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Abstract

We study the onset and evolution of waves in an integrate-and-fire network of synaptically coupled neurons in one- and
two-dimensional domains which are restricted to firing one spike. We determine the critical size of initial excitation of the
network necessary for the onset of propagation. We also determine the ignition time. We derive an integro-differential equation
for the evolution of the firing time as a function of spatial position. We use the evolution equation to understand propagation
failure. We compare the behavior of the integrate-and-fire model with a biophysically based model. Finally, we show that
weak heterogeneity has similarly weak effects on the firing times. © 2002 Published by Elsevier Science B.V.
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1. Introduction

There has been a great deal of recent theoretical interest in the propagation of waves in neural networks [1–8].
This is due in part to experimental observations in slices of pharmacologically treated tissue [9–15]. In a typical
experiment, a brain slice is removed from the animal and, e.g., the inhibition is blocked by an agent such as bicuculline
or picrotoxin. A local region is shocked and the resulting field potential is visualized either with multiple electrodes
or with voltage-sensitive dyes. Properties such as the velocity and the initiation time can be easily measured with
these techniques. Unlike the classic reaction-diffusion models, neural models involve nonlocal spatial and temporal
interactions. Thus, the resulting equations are (in the continuum limit) integro-differential equations. The earliest
published models for spatially organized neural networks had the form:

τ
∂u(x, t)

∂t
= −u(x, t)+

∫
D

J(y − x)F (u(y, t))dy, (1)

whereJ (x) is a symmetric connection function,u(x, t) is the “potential” of a neural at pointx in the domain D and
F(u) is a firing rate function. Ermentrout and McLeod [16] were the first to rigorously analyze this class of models.
They showed the existence of a traveling wave front under fairly general assumptions on the functionsJ andF .

∗ Corresponding author. Tel.:+1-412-624-8324; fax:+1-412-624-8397.
E-mail address:bard@math.pitt.edu (B. Ermentrout).

0167-2789/02/$ – see front matter © 2002 Published by Elsevier Science B.V.
PII: S0167-2789(02)00347-0



218 R. Osan, B. Ermentrout / Physica D 163 (2002) 217–235

These simple models arise as mean-field or averaged versions of more complicated so-called spiking models based
on the biophysics of nerve membranes. More complex models with an added recovery variable have been analyzed
by Amari [17], and Pinto and Ermentrout [18].

In order to get closer to the experimental questions, more realistic models for wave propagation have been
introduced which incorporate voltage-gated channels and detailed synaptic transmission [13,19,20]. While some
progress has been made in the analysis of these more complex models [4], most results are numerical. One simple
model for a spiking neuron is the integrate-and-fire model. Each “neuron” is a linear integrator. Upon reaching a
predefined threshold,VT, the neuron emits a “spike” and the voltage is reset toVR < VT. The effect of a spike
on other neurons is to turn on a current whose time dependence is often a simple exponential function and whose
magnitude is a function of the distance between the two connected neurons. Thus the system is

τ
∂V (x, t)

∂t
= −V (x, t)+ gsyn

∫
D

J(|y − x|)
∑
k

α(t − tk(y))dy, (2)

along with the reset condition such that ifV (x, t) crosses a threshold,VT, it is reset toVR. If the domain is
two-dimensional, thenx, y are vectors. Hereα(t) is the time-dependent current that arises from an impulse. In the
simplest models:

α(t) = a e−atH(t),

whereH(t) is the Heaviside step function.gsyn is the coupling strength which we make explicit.tk(y) represents
the discrete set of times that the neuron fires. That is, whenV (x, t) crossesVT, the threshold for thekth time,
thenV (x, t+) = VR (i.e.,V is reset) andtk(x) = t . Ermentrout [4], Bressloff [5], and Golomb and Ermentrout
[6,7] developed methods for studying the existence of traveling waves of activity in this class of models under the
assumption thateach cell only fires once. With this assumption (which can be biologically justified by supposing
strong synaptic depression or a long refractory period), it is possible to solve (2) for traveling waves and obtain an
expression for the velocity,c. Indeed, a traveling wave must simply satisfyingt1(x) ≡ t∗(x) = x/c.

There are far fewer results on the behavior and existence of waves in two dimensions. Kistler et al. [3] studied
plane waves in a two-dimensional network and also presented a stability result. This result was improved by Bressloff
[21]. Milton et al. [1] and Fohlmeister et al. [22] numerically studied two-dimensional networks of integrate-and-fire
models and found traveling waves of various sorts. We [23] looked at spiral waves and target waves with delayed
excitation in a medium similar to the integrate-and-fire system. Clearly, an outwardly propagating target wave will
asymptotically approach a plane wave which is equivalent to the one-dimensional wave problem. The differences
between one- and two-dimensional waves is in the initial phases and the onset of the propagating wave. The initiation
of waves in both one- and two-dimensional domains has not been looked at theoretically.

Our goal in this paper is twofold. We first study the initial-value problem in which a region is “shocked”, i.e.,
brought to firing. We ask (i) whether this is sufficient to excite unstimulated cells; (ii) if so, how long is the delay?
We then use the time of initiation as an initial condition for an evolution equation for the firing timet∗(x). From
this evolution equation, we can study propagation failure and other aspects of the initial formation of the traveling
wave.

2. The integral form and regular waves

In this section, we convert (2) into an integral equation and reduce the question of firing times to an implicitly
defined map. We explicitly compute traveling wave solutions to the integral equation.
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2.1. The integral form of the integrate-and-fire model

The integrate-and-fire model equation (2) is inconvenient for the analysis of traveling waves. Under the assumption
that each neuron makes a single spike, it is much easier to integrate the equations once (usingV (0) = 0) to obtain
the following integral equation forV (x, t):

V (x, t) = gsyn

∫
D

J(y − x)A(t − t∗(y))dy, (3)

where

A(t) = 1

τ

∫ t

0
e−(t−s)/τ α(s)ds.

If α(t) = a1 exp(−a1t)H(t), then

A(t) = a1a2

a2 − a1
(e−a1t − e−a2t )H(t)

with a2 = 1/τ , the membrane time constant. This response function is illustrated in Fig. 1 for two different choices
of parameters. Sincet∗(x) is that time at whichV (x, t) first crosses threshold, this forcesV (x, t∗(x)) = VT.

Henceforth, we will work in the infinite line or plane. The firing condition for a neuron at positionx in a
one-dimensional network is

VT = gsyn

∫ ∞

−∞
dy J(y − x)A(t∗(x)− t∗(y)). (4)

Fig. 1. Fast and slow response functions,A(t) with a1 = 0.05,a2 = 0.5 for the fast one anda1 = 0.005,a2 = 0.1 for the slow one. Note the
heights have been normalized here to be the same.
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That is, the time at which the neuron fires,t∗(x) is defined to be the first time for whichV (x, t) reaches threshold,
VT. If we seek radially symmetric solutions, then, the two-dimensional analogue of (4) is

VT =
∫ ∞

0
Ĵ (r, r ′)A(t∗(r)− t∗(r ′))dr ′, (5)

where

Ĵ (r, r ′) = r ′
∫ 2π

0
J (

√
r2 + r ′2 − 2rr ′ cosθ)dθ.

In both the one- and two-dimensional cases, the firing time is defined implicitly and thus represents a continuous,
implicitly defined map. We note that a similar class of equations arises in the theory of continuous arrays of weakly
coupled oscillators:

Ω = ω(x)+
∫
D

J(x − y)P (θ(x)− θ(y))dy,

where, in this case,Ω is an unknown constant,ω(x) the intrinsic frequency of each oscillator,D the domain of the
network andP a periodic function.

2.2. Regular waves in the integrate-and-fire model

Before turning to the question of wave initiation, we recall the formula for the velocity for a traveling wave
on the infinite one-dimensional line. For a uniform traveling wave, the firing time,t∗(x) is proportional tox, i.e.,
t∗(x) = x/c, wherec is the velocity. Substituting this into Eq. (4) and changing variables yields:

VT = gsyn

∫ ∞

0
J (y)A

(y
c

)
dy ≡ gsynS(c), (6)

where we have used the fact thatA(t) vanishes fort < 0. This expression gives a relationship between the velocity,
c and all other parameters. The intersection of the lineVT/gsyn with the curveS(c) gives the velocity. For example,
if we chooseJ (x) = exp(−x2) and

A(t) = a1a2

a2 − a1
[exp(−a1t)− exp(−a2t)],

we find that

S(c) = a1a2

a2 − a1

√
π

2

(
ea

2
1/4c

2
(
1 − erf

[a1

2c

])
− ea

2
2/4c

2
(
1 − erf

[a2

2c

]))
which is shown in Fig. 2. Note that for each sufficiently small choice ofVT/gsyn there is a pair of velocities. That is,
if the synaptic strength is sufficiently large or the threshold is sufficiently small, then there are two traveling waves.
It was shown in [5,7] that the slower of these is unstable and the fast wave is stable. SinceS(c) has a maximum
value, the ratioVT/gsyn must be sufficiently small in order for there to be traveling waves.

Ermentrout [4] used asymptotics to derive a general power-law dependence ofc on the strength of the synaptic
conductance,c = O(g1/p

syn ), wherep is a positive integer depending on the shape ofα(t). For largegsyn he was able
to show that the same relationship holds for general conductance-based models.

The simple traveling waveansatzfor the one-dimensional network does not work for two dimensions since
radially symmetric waves are not translation invariant. However, asr → ∞ we expect the circular wave front to
approach a plane wave in which case the velocity will approach the velocity given by Eq. (6). Thus, we expect that
the constraints onVT/gsyn for outwardly propagating waves to be the same as for one-dimensional waves.
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Fig. 2. The velocity of the traveling wave for a Gaussian connectivity function,J (x) = exp(−x2) andA(t) as in Fig. 1 witha1 = 0.05
anda2 = 0.5.

3. The initiation of the wave

In this section, we consider Eqs. (4) and (5) under conditions in which a small amount of initial tissue is excited.
We then ask whether this can induce firing and if so, when does the first nonexcited cell fire? We find constraints on
the parameters and the size of the excited regime which guarantee that at least one nonexcited cell in the network
fires. We also determine the delay to firing of this first cell.

3.1. The initiation of the wave in the one-dimensional domain

Consider first the one-dimensional case. We suppose thatt∗(x) = −∞ for x < −d andt∗(x) =0 for−d ≤ x < 0.
This states that we initially stimulate a length of tissue,d such that all neurons in this region fire synchronously. For
now, we assume that the firing time is a monotonic function of their positionx. Thus,t∗(x) > t∗(y) if and only if
x > y for all nonnegativex, y. This is proven in the next section. With these considerations, we have to solve

VT

gsyn
=

[∫ 0

−d
J (x − y)dy

]
A(t∗(x))+

∫ x

0
J (x − y)A(t∗(x)− t∗(y))dy. (7)

(We have used the facts thatA(0) = 0 andt∗(y) = 0 for y < 0 to derive this from (4).) The first cell that can
possibly fire is atx = 0 so by settingx = 0 in (7) we obtain

VT

gsyn
= A(t∗(0))Q(d), (8)

where

Q(d) =
∫ 0

−d
J (y)dy =

∫ d

0
J (y)dy.

We must solve (8) for the time of firing,t∗(0). Suppose thatA(t) is nonnegative, vanishes att = 0 and has a single
maximum,Amax at t = tmax. Suppose thatJ (x) ≥ 0, symmetric, and normalized with integral 1. Then,Q(d) is a
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monotonically increasing function ofd which approaches a value of 1/2 as d → ∞. We have the
following:

1. If

Amax > 2
VT

gsyn

there is adcrit such that for everyd > dcrit, there are two solutions to (8). We take the smaller of the two to be
t∗(0) as this corresponds to the potential,V (0, t) rising past threshold. Ifd < dcrit then the first cell can never
fire and no wave is initiated.

2. t∗(0) is a decreasing function ofd. An effective connection length between neurons can be obtained by looking
at how quicklyt∗(0) reaches a plateau as a function of the amount of stimulated tissue.

3. Asd approachesdcrit, t∗(0) approachestmax which is themaximumtime possible for initiation. ForA(t) as in
Fig. 1

tmax = ln (a1/a2)

a1 − a2
.

The longer the synapses can persist (i.e., the smaller isa1), the longer the possible waiting times before ignition.
This is a physiologically relevant point. Pinto (Society for Neuroscience, New Orleans, 2000) reports a rather
long delay before he sees the propagation of waves in a cortical slice treated with bicuculline. This indicates a
possible role for some long-lasting excitatory synaptic currents. (However, see the discussion for some important
differences between the integrate-and-fire model and other neural models.)

4. Asgsyn → ∞, t∗(0) → 0, i.e., the stronger the synapses, the faster the initial cell fires after the stimulus.
5. The minimal value ofgsyn required to initiate firing is less than the minimal value required to sustain a traveling

wave. Thus, it is possible to initiate a wave which eventually fails. To see why this is true, we note that to initiate
a wave, we must have

gsyn >
VT

AmaxQ(∞)
≡ g∗

init .

A traveling wave with velocityc exists if

gsyn = VT∫ ∞
0 J (y)A(y/c)dy

>
VT

Amax
∫ ∞

0 J (y)dy
= g∗

init ,

where the last equality follows from the fact thatQ(∞) = ∫ ∞
0 J (y)dy.

Fig. 3 shows the dependence oft0 on the ratioVT/(gsynQ(d)) for the fast alpha function shown in Fig. 1. For
this particular choice,t0 is always less than about 5 ms. As we show in the discussion, this picture looks the same
for certain classes of biophysical models.

3.2. The initiation of the wave in the two-dimensional domain

The two-dimensional case is similar to the one-dimensional initiation. Suppose that we start with an initial
disk of excitation with radiusd. Since the connectivity is homogeneous, the radial symmetry is preserved and
we will obtain radially symmetric solutions. As with the one-dimensional case, we assume that the firing time
is a monotonic function of distance from initiation. Thus cells that are located at radiusr2 > r1 will have firing



R. Osan, B. Ermentrout / Physica D 163 (2002) 217–235 223

Fig. 3. The time of the initial spike as a function of threshold.

times,t∗(r2) > t∗(r1). This implies the following implicitly defined equation:

VT

gsyn
=

[∫ d

0
Ĵ (r, r ′)dr ′

]
A(t∗(r))+

∫ r

d

Ĵ (r, r ′)A(t∗(r)− t∗(r ′))dr ′, (9)

defined forr > d. The initial firing time is found by taking the limit asr → d leading to an equation equivalent to
(8):

VT

gsyn
= A(t∗(d))Q2(d), (10)

where

Q2(d) =
∫ d

0
Ĵ (d, r ′)dr ′.

Q2(d) has exactly the same properties asQ(d) so that all of the statements for one-dimensional initiation also hold
for two-dimensional initiation of waves. (Note thatQ2(d) → 1 asd → ∞, whereasQ(d) tends to 1/2. ThusAmax

must be larger thanVT/gsyn for the two-dimensional case.)
As an example, suppose that the coupling is a Gaussian,J (x) = exp(−|x|2)/π . Then

Q2(d) = 1

π

∫ 2π

0
dθ

∫ d

0
ds e−[s2+d2+2sdcos(θ)] = 2

∫ d

0
ds e−(s2+d2)I0(2sd),

whereI0(x) is the modified Bessel function of zeroth order. Fig. 4 shows a plot ofQ2(d).
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Fig. 4. The functionQ2(d).

4. Computation of the firing map

Our goal in this section is to reduce the implicitly defined firing map, (3) to an evolution equation which can
then be numerically integrated. In order to do this, we must first show that the firing times,t∗(x) are a monotonic
function ofx. Thus, we first prove this and then derive a differential equation fort∗(x) as a function ofx. This is
one of the main results in the paper; it allows us to exactly follow the time of firing rather than integrating the full
equations by spatially discretizing the medium. We then discuss the qualitative behavior of the firing time equation
and derive a Taylor series approximation fort∗(x).

4.1. Proof of monotonicity oft∗(x)

Here we prove that as long as the wave persists, we must have dt∗/dx > 0. That is the cells fire monotonically in
x. We will use the fact thatJ (x) is monotonically decreasing forx > 0 and also the fact thatA(t) is nonnegative.
Finally, we will also use the fact thatA′(t∗(0)) > 0, i.e., the initiation time occurs on the rising stroke ofA(t).
We prove monotonicity in two parts. We first show that dt∗/dx > 0 atx = 0. Then it follows thatt∗(x) must be
monotonic up to some positive value ofx, sayb. We then show that∂V (x, t)/∂x is negative so that the next cell to
fire must be the cell atb (i.e., the maximum ofV (x, t) occurs atx = b).

We assume that att = 0 all the cells for−d < x < 0 have been shocked and that the domain is the real line.
Start with (7) and differentiate this with respect tox and evaluate it atx = 0 leading to

dt∗(0)
dx

= A(t∗(0))[J (0)− J (d)]

A′(t∗(0))Q(d)
.
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SinceJ is monotonically decreasing,A(t) > 0 for t > 0,Q(d) > 0, andA′(t∗(0)) > 0 (since we choose the root
on the rising branch), this implies that for sufficiently smallx that dt∗/dx > 0.

On the real line, Eq. (3) becomes

V (x, t) = gsyn

[
(Q(x + d)−Q(x))A(t)+

∫ ∞

0
J (x − y)A(t − t∗(y))dy

]
.

We differentiate this with respect tox to obtain

∂V (x, t)

∂x
= gsyn(J (x + d)− J (x))A(t)+ gsyn

∫ ∞

0
J ′(x − y)A(t − t∗(y))dy.

SinceJ (x) is decreasing forx > 0 andA(t) > 0 for t > 0, it follows thatV (x, t) is a decreasing function ofx for
all t . Thus, the firing times must be monotonically increasing inx.

4.2. Evolution of the firing time

For both the one-dimensional and two-dimensional radially symmetric models, the firing times,t∗(x) or t∗(r)
are defined implicitly as maps. Since we have proven that these times are monotonic inx, it is possible to derive an
evolution equation fort∗(x). Thus, in this section, we derive an integro-differential equation for the map and then
solve this numerically. The numerical solution sheds insight into the mechanism by which propagation fails. We
will derive the one-dimensional evolution model; the two-dimensional equation is similar in form, recall Eq. (7).
We differentiate both sides with respect tox obtaining

0= P(x)A′(t∗(x))
dt∗(x)

dx
+ P ′(x)A(t∗(x))+

∫ x

0
J ′(x − y)A(t∗(x)− t∗(y))dy

+
[∫ x

0
J (x − y)A′(t∗(x)− t∗(y))dy

]
dt∗(x)

dx
,

where

P(x) =
∫ 0

−d
J (x − y)dy,

where we used againA(0) = 0. We rearrange this into an integro-differential equation:

dt∗(x)
dx

= −N(t∗(x), x)
D(t∗(x), x)

, 0 < x < ∞, t∗(0) = t0, (11)

where

N(t∗(x), x) = P ′(x)A(t∗(x))+
∫ x

0
J ′(x − y)A(t∗(x)− t∗(y))dy, (12)

D(t∗(x), x) = P(x)A′(t∗(x))+
∫ x

0
J (x − y)A′(t∗(x)− t∗(y))dy. (13)

Recall that the initial condition,t0 satisfies

VT

gsyn
= P(0)A(t0) (14)

and that we take the root,t0 on the rising branch ofA(t). Both the numerator,N and the denominatorD are
well-defined and bounded. We point out that numerical simulations of the full spatio-temporal model and the
firing-time evolution equation match quite well.
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4.3. Qualitative behavior of the traveling wave

We can use Eq. (11) to qualitatively describe the evolution of the firing times. We first note that the numerator is
always negative. This follows from the fact thatP ′(x) < 0, J ′(x − y) < 0 for y < x andA(t) ≥ 0. At x = 0, the
denominator is given by

D = P(0)A′(t0)

and sincet0 is on the rising branch ofA, i.e.,A′(t0) > 0, this implies thatD is initially positive. Thus, from (11)
t∗(x) is initially increasing. Since the numerator is always negative, the evolution equation can break down only if
the denominator approaches 0. When the denominator approaches 0, this means that dt∗(x)/dx approaches infinity
and implies that there is propagation failure. Thus, the wave fails to propagate if the denominator goes to zero too
fast and the firing time becomes singular. If the denominator stays positive, then propagation will be sustained and
solutions will approach the speed of the traveling waves constructed in Section 2. Furthermore, if there is no failure,
then t∗(x) is a monotone function ofx as shown in the previous section. We can see why solutions approach a
traveling wave by checking for self-consistency. Suppose thatt∗(x) ∼ x/c for largex. Then

D(t∗(x), x) ∼
∫ ∞

0
J (y)A′

(y
c

)
dy

and

N(t∗(x), x) ∼
∫ ∞

0
J ′(y)A

(y
c

)
dy.

IntegratingN by parts reveals that

N(t∗(x), x) ∼ −1

c

∫ ∞

0
J (y)A′

(y
c

)
dy

so that for largex the ratio is−1/c. Since dt∗/dx = −N/D, we see that for anyc, t∗(x) ∼ x/c is an asymptotic
solution. The velocity is not determined by the asymptotics of the evolution equation. Indeed, it would appear that
anyc will satisfy the asymptotics. Thus, the only free parameter is the initial data,t0 so that this must determine
the velocity. But,t0 is not independent and is a function ofd and all the other parameters. Thus, if we fixd and
arbitrarily chooset0 then this presumes values for the other parameters, notablyVT/gsyn through Eq. (14). If the pair
(t0, d) is chosen to keepVT/gsyn constant, then the velocity will tend to the same asymptotic value. For example,
if we solve (11) with an initial conditiont0,1 and then choose a different initial condition,t0,2 we do not expect
the wave to go to the same velocity as these will correspond to different thresholds. Thus, waves will travel at the
same velocity if and only if the quantity,Q(d)A(t0) is constant. This is illustrated in Fig. 5 where we show the
numerical solution to (11) for two choices ofd and corresponding choices oft0 such thatQ(d)A(t0) is constant.
Note that the wave corresponding to the larger value ofd (i.e., more medium is excited) begins earlier but has the
same asymptotic slope. The reciprocal of the slope is the velocity of the wave.

Conversely, fixingd and lettingt0 increase corresponds to choosing a network with increasing thresholds or
decreasing coupling strength since the larger the threshold, the more delayed the onset of the first spike. Fig. 6
shows the solution to the evolution equation for different values oft0 showing how the speed decreases (slope of
curve is larger) with greater values oft0 corresponding to larger thresholds.
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Fig. 5. Firing times for two different initial excitations and initial conditions.

Fig. 6. Firing times fort0 = 2,1,0.8,0.6,0.4,0.2 (top to bottom) showing the slowing (steeper slope) down of the waves as the threshold
increases (onset of first spike,t0 increases).



228 R. Osan, B. Ermentrout / Physica D 163 (2002) 217–235

Fig. 7. Taylor expansion close to origin for a model with exponential decaying connectivity. The original excited region is responsible for
generating a constant speed traveling wave.

4.4. Behavior close to origin

In Eq. (11) we derived an integro-differential equation for the evolution of the firing time as a function of spatial
position. By settingx = 0 in Eq. (11) we can compute the inverse of the instantaneous speed of the evoked wave:

dt∗(0)
dx

= −P ′(0)A(t∗(0))
P (0)A′(t∗(0))

. (15)

By taking the second derivative of Eq. (7), we can compute the inverse of the instantaneous acceleration in origin:

d2t∗(0)
dx2

= −P ′′(0)A(t∗(0))+ (2P ′(0)+ J (0))A′(t∗(0))(dt∗(0)/dx)+ P(0)A′′(t∗(0))(dt∗(0)/dx)2

P(0)A′(t∗(0))
. (16)

Following the same procedure we can compute any higher order derivative oft∗(x) in origin. This allows us to com-
pletely describe the behavior close to origin, obtaining a Taylor series solution to the differential equation. Clearly,
as we add more terms, the quality of the approximation will improve. However, the quality of the approximation
decreases quickly at large distance from origin. These features of the approximation can be observed in Fig. 7 where
we show the behavior close to the origin for a wave withA(t) andJ (x) as in previous figures.

5. How does propagation fail?

Propagation failure means that the solution to (11) cannot be continued beyond the some pointxfail . This happens
if the denominator,D defined in Eq. (13) goes to 0. The denominator consists of two components,D = D1 +D2:

D1 = P(x)A′(t∗(x)), D2 =
∫ x

0
J (x − y)A′(t∗(x)− t∗(y)).
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Fig. 8. (Left) The effective speed,x/t∗(x) as the threshold varies. Here we parameterize the threshold by changing the time of the first spike,
t0 which is given in the legend. The larger two values lead to propagation failure. (Right) The denominatorD corresponding to the three solutions
in the left panel. Note the rapid downward turn as the denominator tends to 0.

Initially D1 > 0 andD2 = 0. For small values ofx, D1 remains positive andD2 > 0. Oncet∗(x) crossestmax,
D1 changes sign and becomes negative. However, at this point,D2 is still positive, sincetmax − t∗(y) < tmax and
J (x) > 0. Asx increases,t∗(x) also increases andD1 remains negative but gets smaller in magnitude. On the other
hand,D2, while positive may possibly start to decrease. This can happen for allx such thatt∗(x) > tmax + t∗(y).
However, if the difference,x − y between these values ofy are also large, then they have little contribution to the
integral due to the decay properties ofJ (x). The difference,|x − y| is roughly proportional toc|t∗(x) − t∗(y)|.
Thus, if the wave is fast (c large), then|x − y| is large and the contribution of the terms such thatA′(t∗(x)− t∗(y))
is negative are negligible as they are multiplied by a factorJ (|x− y|). Thus,D2 stays larger in magnitude thanD1.
Propagation failure thus occurs when the effective velocityx/t∗(x) cannot get above a critical velocity.

Fig. 8 illustrates how failure occurs as the threshold is increased (or the synaptic strength is decreased). Recall
thatt0 is a monotonic function of the threshold (see Fig. 3) so that increasingt0 is equivalent to increasingVT. The
left panel shows the “effective speed”,x/t∗(x) for three values oft0 = t∗(0). It appears that for these parameters,
if the initial firing time is above about 3.36, then the effective speed is too small and rather than monotonically
approaching an asymptotic traveling wave, the network fails atx = 2. The right panel shows the rapid decline of the
denominator,D which approaches the origin with infinite slope at the spatial point where failure occurs. Based on
numerical simulations, it appears that failure can occur at an arbitrarily long distance from the origin. Furthermore,
the same simulations indicate that failure occurs at a pointxfail which depends logarithmically ont0 − t0,crit, where
tcrit is the initial spike delay above which failure is guaranteed. A satisfactory asymptotic theory remains to be found.

In the simulations described above, we studied failure as a consequence of changing the intrinsic properties of the
medium—the threshold and synaptic strength. Instead, we can hold these fixed and vary the initial size of excitation.
As shown in Section 3, if the amount of medium excited is too small, then the neuron atx = 0 will not fire. We
ask the following question: suppose the size of the initial excitation is large enough to fire the first neuron. Does
it then follow that the remaining medium must fire? The answer to this is, no. This is a consequence of property 5
in Section 3.1. The ratio,gsyn/VT in order for a wave to initiate is alwayssmallerthan the ratio required to sustain
a traveling wave. Thus, it is possible to initiate a wave which will eventually fail. The velocity is proportional to
the ratiogsyn/VT. If this ratio is too small, then the wave can never reach a sufficient velocity and will fail for the
reasons described in the previous paragraph.
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6. Discussion

We have derived equations for the initiation and propagation of synaptically generated waves in an integrate-and-
fire model. The methods developed here allow us to describe how failure can occur. We have shown that it is
possible to initiate a wave which will eventually fail of the synaptic strength is too low. The fact that neurons
only fire once and that, once they have fired, they cannot be further influenced by the presynaptic cell makes
the analysis of these integral equations considerably easier than the analogous reaction-diffusion models, i.e., the
effects of one cell on another take a specified form and do not depend on the dynamics of either cell. Thus, while
the interactions may be distance- and time-dependent, the resulting models are in a sense easier to analyze than are
reaction-diffusion equations. The other main advantage is that we can exactly integrate the equations and reduce
the existence and dynamics of the propagation to a map. Furthermore, we can reduce this implicitly defined map
to a Volterra differential equation for the firing times. The ability to derive this map depends on the fact that the
integrate-and-fire model can be completely solved.

The assumption of a single spike use for the integrate-and-fire model and the homogeneity of the medium are
crucial for the analysis of the initiation, the transient and the asymptotic behavior of the waves. We now address
these issues.

6.1. Single-spike assumption

Multiple spikes make the analysis quite difficult for at least two reasons. First, we must describe what happens
to the membrane once the cell has fired. Thus, in the derivation of the integral equation (3) we must also take into
consideration the resetting mechanism. For example, suppose that the membrane is reset fromVT to VR < VT.
Then, a term of the form

η(t) ≡ (VR − VT)exp

(
− t − t∗(x)
τH(t − t∗(x))

)

must be added to the right-hand side of (3). In order to satisfy the single-spike assumption, we must check that
V (x, t) never again crosses threshold. If it does, then we encounter the second difficulty. We must determine the
times of firing of successive spikes. These have influence on the first spikes of cells that are farther down the
medium. So, we must solve for a possibly infinite family of firing times,t∗j (x). The single-spike assumption avoids
this problem. By choosingVR very negative, we can be sure that the model does not fire again. If the time constants
of the synapse and the cell are short, then the result of distant cells firing decays rapidly. However, the a short
membrane time constant also means thatη(t) decays rapidly as well so that there is a possibility for the neuron to
again fire.

In spite of the above caveats, for some biophysical models which have slow dynamics, the recovery of the cell
back to rest is long enough so that with reasonable synaptic time constants, the cell fires only one spike. Such
an example is illustrated in Fig. 9. No restrictions on the number of spikes are made. The time constant of the
synapse must be increased to almost 50 ms before multiple spikes naturally occur. A similar simulation of the
classic Hodgkin–Huxley equations reveals that multiple spikes are very difficult to get (see Fig. 2B in [4]).

6.2. The initiation time for biophysical models

In Section 3, we showed that for the integrate-and-fire model, the initiation time of the wave is limited by the
time to peak of the synaptic response function. This, in turn, is determined by the time constants of the synapse and
the membrane. Thus, for the integrate-and-fire model, the delay to firing is always finite. Rinzel and Ermentrout
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Fig. 9. Traveling wave for the Morris–Lecar model with synaptic coupling. The network has 80 cells with equal coupling to five neighbors on
either side. Synapses are exponential and the threshold for firing is set to be 0 mV. Time constant of the synapse is 20 ms. Equations for the
model are in Appendix A. The horizontal axis represents the cell number, the vertical is the time in milliseconds. The membrane potential is
plotted in gray scale (units in millivolts). Equations are integrated using a fourth order Runge–Kutta integrator.

[24] showed that a single neuron could exhibit an arbitrarily long delay before firing. They explained this in terms
of the bifurcation to oscillations that the neuron undergoes as the applied current is increased. Neurons which
undergo a saddle-node bifurcation to oscillations (type I excitability) can have arbitrary latency to firing while those
which undergo a sub-critical Hopf bifurcation (type II excitability) have at most finite latency. The Hodgkin–Huxley
equations and the Morris–Lecar equations illustrated in Fig. 9 exhibit type II excitability. However, most cortical
and hippocampal neurons for which there are models exhibit type I excitability [25].

Thus, we can ask whether the dynamics makes a difference in the onset of the wave. The voltage for the general
conductance-based model satisfies

C
dV

dt
= −Iion(V ,w)−

(
g

∫ ∞

−∞
J (x − y)s(t − t∗(y))dy

)
(V − Vsyn),

wheres(t) is the synaptic output due to a single spike. HereIion represents all the intrinsic ionic conductances and
currents, andVsyn is the reversal potential of the synapse. As with the integrate-and-fire model, we assume that each
neuron is constrained to fire just once and thatt∗(x) is the time of firing of the neuron atx. As above, we suppose
that medium of lengthd is shocked and ask when the first neuron (x = 0) will fire. This leads to the differential
equation

C
dV

dt
= −Iion(V ,w)− gQ(d)s(t)(V − Vsyn),

whereQ(d) is as in (8) andV,w start at rest att = 0. We then must solve this equation up to the pointt∗ at which the
potential,V (t∗) crosses the threshold for turning on a synapse. This is a boundary value problem with the following
conditions,V (0) = Vrest,w(0) = wrestandV (t∗) = VT. By rescaling time byt∗ and writing a differential equation
for s(t), e.g.

ds

dt
= − s

τ
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Fig. 10. Firing time as a function ofgsyn for two different sets of parameters in the Morris–Lecar model. Type II excitability leads to a finite
maximal firing time while type I excitability can have an arbitrarily long delay to firing.

with s(0) = 1, we can solve this boundary value problem on the interval [0,1]. Fig. 10 shows the result for the
Morris–Lecar model in two different parameter regimes. When the dynamics is type II (subcritical Hopf), the
maximum thatt∗ takes is around 20 ms (commensurate with the synaptic time constant). When the dynamics is
type I (saddle-node), the time to fire can be delayed arbitrarily. Thus, the integrate-and-fire results are representative
of neuron model that undergoes a subcritical Hopf bifurcation.

6.3. Comparison of the propagation failure in one- and two-dimensional domains

If the initial conditions for the two-dimensional case are symmetric the evoked excitation will exhibit symmetric
behavior. Propagation failure in the two-dimensional domain is qualitatively similar to the on in the one-dimensional
domain.

Asymmetric initial conditions are more difficult to analyze. For example, it may be possible to have propagation
failure only along one dimension. Numerical simulations could help in this regard and a systematic study remains to
be done. However, results on a related model, [23] indicate that asymmetric initial data evolve into radially symmetric
solutions. Thus, we expect there to be little difference in how failure occurs as we move from one-dimensional
propagation to two-dimensional.

6.4. Extensions

6.4.1. Delays
Golomb and Ermentrout [6,7] showed that if there was a fixed delay between the excitation of a neuron and

its neighbor, then for large enough delays the firing times no longer converge to a traveling wave. Rather, this is
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unstable and the new solutions are periodically modulated. Thus, the functionA(t) is replaced byA(t − td), where
td is the delay. One should be able to use the same evolution equation to study the transient dynamics of waves in
a delayed network. The numerical details are unfortunately rather complicated so that we do not attempt to solve
them in this paper.

6.4.2. Heterogeneities
The waves described here are robust to small heterogeneities in the medium. For example, suppose that the

coupling between neurons has the form,J (x − y)(1 + εH(x, y)) whereH is some arbitrary function andε a
small parameter. The evolution equation for the firing times changes in the obvious way as does the equation for
initiation. The only possible problem is that if the heterogeneity is too great, then the monotonicity of the firing
times will be lost. We do not expect this to happen for small enough heterogeneities. (However, in a recent paper
[26], Bressloff shows that sufficiently large heterogeneity can disrupt propagation in a firing rate model.) It is a
simple perturbation calculation to assess the effects of this weak heterogeneity on steady state traveling waves.
We write

t∗(x) = x

c
+ εθ(x)+ · · · , c = c0(1 + εc1 + · · · )

and substitute this into (4) obtaining

VT = gsyn

∫ ∞

−∞
J (x − y)A

(
x − y

c0

)
dy,

0=
∫ ∞

−∞
J (x − y)H(x, y)A

(
x − y

c0

)
dy − c1

∫ ∞

−∞
J (x − y)A′

(
x − y

c0

) (
x − y

c0

)
dy

+
∫ ∞

−∞
J (x − y)A′

(
x − y

c0

) (
x − y

c0

)
[θ(x)− θ(x)] dy.

Solving the first equation gives,c0 the unperturbed traveling wave speed. The second equation consists of three
parts. The first part is the perturbation, the second is a correction for the velocity, and the third is a convolution
operator on the functionθ(x). We can rewrite the second equation as∫ ∞

0
J (y)A′

(
y

c0

) (
y

c0

)
[θ(x)− θ(x − y)] dy = c1K −

∫ ∞

0
H(x, x − y)J (y)A

(
y

c0

)
dy,

where

K =
∫ ∞

0
J (y)A′

(
y

c0

) (
y

c0

)
dy.

We note thatK �= 0 since the wave is not degenerate. The left-hand side of this equation is a linear operator which
has a one-dimensional null space consisting of constant functions. Thus, we must remove the constant part of the
right-hand side. This is formally done by choosing the free parameter,c1 appropriately. Then, we can formally solve
for θ(x) by taking transforms of both sides.

Thus, the main effect of heterogeneities is to perturb the velocity and to alter the firing times, but the overall wave
is preserved.
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Appendix A

The Morris–Lecar equations (see [24]) are a simple three channel biophysical model for action potentials. The
equations are

5
dv

dt
= I − 2(v + 60)− 8w(v + 84)− gCam∞(v)(v − 120),

τw(v)
dw

dt
= φ(w∞(v)− w), m∞(v) = 0.5

(
1 + tanh

(
v + 1.2

18

))
,

w∞(v) = 0.5

(
1 + tanh

(
v − v3

v4

))
, τw(v) = 1

cosh((v − v3)/2v4)
.

The synaptic current is

−gsyns(t)v(t)

ands(t) = exp(−t/τ ). Parameters for Fig. 9 areτ = 20, gsyn = 3, φ = 0.16, v3 = 2, v4 = 30,gCa = 4.4 and
I = 70. Type II dynamics in Fig. 10 are identical. For type I dynamics, the parameters areφ = 0.25, v3 = 12,
v4 = 17.4 andgCa = 4.
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