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Abstract

Phase locking in chains of weakly coupled oscillators with coupling beyond nearest neighbors is studied. Starting with a
piecewise linear coupling function, a homotopy method is applied to prove the existence of phase locked solutions. Numerical
examples are provided to illustrate the existence and the properties of the solutions. Differences between multiple coupling
and nearest neighbor coupling are also discussed. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Weakly coupled oscillator arrays arise in many physical and biological systems. In particular, one-dimensional
chains of oscillators have been used to model a variety of biological systems such as the swim generator in the
lamprey [1] and olfactory waves in the procerebral lobe of the garden slug [5]. These models arise from general
systems of coupled oscillators under the assumption that the interactions between oscillators are sufficiently weak.
Under this “weak coupling” assumption, each oscillator is reducible to a single variable that describes the phase.
The most general form that these phase equations can take is

Qilzwi—l—Hi(Ql—Qi,...,9,,—9,‘), i=1...,n,

where the functiongi; are 2r-periodic in each of their arguments and the parametei@e the local variations
in uncoupled frequency. Typically, we are interested in solutions that are periodié; (tet; T) = 6;(r) + 2.
The stability of solutions for general coupling was studied in [4], however, the structure of the solutions is never
discussed.

The most comprehensive results concern either globally coupled all-to-all systems of oscillators, e.g., [2] or [3],
or chains of oscillators witimearest-neighbor coupling,7,14]. In the latter papers, phase locked solutions were
analyzed which correspond to traveling waves. Such waves have been observed in several central nervous system
preparations using imaging of the electrical potentials [9,13]. Recent experimental work, however, indicates that
the coupling in the lamprey spinal cord cannot be regarded as nearest neighbor [11]. Similarly, local application
of nitric oxide in the slug procerebral lobe indicates that coupling between oscillators extends beyond the nearest
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neighbors [8]. Thus, it is important to determine under what conditions oscillator chains that have coupling beyond
nearest neighbors can lead to phase locked solutions such as waves, which is the subject of the present paper.
Weak coupling in a chain of neurons or neural circuits simplifies the general structure of the phase models
considerably. Suppose the coupling strength depends only on the distance between two circuits. Since inputs to
neurons are treated independently and sum in a linear fashion, the resulting phase models have the general form

m m
6 =wi+ ) HIGiej—6)+) HI(6ij—6), &
j=1 j=1
wherei = 1,...,n + 1, 6; is the phase and); is the frequency of théth oscillator, andHfE are 2r-periodic

functions of their arguments. We delete terms in the sum whenevej > n + 1 ori — j < 0 so that the
“boundary conditions” are those of a finite chain. The boundary effects are crucial and they make the analysis of
these equations difficult. We are interested in phase locked solutions, i.e., solutions fopuigidependent of

i andz. The equivalent equations, with the variablég replaced by(¢; = 6,11 — 6;}, are considered. i/ = Q

which is the unknown frequency of the phase locked ensemble of the oscillators, then (1) becomes

m J m J
Q=i+ Y H | Y divi1|+Y H [ =D ¢« |- )
i=1 k=1 =1 k=1

It was shown [6,7] that phase locked solutions of chains with nearest neighbor coupling could be approximated,
when there is a large number of oscillators, by passing to a continuum limit and analyzing the solutions of the
resulting singularly perturbed second-order two-point boundary value problem (BVP). Thus, over much of the
chain, the solution behaves like a solution to a first-order “outer equation”. The particular “outer equation” is
determined by the boundary conditions for the BVP. In [14], we considered chains with finitely many oscillators. It
was shown that under weak assumptions on the coupling functions, the phase lags between successive oscillators
have the property of monotonicity provided that the frequency difference between any two successive oscillators is
a sufficiently small constant along the chain. This implies that most chains of locally coupled oscillators that phase
lock will form traveling wave solutions similar to those found in the limit of large [6,7].

Kopell et al. [10] considered the problem of chains witmeighbors in the limit as the number of oscillators
tends to infinity. In this limit, phase locked solutions of (2) may be viewed as a one-parameter faif@y of
1th-order discrete dynamical systems, where the independent variable is the position along the chain and whose
dependent variable is the phase difference between successive oscillators. In [10] it was shown that for each value
of the parametef2 in some range, th&m — 1)th-order system has a one-dimensional hyperbolic global center
manifold. This was done by using the theory of exponential dichotomies to show the system “shadows” a simple
one-dimensional system. For afinite chain, the dynamical system is constrained by manifolds of boundary conditions.
It was shown that for open sets of such conditions, the solution to the equation for phase locking in long chains
stays close to the center manifold except near the boundaries. These facts were used to show that a multiply coupled
system behaves, except near the boundaries, as a modified nearest-neighbor system. The existence of asymptotically
stable phase locked solutions was proven provided that the chain is long enough and the frequencies of oscillators
are sufficiently close.

In this paper, a special form of Egs. (1) is considered for chains with finitely many oscillators, i.e., we do not
require that the length of the chain to tend to infinity. For simplicity, we assume&m + 1 (as a matter of fact, all
the results will also be true as longas- m + 2). The equations have the following form:

m m
0 =wi+y «fH O1j—6)+ Y of H (6;—j —6), ®)
j=1 j=1



58 L. Ren, B. Ermentrout/Physica D 143 (2000) 56—73

whereozljE > azi > ... > af > 0andH® are 2r-periodic functions of their arguments. This particular form

is not unreasonable for neural models. If we assume that each local region oscillates in a similar manner and that
the coupling depends on the distance between units, then this form is quite natural. With these assumptions (2)
becomes

m J m J
Q=+ ofH* (Z¢i+k_1) + D o H” (—qui_k) : @)
j=1 k=1 j=1 k=1

Note that the terms are omitted from (3) and (4)# j ori — j goes beyond 22, ... , n + 1. This form will allow
us to prove the existence of stable solutions to (4) via a simple constructive method. Our strategy will be to first
consider a piecewise linear model for the functiéfis. In this case, the existence of solutions is reduced to finding
a solution to a linear matrix equation. We then smoothly move from the piecewise linear version of the functions
H? to the desired version by using the implicit function theorem.

Crucial to our continuation of argument are certain hypotheses on the funétio@s). We define two functions
fandg asf(¢) + g(¢) = HT(¢) and f(¢p) — g(¢p) = H™ (—¢). We assume the following hypotheses pand
g in a sufficiently large interval aroungl = 0O:

(H1) g'(®) > |f'(p)I forg € J.

(H2) There exists a unique solutign (respectivelypr) to 1 (¢) = g(¢) (respectivelyf (¢) = —g(¢)) for some
¢peld.

Note thatifH ' (¢) = H™ (¢) = H(¢), i.e., the coupling is isotropic, therig) is just the odd part of the function
H(¢) and f (¢) is the even part. This set of conditions is exactly the same as in [7] and is a subset of those in [6]. In
addition,¢ # ¢r should be imposed. It can be shown that< 0 < ¢ when £ (0) > |g(0)] and¢. < 0 < ¢r
when £(0) < —|g(0)|. We can restate these hypotheses in terms of the funcliéhs

(H1) H*¥ (¢) > Ofor¢ € J.

(H2') There exists a unique solutign (respectivelypr) to H~ (—¢) = 0 (respectivelyd " (¢) = 0) for some
¢pel.

Hypothesis (H) is analogous to the hypothesis made in [4]. The second hypothesis is required in order to get
some bounds on the behavior of the ends of the chain.

The numbersp, , ¢pr and the hypotheses on the interaction functions can be understood intuitively by looking at
the case of just a pair of mutually coupled oscillators. Consider a pair of coupled oscillators:

0; = w+ HT (62 — 61), 05 = w+ H™ (61— 62).
The phase difference between theims: 6, — 61 satisfies
¢'=H (—¢) — H" (¢) = —23(¢).

Thus, phase locked solutions are just rootg@f) = 0. If the coupling is only forward, i.el* = 0 then the phase
locked solution isp = ¢ . Furthermore, it is a stable phase locked solution since we have assumed that
and thatg’(¢) > 0 in the intervalJ. Thus,¢_ is the unique stable phase locked solution for a forwardly coupled
pair of oscillators. Similarlygr is the the unique phase locked solution for a pair of backwardly coupied=£ 0)
oscillators. ForH + and H ~ nonzero, the unique phase locked solution is betwgesndgr. It is stable since both
H* > 0in an interval containingy , ¢r.

A simple example isH* = o™ H, H(¢) = Acosp + Bsing whereB > 0, A # 0,a™ > 0. FurthermoreA
should not be too large in magnitude.

We now introduce equations for the local phase differences. If we tet6, . 1—6;, 8; = wiy1—w;,i =1,... ,n,
then (3) leads to



L. Ren, B. Ermentrout/ Physica D 143 (2000) 56—73 59

m J m J
¢ =B+ af[f+el | D dien |+ o [f =gl | D dir
j k=1

j=1 j=1 k=1

m J m Jj
—> aflf +él (Z¢’i+kl) =D il —al | D ¢k ] (5)
/ j=1 k=1

k=1

Again the terms out of index range will be ignored. Through most part of this paper, we study the gase 0f
(which means that all the oscillators have the same frequency). Then (5) can be rewritten as

m j m J
¢/,‘ = Zotj_[f + g] Z¢i+k + Za]_[f - g] Z¢i—k+1
=1 k=1 j=1 k=1

m J m j
= i [+ el | X obivir | = D eif =gl | D i« |- 6)
Jj=1 k=1 =1 k=1

For phase locked solutions, we hagle= 0 so that

m J m J
Dl If +el | D divna |+ ejle— f1| D diart
=1 k=1 =1 k=1

m J m J
=Y ol If+el | D dirx |+ oile— 1D ¢« ] )
j=1 k=1 j=1 k=1
wherei = 1, ..., n. Note that the terms containirg are placed on the left-hand side and the terms withpate

put on the right-hand side. This arrangement simplifies the analysis below.

In Section 2,H* are chosen to be piecewise linear functions. The reason for this is that we can explicitly find
solutions with these simple functions. Then a “bridge” can be built from the simple to the general case based on the
information collected from the simple case.

Section 3 provides a way to construct the “bridge”. That is, we set up a homotopy path starting with the solution
which we obtain in Section 2. Under very general assumptions, this homotopy path will lead to the solution of (7).
The solution is a unique asymptotically stable solution of (6) for a wide range of functions.

Numerical experiments are shown in Section 4. They confirm the results obtained from Section 3.

2. Piecewise linear coupling functions

We consider piecewise linear systems in this section in order to collect the information we need. Two piecewise
linear 27 -periodic coupling functions are constructedrs$ (¢) = Hg (¢) + Hg () with HE and HS (as even
parts and odd parts df *, respectively) are defined as

é, 0<¢=c,
HE@) =b*,  HI@)={T=P

T —cC

~H5(—¢), —w < <0,

where—7 < —c < min(b~, =bT) < 0 < max(h—, —b") <c < 7.



60 L. Ren, B. Ermentrout/Physica D 143 (2000) 56—73

Then if we choose such thab® € J = (—c, ¢) , the hypotheses (H1) and (H2) hold. We can also deduce that
¢ = b~ andgr = —b™.

Note that if|¢;| < ¢/m for the solution of the Egs. (7), we hay&¢) = %(b+ +b7)andg(¢p) = ¢+ %(bJr —b7)
in Egs. (7). Then (7) yields

m J m J
Zaf bt + Z¢i+k71 + Za; Z¢i7k+l —b”
k=1 j=1 k=1

j=1

m J m J
= Za;r bt + Z¢i+k + Za; Z(bzek -b" |, (8)
j=1 k=1 j=1 k=1

wherei =1, ..., n and the out-of-range terms are ignored as before.
More specifically, (8) can be reduced to

m i i—1 m
(2“7 2 ) B0 = got D (o) — e iy + D o] dit ©
Jj=1 j=1 j=1 j=1

forl<i <m,

(Z“T +2.9; ) b =D o i+ ) ] bisj (10)
j=1 j=1 j=1 j=1

form+1<i<n-—m,

n—i

n+1—i m m
( Do+ Za;) $i= aidij+ Y (@ =iy Divi+oi b (11)
j=1 j=1 j=1

j=1

forn —m+1<i <n,wheregg = b~ ande, 11 = —b™,i.e.,¢0 = ¢ ande, 11 = ¢R.
From this, (9)-(11) can be written as a matrix equation

Bd =S5, (12)
where

S=[a7¢0, . ¥pt0.0,....0, &} Pui1, ..., ppial’,
® = (¢1,...,¢,) andB = D — L — U. Here D is a diagonal matrix and. (respectivelyU ) is lower tri-

angular (respectively, upper triangular ) with zero entries on the diagbnalandU are matrices with nonnegative
entries.

Lemma 2.1. Assume thamin(é,, ¢r) < 0 < max(@L, ¢r), then Eq.(12) has a unique solutiod. ¢ satisfies
min(¢L, gr) < ¢ < Max(pL, ¢r),i =1,...,n.

Proof. Without loss of generality, we only consider the case wpgn< 0 < ¢ , i.e.,¢,+1 < 0 < ¢po. TO show
(12) has a unique solution, we only need to verify tBas nonsingular. By the special form of Egs. (9)—(11), we
haveb;; > Z#i |bijl,i =1,...,nandthere is at least one-*.
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Also it is quite clear thaB is irreducible. ThusB is irreducibly diagonally dominant. Any irreducibly diagonally
dominant matrix is nonsingular (see [12]). Hence (12) has a unique sofation

In order to showpr < ¢; < ¢,i =1, ... ,n, we need to construct an iterative process. That is
@ = (,...,0T, oD = p~ls+ D YL + U)D?, (13)
wherel =0,1,....

LetA = DXL 4+ U)andQ = D715, thend!+D = Ad® + Q. Thus,
-1
&, = Aldg + ZA"Q. (14)
k=0

It can be shown [12] that the spectral radipgA), is less than 1. Thus, the sums in (14) converge and the iteration
(13) converges. That ®" — & = (I — A)~1Q asl — occ.
We claim that for = 1, ... , n, we have

n+1 < ¢l-(l) < ¢o. (15)
By referring to (9)—(11), the iteration (13) can be written as

m i i—1 m

_ I+1 — — — I 1
2 Oé;_—l— E Q; ¢i(+)=ai ¢o + E (C‘fj - )¢,'(_)j+ E 05;_4’,'(42]'»
j=1 j=1 j=1 j=1

forl<i <m,

m m m
+ N 0 + 0
Do+ | Z IRt
=1 =1 =1

form+1<i<n-—m,

n+1—i m n—i
n - (I+1) 0 + + O} +
ool ) e |4 Z PO D — el Do el dni,
j=1 j=1 j=1

forn—-m+1<i<n.
We prove (15) by induction oh For/ = 0, (15) holds. Suppose (15) holds fothen

— i—1
@+ _ % ¢o+ 21 — a7 )do+ Yj_1a ] ¢o

[ d)Oa
' Z] 10[ + Z] la
- p (+1) - (+1) C_
where 1< i < m. Similarly, we can get, <¢oform+1<j<n. So¢ < ¢o,i =1,...,n. By
similar arguments, we havg, 1 < ¢l.(l+1),i = 1,...,n. Hence (15) holds for any < N . Then we must have

Gni1 < ¢i < o, sinced?) — & asl — oo.

We know that(¢o, . . . , ¢o) is not the solution, so there is at least an indesuch that;, < ¢o. Then by (9)—(11)
ande,+1 < ¢; < ¢o, We can getp; < ¢o for all i. Similarly, we havep,1 < ¢; for all i. Hencep,41 < ¢; < ¢o,
e pr < ¢ <¢Lfori=1,... n. O

Theorem 2.1. Assume that

~ < < min(gL, ¢r) < 0 < max@L, ¢r) < — (16)
m m
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for the piecewise linear functions f and g. Then the sys(énhas an asymptotically stable equilibrium
® = (¢1, ..., ¢n) such thamin(dL, pr) < ¢i < Max(@L, $r)-

Proof. The existence and boundednessdiave been proven. The linearized system of (6) arcbiigld’ = Bd.
It was shown in Lemma 2.1 thd is nonsingular so thaB has no zero eigenvalue. For eaglh;; > Z#i|b,~j|.
If we apply the Gerschgorin disk theorem, all the eigenvalues stay inRe(z) < 0, i.e., all the eigenvalues have
negative real parts such th@tis asymptotically stable. O

The condition (16) in Theorem 2.1 will be violated for lasgeWe would like to modify it since most @f; are not
necessarily close g, or ¢r (only those which are near the two ends might be clog# tand¢r). The key point
that guarantees that we can stably continue the solution is that the phase differences between any two oscillators
that are connected should lie in a region such #iatis increasing (i.e., within the interval¢, c)). For then, we
can apply the results in [4]. The theorem gives sufficient conditions which guarantee all these phase differences
lie in the interval (c, ¢) but they are rather stringent. Thus, we can more directly give conditions looking at the
total phase lag between any two connected oscillators. Note thatgine®; .1 — 0;, the total phase lag between
oscillatorsi andi + [ is just the sum of the local phase differences. Hence we have the following theorem.

Theorem 2.2. Assume that the solutioh in Lemma2.1 satisfies the following conditions
!
—c<) $ipj<c, 1=01...m-1, (17)
=0

fori =1,...,n (note thatifi + j is out of range of1, ... , n}, the termg;_ ; is ignored in the sudthend is an
asymptotically stable equilibrium ¢6). Alsomin(¢r, ¢r) < ¢; < max(¢L, ¢r).

Remarks.
1. As noted above, the sums(ithi7) are nothing more than the total phase lags— 6;+; so that this condition
is an assertion that the maximal phase lag between any pair of oscillators that are coupled lies in the interval
J =(—c,0).
2. From (9)—(11),each¢; seems to be the average of && neighbors in some sense. Far+1 < i < n —m,
i.e. in the middle of the chain, the average is the weighted average. But on the two ends, the averages have some
portions lost(or gained. This is the boundary effect and the reason why there exists nonzero vaibjen tie
chain.

3. General coupling functions

In this section, we assume thAt" satisfy (H1) and (H2). In addition, we assume that either< 0 < ¢ or
&L <0< ¢r.

Letb™ = ¢ andb™ = —¢r. We choose € (0, ) such that/ C [—c, c]. Then the piecewise linear functions
in Section 2 can be constructed. We denote theHAsH,, , fo andgo, respectively.

With these preliminaries, we can construct two homotopy coupling funcHQ"r(:aﬁ) ast(cp) = (1—)L)H0i (P)+
AH*($),0 < i < 1. ThenH;"(¢) = HF wheni = 0 andH;"(¢) = H*(¢) whenx = 1. Accordingly, we have
the corresponding;. andg;.. They arefy (¢) = (1— 1) fo(¢) + Af (¢) andg;.(¢) = (1 —1)go(¢) + Ag(#). As we
can see, the corresponding two numbers¢arg.) and¢r(1). Luckily, we havep, (L) = ¢ andpr(r) = ¢r for
O<ic<l.
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For the newly constructed coupling functioH§'t, we have new versions of (3), (6) and (7), respectively, i.e.,

m m
Ol =0+ Y o Hf Oiy; —0)+ Y of Hy (6i_j — ), (18)
j=1 j=1

m J m Jj
¢ = Z“;r[fk +al (Z¢i+k) + Z“j_[fx — gl (Z¢i—k+1)
j=1 k=1 j=1 k=1
m J m j
=Y eflfi+ el (Z¢i+k—l) = @ lh -l (qui_k) , (19)
j=t k=1 j=1 k=1
m J m j
> o f1fi+ &l (Z¢i+kl) +Y oo — £l (Zd’ikﬂ)
Jj=1 k=1 j=1 k=1
m J m j
= af[fi+ 8l (Z¢i+k) +Y oo — £l (Z¢ik) , (20)
j=1

k=1 j=1 k=1

We first prove a useful lemma.

Lemma 3.1. In Eq.(19), if all the sums ofp; in the form on,{Zl are in J, then the Jacobian matrix of the right-
hand side has only eigenvalues with negative real parts

The proof is to apply Lemma 3.1 and Lemma 3.2 in [4] to the system (18).

Theorem 3.1. Assumemin(¢L, ¢r) < 0 < max(@L, ¢r). If m¢r and m¢r € J, then the systeni®) has
asymptotically stable equilibriun® = (¢1,...,¢,) and min(@L, pr) < ¢i < max($L, ¢r),i = 1,...,n.
Also @ is the unique equilibrium of6) in the n-dimensional boX x I x --- x I where the intervall =
[Min(éL, pr), Max(L, ¢r)]-

Proof. Without loss of generality, we assunpg < 0 < ¢ . For convenience, we denote the right-hand sides of
(19) and (6) byFy, (®) andF (@), respectively, wheré;, F : R" — R". ThenF;(®) = (1—A)(B®—S)+AF (D).
HenceB andS are as in (12). The idea of the proof is to trace the homotopy path, whered (1) is the solution
of F;(®) = 0, as\ varies from 0 to 1.

At A = 0, F,(®) = B® — S. By Lemma 2.1,F,(®) = 0 has a unique solutio®(1) = ®(0) such that
#r < ¢i(0) < ¢L. Then the eigenvalues of the Jacobian malis, (0) = B have negative real parts by Lemma
3.1. SoDF,, is nonsingular. By the implicit function theorem, there exisise (0, 1] such thatF, (®) = 0 has a
solution® (1) with ¢r < ¢; (1) < ¢ for eachr € [0, 1g]. And DF; (P (1)) has only eigenvalues with negative real
parts by using Lemma 3.1 again.

Starting withig, there exists.1 € (Lo, 1] such that for each € (ro, A1], F5.(®) = 0 has a solutiomb (1) with
#r < ¢i(L) < ¢L. DF;.(¢(1)) has only eigenvalues with negative real parts. Keep iterating this process until the
extension cannot be continued. Then we get @y < A1 < A2 < ---. The properties above hold for al}. Since
{x«} is monotonically increasing and bounded above by 1, thexé &[0, 1] such thaty, — A* ask — oo.

We claimi* = 1. Suppose.* < 1 by contradiction. Then continuity tells us th&t(®) = 0 has a solution
®(1*) such thaipr < ¢; < ¢.. ThenDF, (P (1*)) has only eigenvalues with negative real parts from Lemma 3.1
once more.
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It can be verified that botfr, . .. , ¢r) and(¢y, ... , ¢.) are not solutions of;« (®) = 0. Otherwise we would
have a contradiction.

We claimgr < ¢;(A*) < ¢L,i = 1,...,n. Suppose that there is € {1, ..., n} such that eithep;,(A*) =
L > Big—1 (L) OF gig(A*) = PL > igr1(A¥). If m + 1 < ig < n — m, noting that

J J
D Bigrk 0 =D digr—1(05),

k=1 k=1

J J
Z‘i)io—k()\*) < Zéio—k-l—l()\*) forj = 17 cee,m.

k=1 k=1

At least one inequality is strict ang & f; > 0in J. Then by (20), we have

j=1 j=1 k=1

m J m J
Y ailfi+al (Z‘pioJrkl()\*)) + ;e - fil (Z¢iok+1()~*))
k=1

m J m j

> aflfi+ 8l (Z¢io+k(x*>) +Y oo — fil (Z«mok (A*))

j=1 k=1 j=1 k=1
m J m J

< Zaj*[fx + &l (Z¢io+k1(x*)) + Za;[gx - fil (Z%m(k*)) ,
j=1 k=1 j=1 k=1

which is a contradiction since the first and third lines are the same.
If iop =1, then

m J
> allfi+ 8l (Z&k(k*)) +oy g — £1(@109)
j=1 k=1

k=1 j=1 k=1

m J m Jj
=2 oflf+al (Z‘Z”‘HO‘*)) <Y oflfi+al (ngk()»*))
j=1

such that§; — £2](¢1(1*)) < 0. Theng; (L) < fi(¢L) sincep1(A*) = ¢ . This is a contradiction.
If 2 <igp < m,then

m J io j
DRCHETA (Zéioﬂc—l(ﬁ)) + ) oo — £ (Zflgio—k+l()¥*))
j=1 k=1 j=1 k=1
m i io—1 i
= Z“}L[f/\ + &l Z¢io+k(/\*) + Z(xj_[g;\ - £l Z(ﬁio—k(k*) ,
j=1 k=1 j=1 k=1

such that
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m J io J
Y aflfi+ el (Z(ﬁmkl(k*)) +Y oo — £l (Z(ﬁiokﬂ(k*))

j=1 k=1 j=1 k=1

io—1
_Za,o[gx - /il (Z% K (h ))

m io—1 J
=Y oflfi+al (Z@ﬁk(k )) + ) (@ —a)le — fil (Zd_h‘ok(?»*))
j=1 k=1 j=1 k=1
io—1 J B
< Za*[fx + 2] Zdnw 10 |+ D @ —alen — Al | D _dio-k+1049) | -
j=1 k=1 j=1 k=1
Then
io B io—1
aler = A1 | D_bio—kr105) Zalo[gx — £ Zcplo ()
k+1
io—1 B
< —a; Y (o — fi] (Zd’io—kﬂ(l*)) :
j=1 k=1
ie.,

io—1
Z[gx - £l (Z% kra(h )) < Z[g/\ - £ (Z«mo o ))

j=2

i io—1
[82 — H1@is () + D [er — £1] (Z% k1 (h )) < Z & — fi (Z% e ))

io—1 Jj io—1
[81 — Al @) + > [er — fil (d_h'o()»*) + Y big k(1) ) < Z[gx = /il (Zcbzo K(A) ) (21)
j=1 k=1

Since ¢i,(A*) = ¢ > 0, then k. — f£il(@i(A*) = 0 and gy — f£il(@i(A*) + Y i_1Big—k(A¥) >
[gr — fol (Zizléio,k(k*)),j =1,...,ip— 1. So (21) is not possible. We get a contradiction.

Similarly, if m + 1 < ig < n—m, we get a contradiction. Therefore, there isigguch thatj?,»o (A*) = ¢. This
leads top; (A*) < ¢, i =1,....,n

By similar argumentsg; (A*) > ¢r, i = 1,....,n. SO¢r < ¢;(A*) < ¢, i = 1,...,n. Thus we can
extendx beyondr*. This is a contradiction. Sb* = 1. And ®(1) is the solution toF (®) = 0, which satisfies
or < ¢i(1) < ¢L. ) R

Now we need to prove uniqueness. Suppbsedd are two solutionsté’(®) = 0inl" = [¢r, ¢.]". Thenbythe
mean value theorem 8 F(®)— F(d) = [;DF(d+1(d—d)) () dr = [ [, DF(d+1(d—d)) dr](d—d).
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ButfolDF(ﬁ)th(&)—&))) dr has only eigenvalues with negative real parts . Itis nonsingularimplyingthat = 0,
e, d=d. O

Remarks.

1. For nearest neighbor coupling.e., m = 1), we proved in[14] the existence of an asymptotically stable
equilibrium. We did not prove the uniqueness there. The uniqueness is automatically obtained from Theorem
3.1

2. We note that along the homotopy path, we can prove

min (Q_Sj()»)) < ¢i(A) < max (éj(k)), (22)
1<j=n 1<j<n
wherei =m +1, ..., n —m. Furthermore numerical results show thain;< <, (éj (1)) only occurs at =1

or n. So doesnaxi< <, (#;(1)).

The condition

(C)ym¢L € J andmor € J

could be weakened for the same reason as in Section 2. Thus we introduce the following condition set:

(CY ¢r+ Yigbis; (W) € J, =1, minn —Ln—i) fori =1,...n.

(C gL+ Y 4bis;W) €, 1=1,....minGm —Ln—i)fori =1,... .n.

(C3) Y 2odis i) +¢re J, 1 =0,... . minm—1,n—i)fori=1,....n

(CH Y 2obisj0)+¢L e, 1=0,... .minm—Ln—i)fori=1...n

As we see from the proof of Theorem 3.1, if the condition (C) holds, we havégminp ) < ¢;(L) <
max(¢r, ¢L) for eachir e [0, 1]. Hence the condition set (C1)—(C4) is satisfied for each [0, 1] along the
homotopy path. We thus have the extension of Theorem 3.1.

Theorem 3.2. Assumamin(¢r, ¢L) < 0 < max(¢r, ¢ ). If the solution in Lemma&.1, which is® () at A = 0,
satisfieg(C1)—(C4),then there is a maximal* e (0, 1] such that for each. € [0, 1*) the solution® (1) satisfies
(CL)—(CAandmin(¢r, ¢L) < ¢i (L) < max($r, ¢L). If A* = 1,thend(1) is an asymptotically stable equilibrium
of (6). Itis unique in the regiof; = {‘D|le:o¢i+j eJ,l=0,1,..., minm—1,n—i)foreachi =1,... ,n} C
R"™. Furthermore, G is a convex set

Remarks.

1. The proof of Theorer.2is to mimic each step in Theoredril. The conditiongC1)—(C4)guarantee that all the
summation terms af; (1) in (20) stay in J such thag; + f; > Ois insured.

2. For » = A*, ®(1*) might not satisfyC1)—(C4).But by continuity, if we substitute J by(i.e., the closed interval
of the open interval J) if{C1)—(C4),®(1*) satisfies the modifieC1)—(C4)and min(¢r, o) < ¢ (A*) <
max(¢r, ¢L). So all the summation terms ¢f(1*) stay in J. Then the asymptotic stability ®{1*) is also
obtained by Lemma.1.Also DR®(1*)) has only eigenvalues with negative real parts. Thus ik 1, A still
could be extended to an open neighlgbt, A* + 8) such thatd (1) is an asymptotically stable equilibrium of
(19) for eacha € (A*, A* + §). This is done by applying the implicit function theorem.

3. TheorenB.2provides us a way to verifven though the conditions are only sufficient mé®ether there is an
asymptotically stable equilibrium @6) in the convex domain G. This can be done using a numerical approach.
We can partition the intervdD, 1] into L subinterval®) = 1o < A1 < --- < AL = 1 such that,; = Ih where
h = 1/L. It can be shown that if* = 1 and h is small, therd(1;) will be in the asymptotically convergent
range of systerl9)for » = ;1. Then we could také(;) as an initial vector to solve the IVE9).In such a
way, we can ge®(1;,1). If ®(1;) does not satisfyC1)—(C4)somewhere, we stop. Otherwise we continue until
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A = 1.One important thing is how to g€t(0). This is done by the iteratiofl3) which is convergent as we saw
in Section?.

All the results we have obtained are for the identical oscillators@es w (i.e., 8; = 0). If w; are sufficiently
close to each other, i.68; is close to zero for each= 1, ... , n, we can apply the implicit function theorem to get
asymptotically stable equilibria for the system (5).

Theorem 3.3. If the conditions in Theore®.2hold,A* = 1 andg; is sufficiently close to zero, then the sys{&in
has an asymptotically stable equilibrium.

Remark. Theorem3.3 is obtained from perturbing; from zero. It is reasonable to assume that the coupling
strength between two oscillators far away is sufficiently smallsiet m1 + mo. We assumej[ are very small
formi1 + 1 < j < m1 + mp. Then if the syster(b) has an asymptotically stable equilibrium for the case when
ajE =0, j > m1+ 1,then(5) with sufficiently smaldzjE (j = m1+1)still has an asymptotically stable equilibrium.
We will see this in our numerical results.

4. Numerical results

In this section, we choosBH*(¢) = H(¢p) = 0.5cosp + sing. Then f(¢) = 0.5cosp andg(p) = sing.
Hence¢, , ¢r and the interval/ can be determined. Angy = arctan0.5), gpr = —arctan0.5) andJ =
(— arctan 2 arctan 2.
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Fig. 1.n + 1 = 40, 8; = 0, the coupling strength sets afg andm = 2, 4, 8 and 16, respectively.
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We choose two sets of coupling strengths for our numerical experiments. They,are {a;—L = 1/j,
ji=1...,m}andE, ={oz;t —exp—j+1),j=1,...,m}wherem=1,2,....
For bothC,, andE,,, we always havef = 1> o5 > --- > ap > 0. ocjt are very small foujt € E,if jis

large, e.gj > 4.

04 . (b)

05 I 1 i 1 1 1 L i 1

1] Q.1 02 03 04 05 a6 0.7 s3] 08 | 1

Fig. 2.n + 1 =100, 8; = 0, the coupling strength sets are (@) and (b)E,, withm = 2, 4, 8 and 16.
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Remarks.

1. arctari0.5) ~ 0.464and arctan 2~ 1.107.Then ifm > 3, the condition(C) in Section3 is violated. But as we
see in the numerical result§C1)—(C4)are still fine.

2. If we choosed = a cosg + sing, then the smallefa| is, the larger m we can get to sati€f¢). For example,
leta = 0.1,then m can be as large as = 14.

Fig. 1 shows the numerical results for the cases whenl = 40, 8; = 0 andC,, is the coupling strength
set. Here we taken = 2, 4,8 and 16 respectively. We pl@t; versusi/(n + 1). As we can seey; lie in the
interval (¢r, ¢) and (C1)—(C4) X = 1) hold. These guarantee asymptotic stability. The figure shows that the
inequalities (22) hold fof = m + 1,...,n —m and¢y = max—_1.. ,¢; ande, = min_1 _ ,¢;. Also we
find thatg; is monotonically decreasing whén= m + 1, ... ,n — m. But on the two boundaries, i.€.,< m
ori > n —m + 1, the monotonicity can be destroyed. This observation matches our comment that at the ends
of the chain, the nonlinear averages have some portions lost (or gainedy). @m fall below the nonlinear
averages at the left end (except at 1) andg; could jump above the nonlinear averages at the right end in this
example.

InFig. 2(a)»+1 = 100, 8; = 0 andC,, is the coupling strength setfar = 2, 4, 8, 16. In Fig. 2(b}» +1 = 100,
B; = 0 andE,, is the coupling strength set for = 2, 4, 8, 16.

We can see from Figs. 1 and 2(a) and (b) that coupling with more oscillators will reduce the phage Taga
is the observation in [10] and it was explained in the case of piecewise linear coupling functions in Section 2.

In Fig. 2(b), the conditions (C1)—(C4) far = 8 andm = 16 atA = 1 are violated as we can see. But si
is small forj > 5, the comments in the end of Section 3 tell us that we still expect the existence of a stable solution.
This is confirmed by the numerical results in Fig. 2(b).
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Fig. 3.n + 1 =100, 8; = 0, the coupling strength sets afg andE,, with m = 4.
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We now show how different coupling strengths will affect the phase lags. This is done by comparing the results

of E,, andC,,. Fig. 3 shows this fom = 4. It shows that strong coupling will reduce the phase tag#ote that
exp(—j +1) < 1/jfor j =2,...,m. This means th€,, type coupling is “stronger” than thg,, type.

In the following numerical experiments, we consider the non-isotropic casesayherCm anda’ € E,, i.e.,
aj =1/janda; =exp—j +1),j=1,...,m.
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Fig. 4.af = 1/j anda; = exp(—j +1),n + 1 =100, (a)p; = 0, and (b)s; = —0.005, andn = 4,8.



L. Ren, B. Ermentrout/Physica D 143 (2000) 56-73 71

In Fig. 4(@)n + 1 = 100 andB; = 0 withm = 4 and 8. It confirms the results of Theorem 3.2. In Fig. 4(b)
n+1=100andw; = 0.5(n+1—i)/(n+1)+w (i.e.,f; = —0.005) wherao can be any positive constant.= 4
and 8 are chosen.

In Fig. 5n + 1 = 100 andw; = w + §; wheres; are randomly chosen from the interv@, 0.5). Thusg; are
chosen from£0.5, 0.5) randomly.
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Fig. 5.o¢j+ =1/j, o =exp(—j+ 1) andw; = w + §;, wheres; are randomly chosen from the interng@l 0.5), (a)n + 1 = 100 andn = 4,
(b)n + 1 =100 andn = 8.
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Figs. 4(b), 5(a) and (b) verify the results of Theorem 3.3. In the case of Fig. 4(b), there is a frequency gradient.
This gradient is small so that; stay close to each other. In the cases of Fig. 5(a) and{lgre chosen randomly
and close to each other. Once more we mention that coupling with more oscillators will reduce the phase lags
[10].
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Fig. 6. (a) H*(¢) = 0.8cosp + sing, coupling is<>z,.i =1/2m+1),n+1=40andm = 1,2,4,5. Form < 5 there is stable phase
locking. However, note the nonmonotonicity near the boundariesmFer4 oscillators at the edges “break away” and phase locking is lost.
(b) Bifurcation diagram showing the range of existence of phase locking fag) = a cos¢ + sing as a function of the parameter Right
endpoint is the maximum value offor stable phase locking.
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In the previous numerical simulations, it was shown that one of the effects of multiple coupling is to reduce the
phase lags between successive oscillators. Thus, it would seem that increasing the coupling length encourages tighter
phase locking. However, if the intervdlbecomes too short relative to the rogts ¢r, then it may be possible to
achieve phase locking with short range coupling, but lose it with longer range coupling. Fig. 6 illustrates this. We
first choose H* (¢) = 0.8 cosp + sing. The interval/ is now (—0.896 0.896) and¢, = 0.674,¢r = —0.674.

Form = 1 this is still in the range for which we expect phase locking with monotonically varying phase ghifts,
However, ifm gets larger, there is no guarantee that there will be a locked solutions. In theigtré, 2, 4 all lead

to phase locked solutions. Note the phase differences away from the edges are compressed, but the behavior near
the edges oscillates. When= 5, the oscillators at the ends “drift” away; they are no longer able to phase lock with
the interior oscillators. However, ascontinues to increase, stable locking can occur again. This is shown Fig. 6(b).
Each curve represents the total phasedags- 61 as a function of the parametewhereH* (¢) = a cosg + siné.

Note that forn = 1, the existence of phase locking extends te 1, while form = 4, 8 itis considerably shortened.
However, forn = 16 the range is again quite largerif= 40 then coupling is “all-to-all” and synchrony is stable for

any value of: thus we expect that the range of phase locking should be a nonmonotonic function of the connectivity,
m. What is somewhat surprising is that the “worst” case for locking occurs at abeufl0 or connectivity over a
quarter of the chain. The investigation of these phenomena remains an open problem.
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