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ABSTRACT Recent experimental evidence has shown that
application of certain neurotrophic factors (NTs) to the devel-
oping primary visual cortex prevents the development of ocular
dominance (OD) columns. One interpretation of this result is
that afferents from the lateral geniculate nucleus compete for
postsynaptic trophic factor in an activity-dependent manner.
Application of excess trophic factor eliminates this competition,
thereby preventing OD column formation. We present a model of
OD column development, incorporating Hebbian synaptic mod-
ification and activity-driven competition for NT, which accounts
for both normal OD column development as well as the preven-
tion of that development when competition is removed. In the
‘‘control’’ situation, when available NT is below a critical
amount, OD columns form normally. These columns form
without weight normalization procedures and in the presence of
positive inter-eye correlations. In the ‘‘experimental’’ case, OD
column development is prevented in a local neighborhood in
which excess NT has been added. Our model proposes a biolog-
ically plausible mechanism for competition between neural pop-
ulations that is motivated by several pieces of experimental data,
thereby accounting for both normal and experimentally per-
turbed conditions.

A central question in neuroscience concerns the degree to
which environmental influences modify neural architecture
and function. The ocular dominance (OD) columns of primary
visual cortex (V1) is a model system that has been extensively
studied due to the marked effects of environment on both
anatomy and physiology. These columns consist of cells re-
ceiving projections from the lateral geniculate nucleus (LGN),
which in turn receive inputs from each eye (1). Around or
before birth, LGN afferents subserving each eye consist of
overlapping projections, so that all cortical cells are binocular
(i.e., receiving inputs from each eye). During development,
these afferents segregate, so that most layer IV cells within an
OD column receive thalamocortical afferents predominantly
from one eye, whereas cells in the adjacent column receive
inputs from the opposite eye. This pattern of connectivity is
found in many species, such as cats, monkeys, and humans.

Several lines of experimental data (refs. 2–9; for a review,
see ref. 9) and theoretical modeling (refs. 10–12), for review,
see ref. 13) suggest that OD column development depends on
activity-dependent competition among axons from the LGN.
Blocking activity in the retina prevents OD column formation
(14), and synchronous stimulation of afferent connections
increases the percentage of binocularly driven cells (8). Mo-
nocular deprivation results in the expansion of open-eye
columns at the expense of closed eye columns (4, 6), whereas
application of the N-methyl-D-aspartate receptor blocker 2-
amino-5-phosphonovaleric acid (15) or blockade of cortical

activity with tetrodotoxin (16) prevents this plasticity. These
results all suggest a Hebbian mechanism of synaptic plasticity,
combined with competition among afferents to maintain con-
nections to cortex. To simulate this competitive aspect, pre-
vious models have generally normalized total synaptic
strength—i.e., the total amount of the incoming synaptic
strengths (or weights) to a cortical cell is constrained to remain
constant (17, 18) (although see ref. 19 for an exception). This
computation is an abstraction used to enforce competition (as
these modelers recognized), but leaves open the issue as to how
this competition is actually implemented biologically. There-
fore, the question remains: for what entity are the presynaptic
afferents competing, and how does the advantage of one
afferent over another accrue with activity and current state?

One plausible hypothesis is that afferents compete for a
limited supply of post-synaptic trophic factor to maintain
connectivity to cortical cells (20-23). Recent experimental
evidence has shown that the infusion of excess amounts of
certain neurotrophins (NTs), such as brain-derived neurotro-
phic factor (BDNF) and NT-4/5, prevents OD column devel-
opment (24). One interpretation of these data is that LGN
axons compete for NT, such that in normal animals afferents
from one eye win this competition at the expense of the
opposite eye. Application of excess trophic factor eliminates
this competition, thereby permitting connections from both
eyes to remain and preventing the OD column segregation.

We present a model of OD column development incorporating
Hebbian synaptic modification and competition among afferents
for NT. The model accounts for the development of OD columns
and the prevention of that development with application of excess
amounts of exogenous NT. The model is based on three essential
hypotheses. (i) Synaptic strengths increase due to Hebbian long-
term potentiation (LTP), a LTP-like phenomenon, and decrease
due to heterosynaptic long-term depression (LTD), a LTD-like
phenomenon (the terms LTP and LTD are to be interpreted
broadly, not necessarily referring to any specific brain area or
experimental protocol). (ii) Positive feedback exists between the
rate of LTP and the rate of trophic factor uptake. The more
trophic factor accumulated at a synapse, the higher its rate of
connection strength increase (LTP); in turn, the higher the
synaptic weight, the faster the uptake of trophic factor. (iii)
Afferents compete for a limited amount of trophic factor. Com-
puter simulations show that OD columns develop from random
initial conditions via spontaneous symmetry-breaking when the
amount of postsynaptic trophic factor is below a critical amount;
that columns develop with positive inter-eye correlations without
weight normalization procedures; and that excess NT applied in
a local area of cortex prevents OD column development. The key
features of the model (Hebbian weight changes, positive feedback
between connection strength increase and NT uptake, and a
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limiting supply of cortical trophic factor) are motivated by specific
pieces of experimental evidence and provide a novel mechanism
of competition between neural populations.

METHODS
Model Derivation. The simulated cells in the network are

standard artificial neural network units, with an activation value
representing average firing rate, and connection strengths rep-
resenting peak postsynaptic potentials generated by afferent
inputs. Temporal dynamics of cellular activation are not included
in the model, consistent with the assumption that the time
averaged activity is the important variable in the formation of OD
columns. Inputs are modeled as a single continuous variable from
each eye. While a more realistic simulation consisting of many
inputs from each eye may be important for such phenomena as
the development of individual spatial receptive fields or orien-
tation preferences, the model assumes that the gross correlative
activity within and between each eye is important for driving OD
segregation (8). The model consists of a sheet of cortical neurons
receiving inputs from each eye (see Fig. 1a). Cortical neurons

interact via center-surround connectivity. The neurons in the
model are linear units:

vi 5 O
j

~wij
r aj

r 1 wij
l aj

l! 1 O
i9

Bi, i9vi9, [1]

where vi is transmembrane voltage of the ith cortical unit (we
use the terms postsynaptic voltage and firing rates interchange-
ably due to the linearity of the units); wij

r,l and aj
r,l are,

respectively, synaptic strength to the ith cortical unit from the
jth thalamic unit from the right or left eye, and activity in the
jth thalamic input of the right or left eye; and Bi, i9 and vi9 are,
respectively the connection strength from and activity in the i9
cortical unit. In all that follows, j will be dropped because we
consider a single thalamic input. Rearranging Eq. 1, we obtain:

vi 5 O
i9

Iii9~wi9
r ar 1 wi9

l al!, [2]

where I 5 (1 2 B)21 is the intracortical interaction function (1
is the identity matrix). We will derive the equations controlling
synaptic strength and trophic factor levels for the afferent from
the right eye; the identical equations hold for the left eye with
r9 and l9 values interchanged.

Each cortical cell has a fixed pool of trophic factor to distribute
over all thalamic inputs, whereas each individual connection has
a fixed amount of material from which to add connection strength
(Fig. 1b). Intracortical connections remain fixed for these simu-
lations. The maximum level of thalamocortical connection
strength is arbitrarily set to 1 for all synapses:

wi
r 1 f i

r 5 1, [3]

where wi
r is the current amount of connection strength, and f i

r

is the free store of synaptic raw material still available at a
single synaptic locus. We would not make any claims about the
validity of such a ‘‘free store’’ per se, but this formulation will
have the effect of keeping each synaptic weight between zero
and some maximal value, here set to 1 (note that constraining
the weights to remain between 0 and some maximal value is in
fact necessary for biological plausibility). This will implement
a ‘‘soft’’ constraint in that the weights approach their limiting
values asymptotically. Trophic factor is dealt with similarly, but
here a fixed amount of trophic factor is available postsynap-
tically for distribution over all incoming synapses. The total
amount of trophic factor at the ith cortical unit available to be
distributed over inputs is Ni, and equals the sum of the amount
currently taken up by the right and left eye afferents, ni

r 1 ni
l,

and the free trophic factor left at the ith cortical unit, Ni
f. Thus,

N i
f 1 ~ni

r 1 ni
l! 5 Ni. [4]

We formulate the equations in terms of mass–action kinetics as
a mathematical convenience, not making any claims about the
necessity of such a formulation. The free synaptic material is
converted to connection strength by the simple kinetic scheme:

f i
r 5 ~1 2 wi

r ! L|;
K1~ni

r, vi, ar !

K2~vi!
wi

r. [5]

The rate constants are functions depending on the potential,
the inputs, and the current amount of synaptic trophic factor.
The trophic factor uptake dynamics obey a simple kinetic
equation as well:

N i
f 5 Ni 2 ~ni

r 1 ni
l! L|;

wr

b2

ni
r. [6]

We hypothesize that the stronger the weight, the faster the
rate at which NT is taken up into afferents. This feature is
motivated by evidence that trophic factor can be released in an

FIG. 1. (a) Schematic of model. Cortex is represented by a 30 3 30
grid of units. Each thalamic input is represented by a single cell, thus the
correlation matrix in Eq. 11 is a 2 3 2 matrix, given by Cll 5 Crr 5 0.9,
Clr 5 Crl 5 0.3. The inset shows the interaction function I between cortical
cells, implemented as a difference of gaussians: I(x) 5 Imaxe2(x/x

1
)2 2

Imine2(x/x
2
)2, where Imax 5 1.0, Imin 5 0.15, x1 5 1.3, x2 5 2.6, and x is the

cortical distance between units. (b) Schematic showing single cortical cell
receiving inputs from each eye. The connection from each eye has a fixed
amount of total synaptic material. Each cortical cell has a fixed amount
of trophic factor to distribute over its inputs.
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activity-dependent manner from application of glutamate (25)
(see Discussion). Release of trophic factor back to the free pool
is just a constant, b2. The rate ‘‘constants’’, K6(z) and wi

r, are
actually functions of several variables or dynamic variables.
The forward rate constant is a simple Hebbian rule, modulated
by the current amount of NT:

K1~ni
r, vi, ar! 5 K1ni

rviar. [7]

The first term is a constant (to correct for dimensionality, and
will be dropped). The last two terms are the product of
postsynaptic activity of the ith unit and presynaptic activity
(viar), implementing the simplest form of the Hebbian rule
(LTP). These are modulated by the current amount of trophic
factor taken up at that synapse (ni

r). Thus the more trophic
factor at a synaptic locus, the faster its increase in connection
strength. This dependence of LTP on trophic factor is moti-
vated by recent experimental work (26) (see Discussion). Using
the definition of vi from Eq. 2, and using a standard averaging
procedure over the input ensemble (see refs. 10 and 27 for
justification), we obtain:

K1~ni
r, vi, ar! 5 ni

rO
i9

Iii9~Crrwi9
r 1 Crlwi9

l !, [8]

for the rate at which synaptic strength from the right eye to the
ith unit increases. (Note that because the temporal dynamics
of ni

r are on the same scale as that of wi
r, the averaging

procedure, which in previous papers was used only for changes
in the weights, is still valid.) Here, C is the correlation between
inputs ar, l, so Crr 5 ^arar&, Cll 5 ^alal&, and Crl 5 Clr 5 ^aral&.
Note that C . 0 always, because ar, l . 0. The backward rate
constant depends only on the postsynaptic potential vi. This is
an approximation of heterosynaptic LTD (for a review, see ref.
28), as it will tend to dominate the LTP term when presynaptic
activity is low and postsynaptic activity is high:

K2~vi! 5 b1vi 5 b1O
i9

Iii9~wi9
r ar 1 wi9

l al!, [9]

which after averaging is

K2~vi! 5 b1O
i9

Iii9~wi9
r 1 wi9

l !, [10]

with all constants absorbed into b1. Substituting Eq. 8 and Eq.
10 into the equations describing mass-action kinetics in Eq. 5,
we obtain:

wi
r 5 ni

r

LTP term
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the equation describing the change in synaptic strength to the ith
cortical unit from the right eye. The identical equation describes
the change in synaptic strength from the left eye, with r9 and l9
values interchanged. The first term is the rate of connection
strength increase, in which the term representing LTP is positively
modulated by the amount of trophic factor currently taken up at
that synaptic locus. The second is the rate of connection strength
decrease, or LTD. Similarly, the equation describing the kinetics
for trophic factor can be derived from Eq. 6:

ṅi
r 5 @Ni 2 ~ni

r 1 ni
l!#wi

r 2 b2ni
r, [12]

with the symmetric equation for the input from the left eye.
The rate of trophic factor uptake is positively modulated by the
current synaptic strength and limited by the amount of free

postsynaptic trophic factor still available. These coupled equa-
tions determine the dynamics of connection strength and
trophic factor at each synaptic locus.

Simulation Procedures. The above differential equations
were solved numerically using Euler’s method with a step size
between 0.05 and 0.1. To eliminate edge effects, periodic
boundary conditions were used at the borders of the cortical
sheet, which was 30 3 30 units in size. For all simulations, the
simulation was stopped when the percent change of the weights
went below some tolerance level. That is, if w(t 1 1) 5 w(t) 1
dw(t), simulations were stopped when

~idw~t!i/iw~t!i!p100 , «, [13]

where iw(t)i 5 (j(t) u wj(t) u ( j running over all weights in the
net) and « 5 0.1. Simulations generally ran for between 1,000
and 3,000 iterations. One nonlinearity was inserted into Eq. 11
order to maintain biological realism and numerical stability.
The LTP or LTD terms were clipped at zero so that both
numbers were always positive; thus the first term always
increases the weights and the second term always decreases
them (or they are zero).

A bifurcation diagram for a single cortical cell was con-
structed numerically using the program XPPAUT (this software
by G.B.E. is available to download at http://www.pitt.edu/
;phase). Simulations of the full network were run to deter-
mine the model’s performance under two conditions: the
‘‘control’’ condition, in which all cortical cells had a low, equal
amount of NT available, and the ‘‘experimental’’ condition, in
which an excess amount of NT was added in a limited area. This
was modeled by imagining a point source of NT added to the
intrinsic NT available in the center of the cortical sheet; this
amount then decayed from the point source with distance and
was added to each cells’ available NT. OD was measured by
simply subtracting the weight from one eye from the weight
from the other; thus if ODi 5 wi

r 2 wi
l, then 21 , ODi , 1,

and a cell is completely monocular if ODi 5 61 (weight from
one eye is 1, weight from other eye is 0), and completely
binocular if ODi 5 0 (weight from each eye is equal).

RESULTS
We first present a bifurcation diagram for a single cortical cell
receiving inputs from each eye (Fig. 2), which demonstrates the
change in solutions as a function of trophic factor (in what follows,
when we are discussing a single cortical cell, the i subscripts will
be dropped). Plotted on the abscissa is the total amount of trophic
factor available; on the ordinate is the weight value from one eye
at steady-state. Solid lines are stable solutions at steady-state,
whereas dashed lines are unstable. By symmetry, the same
diagram applies for each eye. For intermediate amounts of
trophic factor (Nm , N , Nb in Fig. 2), two stable asymmetric
steady-states are seen, each corresponding to the solution in
which one eye dominates in the competition (branches labeled M1
and M2). It can be shown analytically that the monocular solution
(e.g., wr 5 wmon, nr 5 nmon, wl 5 0, nl 5 0) is the only stable
solution in this range. In other words, whenever wr is on the Ml
branch, wl is on the M2 branch, and vice versa. For very low values
of NT, (N , Nm) a branch goes below zero; however, for this
parameter range, it can be shown that only the zero solution (i.e.,
wr 5 wl 5 nr 5 nl 5 0) is stable. As NT is increased, but below
the upper critical amount (Nm , N , Nb), the asymmetric
steady-state increases, corresponding to increasing synaptic
strength of the winning eye as trophic factor increases. Finally, a
critical value is reached (N 5 Nb), and a bifurcation occurs. At this
bifurcation, the symmetric steady-state becomes stable (the
branch labeled B). This corresponds to a binocular cell in which
weights from both eyes are equal. Thus for levels of NT above the
critical amount (N . Nb), the binocular solution will become
stable. The two asymmetric solutions also seen for N . Nb (one
of which is below zero) are separated from the symmetric
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steady-state by unstable branches. Due to these unstable
branches, for realistic initial conditions these branches are never
reached, and trajectories must converge to the symmetric steady-
state. The quantitative difference between the critical point for a
single cell shown in the bifurcation diagram and the critical point
for the cells in the full network in the following figures is due to
the intracortical interaction function. We posit that the results in
ref. 24 reflect the fact that the developing neocortex has been
flooded with trophic factor, putting it above the critical amount
and making the binocular solution stable in that area.

Next, we present results from a ‘‘control’’ experiment of a full
cortical network. Simulations demonstrate spontaneous symme-
try-breaking from random initial conditions to form OD col-
umns. A representative experiment is shown in Fig. 3a. Cortical
cells begin with small, equal initial weights from each eye,
perturbed by a small amount of noise. Likewise, individual
connections begin with a small, approximately equal amount of
trophic factor. Each cortical cell has the same amount of trophic
factor to distribute over incoming afferents, which is set below a
critical amount. The results are robust with respect to random
initial conditions. We have also examined the effects of changing
inter- and intra-eye correlations, the rate constants, and the
default NT amount, generally with similar results. For all corre-
lations values used, there exist some parameter ranges of the rate
constants and default NT amounts for which a normal qualitative
pattern forms, and this range is often broad. As inter-eye corre-
lations approach intra-eye correlations, the ranges narrow, as
would be expected. In the ranges in which OD columns form,
changing parameters alters the magnitudes of the final weights.
Varying the intracortical interaction function parameters can
change the results qualitatively for certain parameter values.
Specifically, if there is too much inhibition in the network (i.e., if
the magnitude or width of the inhibitory gaussian is too large),
then all weights decay to zero, or there is no change from the
initial conditions because the LTP and LTD terms are clipped at
zero (see Methods). If there is too much excitation in the network,
then most cells come to be dominated by one eye, with small
pockets dominated by the other eye. For a reasonable range of
values, however, individual cells are driven to become monocular,
whereas the intracortical connectivity acts to bias nearby cells to
have similar eye preference, and distant cells to have opposite eye
preference, patterning the cortex into OD columns. Most cells in
the cortical sheet are completely monocular in that the nondomi-
nant input has a strength of zero; grey scale thus demonstrates the

strength of the input from the dominant eye. This is further
demonstrated by Fig. 3b, which plots the weights from the right
and left eyes to each cortical unit in a slice through the center row
of the sheet (the 15th row).

To model the application of exogenous trophic factor (the
experimental condition), the amount of NT available in a partic-
ular cortical area is increased (see Methods for specifics of how this
was done). Parameters such as the height of the gaussian repre-
senting concentration of NT at the cannula were varied, as well as
the diffusion constant controlling the spatial decay of the exoge-
nous NT, and the interactions between these values with the
above-mentioned parameters (input correlations, rate constants,
default NT values) were examined. In general, the width and
magnitude of the excess NT diffusion could affect the outcome.
For a range of parameters, the outcome was similar to that shown
in Fig. 4a, with the weights plotted for each cortical unit in Fig. 4b.
This experiment has the same parameter values as Fig. 3, but with
an excess amount of NT added. Notice the area in the middle
where the OD columns have been prevented. The value of the
weights in this area is similar to that in the monocular areas, but
now both weights have the same high value. Thus binocular cells
now form throughout the region of excess NT, providing a
theoretical mechanism to explain the results in ref. 24. It explains
further why OD columns remain outside the local region in which
excess NT is present. For some parameter ranges we have tried,
excess NT can actually increase monocularity (i.e., strength of the
winning synapse) either completely throughout the area in which
NT has been increased, or around the periphery where NT is in an
intermediate range. This is suggested by the bifurcation diagram of
Fig. 2, in which synaptic strength from the winning eye increases
with increasing NT below the critical value. This would suggest that
increasing levels of exogenous NT in the cortex could have
complex effects depending on the strength and spatial extent of
intracortical weights, the input correlations, and the magnitude
and spatial decay of excess NT around the cannula. However, the
fact that there is good qualitative agreement (such as Fig. 4)
between the model and the results in ref. 24 confirms its sufficiency
to account for the control and perturbed experimental conditions.

DISCUSSION
The present model suggests a mechanism by which interactions
between activity-dependent weight modification and competition
for trophic factor generate monocular cells. The essential features
are as follows: (i) a positive feedback interaction between the

FIG. 2. Bifurcation diagram showing dif-
ferent steady-states of weight from one eye as
a function of amount of postsynaptic trophic
factor available (bifurcation diagram for the
other eye is the same by symmetry). Stable
steady-states are given by solid lines, and
unstable steady-states given by dashed lines.
See text for explanation. Parameters are same
as in Figs. 3 and 4, (Crr 5 Cll 5 0.9, Clr 5 Crl
5 0.3, b1 5 1.2, b2 5 0.2) except diagram is
for a single cortical cell (i.e., i 5 1).
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rates of connection strength increase and neurotrophin uptake,
and (ii) stabilization of this feedback by competition for a fixed
amount of trophic factor. When available postsynaptic trophic
factor is below a critical amount, competition drives one eye’s
afferents to eliminate the competing eye’s inputs. Addition of
excess trophic factor eliminates the competition, thereby prevent-
ing monocular cell development.

Many previous models have accounted for OD column devel-
opment with negative or zero between-eye correlations. Efforts
that have modeled the more plausible situation of small positive
correlations between the two eyes have relied on weight normal-
ization schemes to enforce competition (see ref. 17 for some of
the theoretical issues involved). This computation is an abstrac-
tion that leaves open the question of a mechanism for competi-
tion. The present model proposes such a mechanism and is
motivated by certain biological evidence. By this mechanism, OD
columns form with positive inter-eye correlations and without
such weight normalization schemes. The role of Hebbian learning
in OD column formation has substantial evidence (for a review
see ref. 9), and has been central to many previous models, as
noted above. Our hypothesized mechanism of competition,
namely the positive feedback relationship between trophic factor
uptake and synaptic strength increase, is motivated by specific

pieces of experimental evidence and accounts for normal and
experimentally perturbed conditions.

The positive influence of trophic factor on LTP has been
suggested by experiments in the rat hippocampal system in knock-
out mice (26). These researchers found that mice with the gene for
BDNF specifically knocked out showed a severe decrease in the
magnitude of and ability to induce LTP in the hippocampus.
Subsequent work has shown a restoration to normal of knockout
mice with exogenously replaced BDNF (29). Because the hetero-
zygote mice were close to the homozygotes, this suggests that a
threshold amount of BDNF is necessary for normal LTP. In our
model, trophic factor affects LTP in a linear fashion. However, this
linearity is not necessary, and in fact is a weaker assumption than
the more biologically realistic nonlinear relation. We have run
preliminary simulations for a single cell in which the amount of NT
at a synapse is first passed through a sigmoid function before
multiplying the LTP term, thus approximating the threshold
relationship. These have yielded good results. Therefore, we would
not make the claim that trophic factor must linearly affect LTP
induction and/or magnitude. The essential feature is that there is
a monotonic influence of NT on LTP. This hypothesized mech-
anism leads to falsifiable predictions. For example, if all thalamo-
cortical synapses in normal animals were to have sufficient NT
levels for robust LTP, this would invalidate the model.

Furthermore, this line of reasoning leads to the following
prediction. During the OD segregation process, when inputs

FIG. 3. (a) Simulation results after convergence to steady-state with
small, randomly perturbed initial conditions. That is wir 5 wil 5 nir 5 nil
5 0.1 1 r at t 5 0, where r is a uniformly distributed random number
between 20.01 and 0.01. The total amount of trophic factor available at
each cortical cell was set to 3.0 (Ni 5 3.0 in Eq. 12). A gray scale illustrates
synaptic strength from each eye for each cell, from black (all synaptic
strength from one eye) to gray (equal synaptic strength from each eye) to
white (all synaptic strength from other eye). The scale bar runs from 21
to 1. All final synaptic strengths are between 0 and 1. Most cells are
monocular in that synaptic strength from the losing eye is zero; grey scale
thus measures connection strength from winning eye. (b) Synaptic
strength from each eye to each cortical unit in a slice through the center
of the sheet (row 15). Data from simulation depicted in a.

FIG. 4. (a) Same parameters as before, but amount of available
trophic factor was the default value of 3.0 plus the exogenous trophic
factor added at the cannula in the center which diffused to the cortical
locus. Thus, Ni 5 3.0 1 Nsourcee2(x/x

3
)2, where Nsource 5 20.0, x3 5

4.0, and x is the cortical distance between the ith unit and the center
of the sheet (the 15th 3 15th cortical unit). The gray scale is the same
as in Fig. 3. OD columns are eliminated in local patch where excess
trophic factor was available. (b) Synaptic strength from each eye to
each cortical unit in a slice through the center of the sheet (row 15).
Data from simulation depicted in a.
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from both eyes still remain, the eye that is winning the
competition would have taken up more NT than the losing eye.
Because NT positively affects LTP induction and/or magni-
tude, LTP should be more easily induced and/or be of higher
magnitude in the afferents from the winning eye compared to
the afferents from the losing eye. Some possibly contradictory
evidence suggests that in the hippocampus, weaker synapses
are more easily potentiated via LTP, while stronger synapses
are more easily depotentiated via LTD (for a review see ref.
30). However, in that system there is no reason to think that
two or more populations compete for a limiting supply of
trophic factor, so that all synapses may have more or less equal
levels of NT. In our model, for a fixed level of NT at a synapse,
weaker synapses are indeed potentiated more easily than
strong ones, and stronger synapses depotentiated more easily
than weak ones (due to the soft constraint terms). The model
suggests that, if NT can affect LTP as hypothesized, the
differences in NT levels should induce differences in LTP
induction and/or magnitude between competing populations.

In addition, for the other half of the positive feedback loop,
evidence has shown increased release of trophic factor from
postsynaptic cells with depolarization (25). (While this study
examined effects of depolarization on release of nerve growth
factor, we assume for the sake of argument that this is represen-
tative of BDNF.) Motivated by this result, we hypothesize that NT
release might further be confined to individual synapses in an
activity-dependent manner. For example, if NT were differen-
tially released from potentiated synapses due to a higher local
depolarization, then inputs from the winning eye could take up
NT at the expense of the losing eye. If NT diffused too quickly
and/or too far from potentiated synapses subserving the winning
eye to weaker synapses subserving the losing eye, this would
invalidate this mechanism. Alternatively, if presynaptic TrkB
receptors (BDNF- and NT-4/5-specific receptors) were regulated,
either in number or affinity, in proportion to the synaptic strength
at a particular focus, this could also implement the NT uptake
dependence on synaptic weight. To our knowledge, no evidence
exists either for or against this second possibility.

Finally, the assumption that there is a limiting supply of NT
in the normal developing neocortex, and that this level is
similar across layer IV cells, is reasonable. The existence of
relatively small amounts of TrkB receptors on thalamocortical
afferents is consistent with this assumption. Evidence has
suggested the BDNF levels can be altered by afferent neuro-
transmitter (31) and environmental conditions (32). Our
model would predict that any up-regulation that occurs under
physiological conditions is still beneath the critical value
necessary for thalamocortical segregation. Another possibility
is that regulation of BDNF levels occurs on a much slower time
scale than changes in weights, and could be accompanied by or
induce changes in parameters controlling NT uptake. While
this would require substantial revision of the model, it could
be handled conceptually within this framework.

A significant number of theoretical models have addressed OD
column formation (for a review see ref. 15). The current model has
several features in common with these previous efforts, namely
Hebbian learning rules and center-surround intracortical interac-
tions. An analysis comparing three related models (10, 12, 33) in
terms of the bifurcations which each can admit for a single cortical
cell has been done (34). In each of these models, there are terms
identical or close to our LTP and LTD terms. The model in ref.
10 has no stable fixed points, and hence cannot admit a true
bifurcation. That model, however, addressed early development
when linear dynamics dominate, and can admit a ‘‘bifurcation-like’’
phenomenon in that the binocular eigenvector can grow slower or
faster than the monocular eigenvector depending on a single
parameter related to our N. However, if soft constraints are added
[multiplying the LTP term by (1 2 wr) and the LTD term by wr],
the binocular solution is the only stable steady-state, and a

monocular cell cannot form. Conversely, in the model in ref. 33, a
monocular cell is the only stable steady-state, and a binocular cell
cannot form. These results suggest that the latter two models are
insufficient to account for the change from a monocular to a
binocular steady-state with changes in a single parameter (pre-
sumed to correspond to NT levels). Finally, the model in ref. 12
does admit a bifurcation in which both the monocular and binoc-
ular solutions exist and their stability can change as a function of
a single parameter. For the two input case, this model turns out to
be formally identical to Miller’s, but with soft constraints imple-
mented differently [by multiplying the entire LTP and LTD
difference by wr(1 2 wr)]. Therefore, these two models could
qualitatively describe the change of stability from a monocular to
a binocular solution with increases in a single parameter. It might
be interesting to attempt to re-interpret these models in order to
suggest an alternative mechanism by which segregation is pre-
vented by excess NT.

The model is motivated by specific neurobiological data, and its
hypotheses are testable and generate results consistent with
biological observations. In particular, OD columns develop with
a limited supply of postsynaptic trophic factor, and do not develop
in the presence of excess NT. Furthermore, OD columns develop
with positive inter-eye correlations through plausible biological
mechanisms, including Hebbian learning rules, competition for a
limited supply of trophic factor, enhancement of connection
strength increase by trophic factor uptake, and enhancement of
trophic factor uptake with increased connection strength. The
most important prediction from our model concerns the positive
feedback relation between LTP and NT. These are the essential
features of our model by which the competitive process is
implemented, and provide a novel mechanism for competitive
interactions in the central nervous system.
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