the natural frequencies
of the oscillators. The generalization of equation (1.14) is

dθ1 = [1 − µ̂/2 + (ǫ2/2)∆′(θ1)∆(θ1)]dt+ ǫ∆(θ1)(
√
qdW +

√

1 − qdW1)

dθ′2 = [1 + µ̂/2 + (ǫ2/2)∆′(θ2)∆(θ2)]dt+ ǫ∆(θ2)(
√
qdW +

√

1 − qdW2).

where µ̂ is the difference in natural frequency and q is the fraction of shared
noise. When q = 1, µ̂ = 0, then the oscillators receive identical noise and have no
intrinsic differences, in short, equation (1.14). Nakao et al develop an equation
for the probability density function for the phase-difference, θ2 − θ1 for small ǫ
when µ̂ = 0. If we rescale µ̂ = ǫ2µ, then we can generalize their result and obtain
the following equation for the density of the phase differences:

[(1 − c
h(x)

h(0)
)ρ(x)]′ = K + µρ(x) (1.17)
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where, c = 2q/(1 + q) is the correlation,

h(x) :=

∫ T

0

∆(x + y)∆(y) dy

and K is an arbirary constant chosen so that ρ(x) is periodic. An almost identi-
cal equation was derived by Marella and Ermentrout (2008) for Poisson inputs.
Integrating this equation over one period and using the normalization and peri-
odicity, it is clear that K = −µ/T. When µ = 0, then the density of the phase
differences is just

ρ(x) =
N

1 − ch(x)/h(0)

with N a normalization constant so that the integral is 1. As c→ 1, this density
approaches a delta function. The definition of h(x) implies it is an even function
so that in general, the density is symmetric around 0 and has a peak at 0.
One could integrate (1.17) to get the general solution for different values of µ,
but the formulae are not particularly insightful. Instead, we simply solve the
resulting boundary value problem numerically. Figure 1.8 shows the effects of
the two kinds of heterogeneity on the phase difference between oscillators. For
c = 0 and weak noise, the density is flat. (Note, however, with stronger noise,
the density is not flat since the invariant phase-density deviates quite a bit from
uniform; see Moehlis et al 2008.) As c increases, the density becomes more and
more highly peaked. Marella and Ermentrout (2008) showed that the degree of
this sharpening depends a great deal on the shape of the PRC. However, the
general shape of the distribution and the general trends are identical. Nakao et
al showed more complex forms for the density when the noise in equation (1.5)
was not simply additive. Figure 1.8B fixes the correlation at 90% and varies µ
the difference in frequencies. For µ < 0, oscillator 1 is faster than oscillator 2
and the density of θ2−θ1 is skewed to the right as expected. For µ > 0, the skew
is opposite and oscillator 2 tends to lead oscillator 1. This is exactly what one
would expect and is similar for coupled oscillators (see below).

In conclusion, in this section, we have shown that noise can induce synchro-
nization between uncoupled oscillators when there are correlations. The rate and
degree of synchronization depends on the properties of the noise as well as the
amount of the correlation. Understanding of this process can be reduced to the
analysis of several integrals and the solutions to some linear boundary-value
problems.

1.3 Pairs of oscillators

In the remainder of this chapter, we review the effects of coupling between oscil-
lators. We start with weak coupling with noise and use this to discuss how noise
has mild effects on coupling.
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Fig. 1.8. The effect of heterogeneity on noise-induced synchrony. (A) Identical
oscillators (µ = 0) as the correlation, c varies. As the density is symmetrics,
only x ≤ 0.5 is shown. ∆(x) = sin 2πx. (B) c = 0.9 and the frequency
difference, µ between the oscillators varies.

1.3.1 Weak coupling.

As in the previous chapters, we begin with equation (1.6) which is the gen-
eral equation for the effects of perturbations on an oscillator. We now split the
perturbations into two parts, those that come from extrinsic noise and those
that arise from coupling to other oscillators. That is, we write G(X(t), t) =
Kj(Xj(t), Xk(t)) + Rj(Xj(t), t) where Xj(t) are the state variables for oscilla-
tors j = 1, 2 and Kj is the coupling and Rj is the noisy perturbation. Each
oscillator obeys exactly the same dynamics, equation (1.1), when ǫ = 0. While
we could do this more generally, it is simpler to split the perturbations into parts
dealing with coupling from the noisy parts. From the point of view of neural ap-
plications, this makes sense as well. Finally, we will assume the noise is white
and that the amplitude of the noise is such that the variance of the noise and
the strength of the coupling match. Thus, we take the coupling strength to be ǫ
and the noise strength to be

√
ǫσ, where σ = O(1), so that they match. We thus

obtain

dθj = [1 + ǫ(∆(θj)Cj(θj , θk) + σ2∆′(θj)/2)]dt+
√
ǫ∆(θj)dWj . (1.18)

The term, Cj represents the voltage component of the coupling, which will gen-
erally be some type of synaptic interaction between neurons either electrical or
chemical. I will not go through all the different cases and how the time courses
of synapses and their position as well as the shape of the PRC effect the way
neurons interact. This, in itself, is a topic for an entire book or at least a lengthy
chapter. Our main goal in this chapter is to see how noise affects the interac-
tions and not what the interactions themselves do. Furthermore, in this section,
all noise is uncorrelated. (However, the interactions between correlated noise
and coupling are fascinating and the subject of some current research.) We let
θj = t+ ψj be a change of variables and this leads to:

dψj = ǫ∆(t+ ψj)[Cj(t+ ψj , t+ ψk) + σ2∆′(t+ ψj)/2]dt+
√
ǫ∆(t+ ψj)dWj .
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We average this equation over t to obtain an effective coupling equation:

dψj = ǫHj(ψk − ψj)dt+
√
ǫ||∆||2dWj (1.19)

where

Hj(φ) :=
1

T

∫ T

0

∆(t)Cj(t, t+ φ) dt

and ||∆||2 is the L2−norm of the PRC. We take this to be 1 without loss of
generality. We can now drop the ǫ as we can rescale time. Finally, we let φ =
ψ2 − ψ1 = θ2 − θ1 and have now reduced the initially 2n−dimensional noisy
dynamical system to a single scalar stochastic differential equation:

dφ = [H2(−φ) −H1(φ)]dt + σdW (1.20)

where dW is a white noise process. (We use the fact that the difference between
two uncorrelated Gaussian processes is also Gaussian.) This Langevin equation
is readily solved and the stationary density function for the phase-difference,
ρ(φ) satsifies:

K = −[H2(−φ) −H1(φ)]ρ(φ) +
σ2

2
ρ′(φ)

where K is a constant chosen so the solutions are periodic and the density
function ρ has a unit integral. At this point, it is convenient to rewrite the drift
term. Suppose that the coupling between oscillators is identical (symmetric) and
that the only difference in the two oscillators is in their natural frequencies (as
in the previous section). We write

H2(−φ) −H1(φ) := −q(φ) + µ

where q(φ) is twice the odd part of the coupling function and µ is the difference
in natural frequencies.

For simplicity, we assume that the period is 1. Without noise, the dynamics
reduces to

dφ

dt
= −q(φ) + µ.

Since q is an odd periodic function, it always has zeros at φ = 0 and at φ = 1/2
corresponding to the synchronous and anti-phase solutions respectively. Thus,
when µ = 0, there are at least two phase-locked fixed points, synchrony and
anti-phase. If q′(0) > 0 then synchrony is stable and if q′(1/2) > 0, anti-phase
is stable. For small values of µ, the fixed points persist and are near 0 or 1/2.
However, any continuous periodic function is bounded, so that for sufficiently
large values of µ, there will be no fixed point and thus no phase-locked solutions.
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Fig. 1.9. Probability density function for the phase-difference between a pair
of oscillators when σ = 0.5 and q(φ) = sin 2πφ for different degrees of het-
erogeneity, µ.

The noise-free system no longer has a steady state. However, the phase difference
does have an invariant density:

ρ(φ) =
N

µ− q(φ)

where N is a normalization constant. Note that this is only valid when µ− q(φ)
has no zeros; otherwise the oscillators will phase-lock and the density is a sum
of Dirac delta functions.

If q(φ) is odd (as will be the case with symmetric coupling between identical
oscillators) and there are no frequency difference, µ = 0, then we can write down
a closed form solution for the probability distribution:

ρ(φ) = N exp[
−2Q(φ)

σ2

where Q(φ) =
∫ φ

0
q(s) ds. Since q is odd, Q is periodic. Here N is just a nor-

malization constant. Stable roots of q(φ) (that is, where q′(φ) > 0) correspond
to local maxima in density function and unstable roots correspond to local min-
ima. With heterogeneity, the peak of the density function is shifted as would be
expected from the noise-free case. That is, if oscillator 1 is faster than oscillator
2, then µ < 0 and the noise-free phase-locked value of φ is negative, thus, the
peak of the density function in the presence of noise is shifted to the left. Figure
1.9 shows how heterogeneity both moves the peak and makes the distribution
more uniform.



Pairs of oscillators 19

1.3.2 Correlations.

Neuroscientists cannot generally measure phase-differences between two coupled
neurons. However, they can measure the correlation between spike trains of neu-
rons. Pfeuty et al (2005) showed that there is a relationship between the spike
train cross correlogram and the density function. Suppose that each time θj(t)
crosses zero modulo the period, we will say that a spike has occurred. We break
continuous time into a discrete set of bins of width w and let Sj(t) be 1/w if
there is a spike the bin corresponding to t and zero otherwise. The normalized
cross correlation is

C(t2 − t1) :=
〈S1(t1)S2(t2)〉
〈S1(t)〉〈S2(t)〉 >

.

Here 〈S(t)〉 > is the average of S(t) Pfeuty et al show that as w get small,

C(τ) = ρ(τ).

Thus, there is simple relationship between the cross-correlation (to lowest order)
and the density function of the phase-difference.

1.3.3 Pulse coupling.

In the above parts of this section, we considered additive noise merged with
weak coupling of oscillators. However, in an earlier part of this chapter, we also
showed that the phase resetting curve is subject to uncertainty in the form of
phase-dependent noise. Thus, consider two neurons which are coupled via phase
resetting curves (in the sense of Goel and Ermentrout):

θ′j = ω +
∑

n

B(θj , zj)δ(t− tkn).

Here tkn are the times that oscillator k fires (crosses 0 modulo its period). B(θ, z)
is the phase resetting curve parametrized by a random variable, z taken from
some distribution. Recall from equation (1.13) that the PRC can have phase-
dependent variance, so this model might incorporate this variance. If we consider
two identical mutually coupled cells, the phase, φ of cell 2 at the moment cell 1
fires satisfies

φn+1 = G(G(φn, zn))

where G(x, z) = 1 − x − B(x, z) (see for example, Goel and Ermentrout or
Ermentrou and Saunders). Here we have assumed a period of 1 and a frequency
of 1.Let us write, B(x, z) = ǫ∆(x) + zR(x) so that there is possibly phase-
dependent noise, R and a deterministic coupling via the PRC, ǫ∆(x). As in
section 2.2, we can use the theory of stochastic maps to derive an equation for
the invariant density:

P (x) =

∫

∞

−∞

Q([x+ y + ǫ∆(y)]/R(y))

R(y)
P (y) dy, (1.21)

where Q(z) is the density of the variable z defined on the real line. We seek
solutions to this equation when P (x + 1) = P (x). Notice that we can wrap the
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line up as an bi-infinite sum over the unit interval using the periodicity of ∆(x),
but for the purposes of analysis, it is much easier to keep the infinite sum. If
R(x) = 1+ ǫr(x) and ǫ is small, it is possible to write a formula for the invariant
density, P (x) in a perturbation expansion in ǫ. For example, if r(x) = 0 and
∆(x) = b1 sin 2πx, then

P (x) ≈ 1 − ǫ2πb1
q1

1 − q1
cos 2πx

where qn =
∫

∞

−∞
Q(x) cos 2πx dx. The shape of P (x) is not surprising. If b1 > 0,

then there is a peak at x = 1/2, corresponding to antiphase oscillations while
for b1 < 0, the peak is at synchrony. Suppose that the noise amplitude is now
phase-dependent and suppose the coupling tends to push the oscillators toward
the antiphase solution (x = 1/2). Let R(x) be such that the variance is minimal
near x = 0, 1 and maximal near x = 1/2. Then, for strong enough noise, one
might expect that the antiphase state might become unstable. That is, even
though the deterministic dynamics push the oscillators toward antiphase, the
PRC is so noisy near that state that the oscillators cannot remain there. Figure
1.10 shows an example of this. We take ∆(x) = b sin 2πx andR(x) = 1+c cos 2πx,
with b = 0.05 so that the deterministic system has a stable antiphase solutions
and c = −0.4 so that the PRC is noisiest at x = 1/2. For low values of noise,
σ = 0.1, Monte-Carlo simulations show a peak at x = 1/2 as predicted from the
deterministic dynamics. However, for σ = 0.35, the histogram of phases shows
peaks at 0, 1 corresponding to synchrony. Using the ǫ small approximation for
the invariant density, we find that

P (x) = 1 − 2πǫ
q1

1 − q1
(b + πσ2c) cos 2πx.

Whether the peak is at 1/2 or 0, 1 dependes only on the sign of b+ πσ2c. Thus,
there will be a change in the peak if b, c have opposite signs and the noise is large
enough. For our case, the critical value of σ is about 0.25. Figure 1.10B shows
the stationary solutiions to equation (1.21) as a function of σ for ǫ = 1 via a
color code. The switch from a peak at x = 1/2 to x = 0, 1 is evident.

In conclusion, we have shown that for pulse coupling, noise can have a qual-
itative effect on the steady state phase distribution if there is phase-dependent
variance in the PRC. For weak coupling, uncorrelated noise does not have more
than a quantitative effect on the behavior of coupled pairs of oscillators. As ex-
pected, the phase-differences between the oscillators stay close to the noise-free
case in the sense that stable locked states correspond to peaks in the probability
density. What is interesting is that the peaks remain in the presence of hetero-
geneities for case in which the deterministic dynamics do not have phase-locked
solutions. (E.g., figure 1.9, µ = −4.) Interactions between correlated noise and
coupling is the subject of some of our recent research and should prove to be
interesting.
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Fig. 1.10. Noise-induced bifurcation in a system with phase-dependent vari-
ance. ∆(x) = b sin 2πx, R(x) = (1+c cos 2πx) with b = 0.05, c = −0.25, ǫ = 1
for different values of σ. (A) Monte carlo simulation of phase equations with
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1.4 Networks of oscillators.

We close this chapter with a sketch of the kinds of analysis that can be done
with large systems of coupled oscillators in the presence of noise and possibly het-
erogenities. Kuramoto (1989) and later Strogatz, Crawford, and more recently,
Chow and Buice (2007) have studied the behavior of globally coupled oscillators
in the presence of heterogenieties and noise. Buice and Chow consider finite size
effects, while the others are interested in the infinite size limit. As the latter case
is considerable easier to understand and analyze, we only consider this. A very
extensive review of the analysis of the Kuramoto model and its generalizations
can be found in Acebron et al. Here, we sketch the population density approach
(Strogatz)

Consider the generalization of equation (1.19) after we have averaged and
rescaled time:

dψj = (ωj +
1

N

∑

k

= 1NH(ψk − ψj))dt + σdWj(t) (1.22)

where we assume that all oscillators are symmetrically coupled to each other
and that they all have independent noise. As it will be notationally easier, we
assume that the period of H is 2π. Kuramoto studies the case in which σ = 0
and H(φ) = sinφ. In a series of papers, Daido studies the general H case,while
Sakaguchi has studied the noisy case. As N → ∞, the ansatz of the population
density method is that there is a function, P (θ, ω, t) describing the probability
of finding the oscillator with natural frequency, ω at phase θ at time t. A nice
history of this method and its development are found in Strogatz (Sync, From
kur to crawford). The sum in equation (1.22) is an average over the other phases
and as N → ∞ can be written in terms of the density function P as
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lim
N→∞

1

N

N
∑

j=1

H(φk − φj) =

∫

∞

−∞

∫ 2π

0

g(ω)H(φ− φj)P (φ, ω, t) dφ dω := J(φj , t)

(1.23)
where g(ω) is the distribution of the frequencies, ωj . With this calculation, the
density satisfies:

∂P

∂t
= − ∂

∂θ
[J(θ, t)P (θ, ω, t)] +D

∂2P

∂θ2
, (1.24)

where D = σ2/2. This equation is a nonlinear, integro-partial differential equa-
tion. Unlike the Fokker-Planck equations we previously encountered, the flux, J
is a function of the probability which involves a convolution (so it is nonlocal).
As with most nonlinear equations, there are very few methods for solving them.
Here, we will perform a linear stability analysis to get a handle on the types of
patterns which are possible. We will not perform a complete bifurcation analysis
for the general case, but provide the normal forms for the case with just noise
and no heterogeneities. As noise is the main topic of this book and this chapter,
we treat D as a parameter. In the original Kuramoto analysis, there is no noise
and the bifurcation parameter is the amplitude of the coupling. Other possible
parameters are the “spread” of the natural frequencies, ωj (the variance of the
distribution, g(ω) where defined). Normalization requires that

∫

∞

−∞

int2π
0 g(ω)P (φ, ω, t) dφ dω = 1.

A trivial solution to equation (1.24) is P (θ, ω, t) = 1/(2π). Our strategy is to
linearize around this trivial fixed point. This state corresponds to the completely
asynchronous state with the oscillators effectively uncoupled and a uniform prob-
ability of finding them in any state. (As a contrast, suppose that there is no het-
erogeneity and no noise. The perfectly synchronous state is P (θ, ω, t) = δ(θ−Ωt)
where Ω is the “ensemble” frequency, Ω = ω0 +H(0) with ω0 the uncoupled fre-
quency of each oscillator.)

We write P = 1/(2π) + r(θ, ω, t) and write the linear terms for r:

rt = Drθθ − (ω +H0)rθ +
1

2π

∫

∞

−∞

∫ 2π

0

H ′(φ− θ)r(φ, ω, t) dφ dω,

whereH0 is the average value ofH.This is a linear problem which is homogeneous
in θ, t but not in ω. The former homogeneity implies that r(θ, ω, t) = exp(λt +
inθ)zn(ω) where zn is an unknown function of ω and n is an integer. If, ℜλ < 0 for
all n then the asynchronous state is asymptotically stable. We plug this function
into the linearization and we find:

λzn(ω) = −Dn2zn − i(ω +H0)n+ hnz̄n (1.25)

where
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z̄n =

∫

∞

−∞

g(ω)zn(ω) dω

and

hn =
1

2π

∫ 2π

0

H ′(φ) exp(inφ) dφ.

Note that hn is the nth Fourier coefficient of the derivative of the H function.
We can solve equation (1.25) for zn(ω):

zn(ω) =
hnz̄n

λ+Dn2 + in(H0 + ω)
.

We plug this into the definition of z̄n to obtain:

z̄n = z̄n

∫

∞

−∞

g(ω)hn

λ+Dn2 + in(H0 + ω)
dω.

This equation has a nontrivial solution for z̄n if and only if

1 =

∫

∞

−∞

g(ω)hn

λ+Dn2 + in(H0 + ω)
dω := Γ(λ). (1.26)

Equation (1.26) is the eigenvalue equation that must be solved and the values
of λ determine stability. The simplest scenario and the only one which we solve
here is when all oscillators are identical and g(ω) is a Dirac delta function at ω0.
In this case, the integral is easy to evaluate and we find after trivial algebra:

λ = hn −Dn2 − i(ω0 +H0)n. (1.27)

There is always a zero eigenvalue (n = 0) corresponding to translation invariance
of the phases. For n 6= 0, since hn are bounded, for sufficient noise, D, ℜλ is
negative and the asynchronous state is asymptotically stable. (When there is
heterogeneity and no noise, the spectral equation is extremely subtle and the
analysis complex. As there is always noise in neural systems, we make life easy
by assuming D > 0.) Suppose that we write

H(φ) = H0 +

∞
∑

n=1

an cosnφ+ bn sinnφ.

Then
hn = −inan/2 + nbn/2

thus, the real part of λ is

ℜλ = −Dn2 + nbn/2.

The only terms in H which can destabilize the asynchronous state are those for
which the Fourier sine coefficients are positive. The critical value of noise is thus

D∗ = maxn>0

bn
2n

Figure 1.11 shows an example of the application of this analysis to a simulation
of 400 globally coupled oscillators. Here H(φ) = 0.25 cosφ − 0.5 sinφ + sin 2φ.
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The critical value of D predicted is 1/4 corresponding to σ = 1/
√

2. We let the
simulation run to steady state with σ = 0.8 (above criticality) and then changed
σ to 0.6 which is below the critical value. Figure 1.11A shows a space-time plot of
the 400 oscillators as a function of time. Their phases relative to oscillator 1 are
plotted in a color code over a time window including the decrease of the noise
amplitude. The color coding shows that after the noise is reduced, oscillators
are divided into roughly two clusters (pink and blue) corresponding to a 0 and
π phase-differences. This is a two cluster state. We introduce so-called “order
parameters”, which quantify the degree of synchrony between the oscillators:

OPn :=
1

N

√

√

√

√

√





N
∑

j=1

cosnθj





2

+





N
∑

j=1

sinnθj





2

.

These pick out the Fourier coefficients of the invariant density, P (θ, ω, t) and
vanish when the oscillators are asynchronous. If D < bn/n, we expect OPn to
grow. Figure 1.11B shows the abrupt change in OP2 as predicted from the infinite
N theory. Figure 1.11C shows histograms at the high and low noise levels for
one time slice of the 400 oscillators. There are two clear peaks in the low noise
case as predicted from the linear analysis.

A natural, next approach to the equation is to do a full nonlinear bifurcation
analysis. This was done in chapter 5 of Kuramoto. The first step is to subtract
off the constant frequency and the constant Fourier term of H . Thus, we reduce
(1.24) to the following nonlinear equation:

∂P

∂t
= − ∂

∂θ

∫ 2π

0

H(φ− θ)P (θ, t)P (φ, t) dφ+D
∂2P

∂θ2
.

Letting m denote the critical wave number, the normal form for the bifurcation
has the form:

zt = z[m2(D∗ −D) + γ2zz̄]

where

γ2 = −mπ
2

2

(

b2m + a2
m + ama2m − bmb2m + i(a2mbm + amb2m)

2bm − b2m + i(a2m − am)

)

and
H(φ) =

∑

n

an cosnφ+ bm sinnφ.

The bifurcation is supercritical if the real part of γ2 is negative. Note that if H
contains only odd periodic terms then

γ2 = −mbmπ
2

2

bm − b2m

2bm − b2m

.

Note that the denominator is always positive since bm/m > b2m/(2m) by hy-
pothesis. For the case illustrated in figure 1.11, the bifurcation is supercritical.
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Fig. 1.11. Example of the destabilization of the asynchronous
state as the noise is reduced leading to a two-cluster solution.
(H(φ) = 0.25 cosφ − 0.5 sinφ + sin 2φ, σ∗ = 1/

√
2 ≈ 0.707).(A) Space-time

plot of the phases relative to oscillator 1. At t = 200, the noise is abruptly
reduced from σ = 0.8 to D = 0.6. The emergence of a two-cluster state
(turquoise/red) is apparent. (B) Order parameters OP1,2 showing the
two-cluster instability. (C) Histogram of the relative phases during two
different points in the simulation corresponding to the two different levels of
noise.

In conclusion, we have used the methods of Kuramoto to analyze the ef-
fects of noise and coupling on a large population of coupled neurons and shown
that only the odd Fourier components of the interaction function contribute to
synchronization.
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