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Propagation of discharges in cortical and thalamic systems, which
is used as a probe for examining network circuitry, is studied by
constructing a one-dimensional model of integrate-and-fire neu-
rons that are coupled by excitatory synapses with delay. Each
neuron fires only one spike. The velocity and stability of propa-
gating continuous pulses are calculated analytically. Above a
certain critical value of the constant delay, these pulses lose
stability. Instead, lurching pulses propagate with discontinuous
and periodic spatio-temporal characteristics. The parameter regime
for which lurching occurs is strongly affected by the footprint
(connectivity) shape; bistability may occur with a square footprint
shape but not with an exponential footprint shape. For strong
synaptic coupling, the velocity of both continuous and lurching
pulses increases logarithmically with the synaptic coupling
strength gsyn for an exponential footprint shape, and it is bounded
for a step footprint shape. We conclude that the differences in
velocity and shape between the front of thalamic spindle waves in
vitro and cortical paroxysmal discharges stem from their different
effective delay; in thalamic networks, large effective delay be-
tween inhibitory neurons arises from their effective interaction via
the excitatory cells which display postinhibitory rebound.
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Neuronal population discharges appear in disinhibited coro-
nal neocortical slices in response to electrical stimulation

above a certain threshold. These slice preparations were devel-
oped initially as experimental models for epilepsy (1, 2). Re-
cently, experimental and theoretical investigations (3–7) have
tried to relate the dynamics of propagating discharge to the
underlying neuronal circuitry, and to use the dynamics of cortical
slices as a first stage toward understanding spatio-temporal
dynamics in neuronal networks (8–10). The average discharge
velocity is about 10–15 cm/s (3); neurons are recruited to the
wave because of the excitatory recurrent interactions between
neurons. Numerical simulations of a conductance based neuro-
nal model with homogeneous architecture reveal that the dis-
charge propagates at a constant velocity, as a continuous trav-
eling pulse (3, 6, 7). Spatial inhomogeneities in the velocity,
which were discovered experimentally, were attributed to spatial
f luctuations in the synaptic and intrinsic neuronal properties
along the slice (11, 12). In both theory and experiment, there was
a minimal velocity below which the discharge could not propa-
gate. Propagating discharges with similar properties and veloc-
ities have been found in other cortical structures, such as the
hippocampus (13, 14) and the piriform cortex (15).

Another example of propagating discharges is the spindle-like
discharges in thalamic slices (16, 17). The circuit is composed of
excitatory thalamocortical (TC) cells and inhibitory reticular
(RE) thalamic cells, coupled with reciprocal synaptic connec-
tions. The excitatory cells possess a postinhibitory rebound
mechanism (see, e.g., ref. 18). The propagation velocity is around
1 mm/s (19). Numerical simulations have indicated that these
discharges propagate in a nonsmooth, periodic, ‘‘lurching’’ man-

ner (20, 21). Each recruitment cycle has two stages. At the first
stage, a new group of inhibitory RE cells is excited by synapses
from TC cells, and this RE group inhibits a new group of silent
TC cells. At the second stage, the newly recruited TC cells
rebound from hyperpolarization and fire a burst of action
potentials. These bursts further recruit more RE cells during the
next cycle. Thus, the lurching wave has a periodic nature at the
front. Rinzel et al. (22) have reduced the model of a thalamic
slice to a model of coupled inhibitory units and found that the
model can also exhibit lurching waves if the synaptic reversal
potential is hyperpolarized enough. With off-center (coupling
that is zero at zero distance and has a maximum at a finite
distance) inhibition, lurching waves can propagate in one direc-
tion while continuous waves can propagate in the other direction,
demonstrating bistability§ in the system. An experimental in vivo
study suggested that the RE nucleus may generate spindle-like
oscillations (23). Numerical simulations of isolated RE networks
showed that such oscillations can propagate as lurching pulses
(20) or as continuous pulses (24).

In this work, we explore the recruitment stage of these two
propagating discharges. We ask the following questions.

1. What is the basis for the different types (continuous or
lurching) of propagating discharges? How is the type deter-
mined by the network architecture, the kinetics of single cells
and synapses, and the synaptic delay?

2. What is the relationship between the velocity of the pulse (or
wave), and the intrinsic, synaptic, and architecture properties
of the system?

Specifically, we want to know why cortical networks exhibit
fast, continuous discharges, whereas thalamic networks exhibit
slow, lurching discharges. To answer these questions, we develop
a joint conceptual framework for the two types of networks,
which enables us to compare the two preparations and the two
types of discharge propagation. We show that under certain
conditions and approximations, the discharge dynamics of both
cortical and thalamic slices can be reduced to a model of
integrate and fire neurons in which each neuron can fire only one
spike. Neurons are coupled by excitatory synapses with delay,
which is small for cortical networks and large for thalamic
networks. Using analytical and numerical methods, we find that
continuous pulses exist and are stable for small values of
constant (space-independent) delay. As the constant delay in-
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creases, this pulse loses stability and lurching pulses are ob-
tained.

The Model
Reduction of Models of Paroxysmal Discharges in Disinhibited Cortical
Networks. Simulations of a conductance-based models of parox-
ysmal discharges in disinhibited cortical tissues (Fig. 1 A) reveal
that the discharge velocity n is determined primarily by the
response of the postsynaptic neuron to the first one or two spikes
of the presynaptic neuron (3), especially with prominent synaptic
depression. Therefore, taking only the first spike of each pre-
synaptic neuron into account and ignoring all the others is a good
approximation (6). For example, if we assume that only the first
spike elicits an excitatory postsynaptic conductance (EPSC) for
the parameters of figure 8 in ref. 3, the velocity decreases by
only 15%.

Even adjacent cortical neurons have a delay of about 2 ms (25,
26); more distant neurons are expected to have a larger delay
because of the finite axonal connectivity. The delay tdelay be-
tween neurons at positions x and x9 is therefore

tdelay 5 td 1
x 2 x9

c
, [1]

where td is the constant delay and c is the axonal conduction
velocity.

Reduction of Models of Spindle-Like Discharges in Thalamic Networks.
In this paper, we consider a spatially structured network of
excitatory neurons, which may be interpreted as a reduction
from a two-population thalamic network (Fig. 1B). The idea is
that because the RE-to-TC projection is topographic and acts via
GABAA and GABAB receptors, excitation of one RE cell would
result in a delayed barrage of EPSCs in the neighboring RE cells
through the disynaptic RE-TC-RE loop. In this idealized view of
the isolated thalamic circuit, the RE cell layer acts effectively as
a cell population with reciprocal AMPA-mediated excitatory
interactions, with an effective delay td (Eq. 1) of order 100 ms
caused by the time needed for the TC cell to rebound from
inhibition. Because we are interested in this work only in the
recruitment process, we can model the system by considering
only the first ‘‘spike’’ each cell fires. The large effective delay
ensures that the velocity at moderate coupling is determined
mainly by the first spike. This spike represents a Ca21 spike upon
which rides a train of action potentials (20). The assumption of
fixed effective delay only applies if those TC cells that receive
inhibitory input are in burst-capable mode.

Model Description. We use the integrate-and-fire model (6, 27)

V~x, t!
t

5 2
V~x, t!

t0
1 Isyn~x, t! 1 Iapp~x, t! [2]

for 0 , V(x, t) , VT, where V(x, t) is the membrane potential
of a neuron at a position x and time t, t0 is the passive membrane
time constant of the neuron, Isyn is the normalized synaptic input,
and Iapp is the normalized applied current; Iapp 5 0 unless stated
differently. When V of a neuron reaches the threshold VT at time
T(x), the neuron fires a spike, and cannot fire more spikes
afterwards; its voltage is set to zero at later times. We assume
that the number of neurons within a footprint length is large and
therefore use a continuum model and replace the sum over the
presynaptic neurons by an integral:

Isyn~x, t! 5 gsyn E
2`

`

dx9w~x 2 x9!a@t 2 T~x9! 2 tdelay#,

[3]

where gsyn 5 g̃synD/C, g̃syn is the synaptic conductance, C is the
membrane capacitance, and D 5 V 2 Vsyn is approximated here
to be a constant (‘‘coupling by currents’’, see, e.g., refs. 6 and 28);
tdelay is the delay between the post- and presynaptic neurons. The
temporal shape of the EPSC that a postsynaptic cell at a position
x receives following a spike of a presynaptic cell at a position x9
is given by the normalized a function a[t 2 T(x9)]:

a~t! 5 He2t/t1 2 e2t/t2

t1 2 t2
t $ 0

0 otherwise
, [4]

where t1 and t2 are the synaptic rise and decay time, respectively.
The spatial dependence of the synaptic strength on the distance
between neurons, w(x), is called the ‘‘synaptic footprint shape’’
(3, 20). We examine two shapes (Fig. 1C):

w~x! 5
1

2s
e2uxu/s Exponential. [5]

w~x! 5 H 1
2s

uxu # s

0 uxu . s
Square. [6]

s is called the ‘‘synaptic footprint length.’’
Define the response (Green’s) function G(t) for t . 0 as

Fig. 1. (A) Synaptic architecture of the cortical and thalamic models. Both
have a one-dimensional architecture, with the coupling between cells decay-
ing with their distance. The footprint lengths are denoted by s (3, 20). In the
case of two populations, the first and second letters in the subscript denote the
pre- and postsynaptic populations respectively. (A) Disinhibited cortical
model: a chain of excitatory (E) cells. (B) Thalamic model. Inhibitory (I) RE cells
inhibit excitatory (E) TC cells, and TC cells excite RE cells. Mutual inhibition
between RE cells is neglected because it has relatively small effect on discharge
propagation (16, 19). (C) Exponential (solid line) and square (dashed line)
footprint shapes.
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dG
dt

5 2
G
t0

1 a~t!; G~0! 5 0 [7]

and G(t) 5 0 for t , 0. Then, for t1 5 0,

G~t! 5 H t0

t0 2 t2
~e2t/t0 2 e2t/t2! t $ 0

0 otherwise
[8]

for t . 0. The function G is the normalized EPSP (excitatory
postsynaptic potential) developed in the cell as a response to the
EPSC (Eq. 4). The Volterra representation of Eqs. 2 and 3 for
neurons that can fire only one spike is

VT

gsyn
5 E

2`

`

dx9w~x9!GFT~x! 2 T~x 2 x9! 2 td 2
x9

c G [9]

together with the condition that T(x) is the first time that the
voltage crosses the threshold. This condition requires that

dV@x, T~x!#

dt
. 0. [10]

Numerical Methods. Eqs. 2 and 3 are simulated numerically by
discretizing space. There are N neurons in the chain, and the
density of neurons is r per length s. The coupled system of
ordinary differential equations for the integrate-and-fire neu-
rons is solved by using exact integration (29). To stimulate the
network, applied current is ‘‘injected’’ into a group of neurons on
the ‘‘left’’ of the system (small x values) that span a length at least
equal to the footprint length s (‘‘shock’’ initial conditions).

Results
In the following, we calculate the existence and stability regimes
and the velocity of the continuous and lurching pulses for c 3
` (infinite axonal conduction velocity). The effect of finite
axonal velocity c is reported at the end of this section. In most
calculations we will take t1 5 0 for simplicity, unless stated
otherwise. Details of the analytical calculations will be published
elsewhere.

Continuous and Lurching Pulses. A pulse can propagate along the
network in response to ‘‘shock’’ initial conditions. For zero or
small td (below a critical value tdc), the pulse is continuous far
from the stimulus region (Fig. 2 A), and the firing times of the
neurons obey T(x) 5 T0 1 x/n, where n is the pulse velocity and
T0 is an arbitrary time. The neuronal potential satisfies a
traveling pulse equation as well: V(x, t) 5 Ṽ(x 2 nt) (3, 6, 7). For
large td (above tdc), a lurching propagating pulse is observed
(Fig. 2B). Space is spontaneously segregated into basic spatial
units, each with a spatial period length L, and the firing time in
each unit can be obtained from the spatial period in the previous
unit according to

T~x 1 L! 5 T~x! 1 Tper. [11]

The average velocity of the pulse is n 5 L/Tper. One can easily
show that the function T(x) 2 x/n is a periodic function with a
period L, as demonstrated in Fig. 2C.

Existence, Stability, and Velocity of Continuous Pulses. General for-
malism. Substituting the condition for a continuous pulse, T(x) 5
x/n, into the evolution Eq. 9, we obtain

E
0

`

dyw~y 1 tdn!G~y/n! 5 VT/gsyn [12]

together with the condition (a consequence of Eq. 10)

dn/dgsyn . 0. [13]

Stability of the continuous pulse is calculated by analyzing spatial
perturbation of Eq. 9 (see also ref. 7).

Exponential footprint shape. The velocity n is determined using
Eqs. 5, 8, and 12:

~t0n 1 s!~t2n 1 s!

t0ns
expStdn

s
D 5

gsyn

2VT
[14]

together with Eq. 13; this is an extension of the equation
obtained in ref. 6 for td 5 0. From this equation, one can see the
following:

1. For td 5 0, the left-hand-side of Eq. 14 has a minimum with
respect to n at nmin 5 s/=t0t2. Continuous pulses cannot
propagate¶ with velocity smaller than nmin, which is obtained
for a minimal synaptic coupling gsyn,min.

2. Because exp(tdn/s) . 1 and increases with td, nmin decreases
with td and is obtained for larger gsyn,min.

3. For td . 0 and at large enough gsyn, the velocity is determined
mainly by the exponential factor in Eq. 14 and therefore

¶For gsyn . gsyn,min, there are two branches of solutions to Eq. 14. At the slow branch, n

decreases with gsyn (3, 6), and therefore this solution is not meaningful.

Fig. 2. (A and B) Rastergrams obtained from simulating Eqs. 2, 3, and 5 with
the condition that each neuron can fire only one spike. Parameters: t0 5 30 ms,
t2 5 2 ms, gsynVT 5 10, c 3 `, N 5 5 3 104, r 5 500; for these parameters,
tdc 5 11.15 ms. The solid circles represent the firing time of neurons as a
function of their normalized position x/s; spikes of only one out of every 50
neuron are plotted. Together, the groups of solid circles looks almost like one
continuous line. (A) For td , tdc (3 ms), a continuous pulse is obtained. (B) For
td . tdc (30 ms), the pulse is lurching. (C) The fluctuation around the constant-
velocity solutions, T(x) 2 x/n are plotted as a function of position x/s for the
same parameters as in B, to demonstrate the oscillatory nature of the lurching
pulse. The firing times of all the neurons are plotted here as solid dots.
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depends logarithmically on gsyn to the highest order. In
contrast, for td 5 0, the velocity exhibits a power-law
dependence on gsyn at large gsyn (6).

Graphs of n as a function of 1/gsyn for several values of td,
together with results of the stability analysis of the pulses, are
shown in Fig. 3. For large enough td, the pulse is unstable for
small gsyn (and low velocities). The various behavioral regimes of
the continuous pulse in the td 2 gsyn plane are plotted in Fig. 4A.
Below the solid line, the continuous pulse does not exist. Above
this line, the continuous pulse is stable if the delay td is smaller
than a critical delay tdc and is unstable otherwise. The dashed
line denotes the value of tdc as a function of gsyn. At very large
gsyn, tdc increases logarithmically with gsyn.

The boundaries of the regime of existence of lurching pulses
have been located by using numerical simulations, and they are
represented by the light-shaded area in Fig. 4A. Lurching pulses
are observed in all the parameter regimes in which the contin-
uous pulse is unstable. In addition, lurching pulses are also
observed in a parameter regime in which the continuous pulse
does not exist at all. At very large delay, lurching pulses are
observed above a critical value of gsyn, denoted by the arrow, that
does not depend on td (see below).

Square footprint shape. The velocity n is determined by using
Eqs. 6, 8, and 12:

2VT

gsyn
5

t0n

s
H1 2

1
t0 2 t2

Ft0 expStd 2 s/n
t0

D
2 t2 expStd 2 s/n

t2
DGJ . [15]

The qualitative results regarding the minimal velocity and its
dependence on td are the same as for the exponential case. The
situation is different, however, for large gsyn. For n 5 s/td, the
right-hand side of Eq. 15 is zero. Hence, at the limit gsyn3 ` the
velocity of the continuous pulse approaches the finite value s/td.

The different behavioral regimes of the continuous pulse for
a square footprint shape are presented in Fig. 4B. The critical
delay tdc increases with gsyn almost linearly at large gsyn. As a
result, for a specific td there is a moderate gsyn value for which
the continuous pulse is stable. Lurching pulses are obtained in
the region denoted by the gray shading in Fig. 4B. There are two
apparent differences between the situation here and the situa-

tion for exponential footprint shape. First, lurching pulses exist
in an area which is composed of ‘‘tongues.’’ Second, a bistable
regime exists, denoted by the dark-gray shading, in which the two
types of pulses can propagate, depending on the initial stimu-
lation (22).

Velocity of Lurching Pulses. How does the velocity of the lurching
pulse depend on the synaptic strength? We can calculate this
velocity in the case

t2 ,, t0 ,, td. [16]

This case corresponds to a large delay and fast EPSCs (as in
thalamic slices); note that t1 5 0. Simulations of such cases show
that neurons fire only during a time period that is small in
comparison to the delay, and L is almost unaffected by the delay
period as long as it is large enough. Therefore, the pulse velocity
is n 5 L/td. For td .. t0, a neuron that fires during the nth
lurching period (with length L and time Tper) is affected only by
neurons that have fired during the previous lurching period. The
contribution to the potential of that neuron of neuronal EPSCs
from neurons in earlier periods has already decayed, mostly
because of the large delay and also because of the fact that
neuron in earlier lurching periods are more distant from that
neuron. The neuron is also not affected by neurons that fire

Fig. 3. The velocity of the continuous pulse as a function of VT/gsyn for several
values of td and exponential footprint shape (Eq. 14). The wide lines represent
stable pulses and the narrow lines represent unstable pulses. The number
above each line, from 0 to 50, denotes the value of td. Parameters: t0 5 30 ms,
t2 5 2 ms.

Fig. 4. Regimes of existence and stability of the continuous and lurching
pulses in the td-n plane are shown in A for exponential footprint shape and in
B for square footprint shape. Parameters are as in Fig 3. The boundaries of the
regime in which the lurching pulse exists and is stable were computed from
numerical simulations, in which a pulse was initiated by a ‘‘shock’’ initial
stimulus; N 5 20,000, r 5 50. The solid line denotes the minimal possible
velocity as a function of gsyn; the continuous pulse becomes unstable (via a
Hopf bifurcation) on the dashed line. The continuous pulse is therefore stable
above both the solid and long dashed line, as denoted by ‘‘s.’’ It is unstable
between the two lines, as denoted by ‘‘us,’’ and does not exist below the
continuous line, as denoted by ‘‘ne.’’ The light-gray shading represents the
region for which lurching pulses (and not continuous pulses) are obtained.
Bistable regimes, in which the continuous pulse can coexist with the lurching
pulse, are denoted by the dark-gray shading. For the square footprint shape
(B), but not for the exponential footprint shape, there is such a bistable regime
that has a ‘‘tongue-like’’ structure. The arrow at the right of each graph
represents the minimal values of gsyn for which the lurching pulse is found in
simulations for td 3 `.
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during the same lurching period. We assume that the lurching
wave is initiated at very large, negative x, and a lurching spatial
period starts at x 5 0. We define the function f(x) on the interval
0 , x # L to be f(x) 5 T(x 1 nL) 2 nTper, where n is the integer
part of T(x)/Tper (or x/L). Neurons at a position 0 # x , L will
be affected only by neurons located in the interval 2L # x , 0.
Eq. 9 becomes

VT

gsyn
5 E

2L

0

dx9w~x 2 x9!G@f~x! 2 f~x9! 1 T̂#, [17]

where T̂ 5 Tper 2 td. This means that for a square footprint
shape, L # s. Using an asymptotic expansion, we find that the
length L for an exponential footprint shape is given, for the
conditions in Eq. 16, by

L 5 s ln 2 2 s ln~1 2 Î1 2 8VT/gsyn!. [18]

For large gsyn, expanding this equation yields L 5 s ln[gsyn/
(2VT)]. Eq. 18 has a solution only if gsyn . 8VT, and this is the
synaptic conductance threshold for enabling the propagation of
lurching waves under the conditions of Eq. 16. The dependence
of the lurching spatial period L (in units of s) as a function of
gsyn/VT is shown in Fig. 5. The straight line in logarithmic scale
shows that except for gsyn near the threshold, L increases
logarithmically with gsyn. The open circles represent simulation
results with td 5 1,000 ms, t0 5 30 ms, and t2 5 0.002 ms, and
they fall exactly on the analytical curve.

Using simulations, we tested the validity of the perturbation
calculation when the time constants of the system do not fulfill
Eq. 16 (not near the threshold). First, we reduced td to 20 ms.
This change has almost no effect for large gsyn and mildly
increases L for small gsyn. This velocity increase can be attributed
to the excitatory effect on a neuron from neurons in cycles before
the immediate previous lurching cycle; it is stronger for small gsyn
because of the shorter L. Second, we increased t2 to 2 ms. As a
result, L decreases, because the EPSP developed in the postsyn-
aptic cell (Eq. 7) is smaller as a result of the interplay between

the EPSC and the leaky neuronal integrator. This change of t2
has, however, an effect of less then 10% on L in comparison to
the analytic result (Eq. 18). Third, we simulated a network with
t1 5 0.3 ms. This change did not change L significantly in
comparison to the case t1 5 0. These results show that our
analytical theory yields a good approximation even beyond the
parameter regime for which it is derived.

Finite Axonal Velocity. When the axonal velocity c is finite, we find
that the pulse velocity n is given by the equation 1/n 5 1/n` 1
1/c, where n` is the pulse velocity for infinite axonal velocity. The
value of tdc for a specific value of gsyn, and therefore the
parameter regime in which stable continuous pulses are ob-
served, do not depend on c.

Discussion
The main results of this work are as follows: (i) Continuous
pulses can propagate along one-dimensional neuronal networks
with small constant delay td, and lurching pulses with periodic
characteristics can propagate with large td. (ii) The functional
dependence of the propagation velocity n on the synaptic
coupling strength gsyn is hardly affected by the pulse type;
velocities of both continuous and lurching pulses increase log-
arithmically with the gsyn for a exponential footprint shape; they
are bounded for square footprint shape (this is consistent with
the heuristic argument of ref. 20). (iii) The footprint shape
strongly affects the types of pulses that are obtained with
intermediate td and gsyn. In particular, bistability (a regime
where both pulse types propagate) can occur with square
footprint shape [or with an off-center shape (22)] but not with
exponential shape. From these results we conclude that the
difference in form and velocity between cortical and thalamic
propagating discharges stems from the much larger effective
delay in thalamic networks.

The instability of continuous pulses with large td has been
shown independently by Bressloff (7). We find that lurching
pulses are obtained at these value of td, and sometimes they even
coexist with the continuous pulses. Traub and colleagues (13, 14)
have numerically studied the velocity reduction due to finite c.
We find a simple analytical formula that relates the velocity with
finite c to the velocity in the limit c 3 `. A heuristic argument
showing that the velocity of the lurching pulse increases loga-
rithmically with gsyn at large gsyn was presented in ref. 20 (but see
also ref. 30). Here, we derive the exact relationship between the
velocity and gsyn in the limit t2 ,, t0 ,, td, and show numerically
this this result is approximately valid even well beyond this
parameter regime.

In our model, we are interested in the recruitment processing
of neurons into the activity. We do not deal with the period of
firing and its termination. Each neuron is allowed to fire only one
spike. This simplification, which allows analytical treatment of
the model, is justified for cortical tissues, in particular with
prominent synaptic depression, because the velocity is deter-
mined primarily by the response to the first presynaptic spike. It
is justified for the thalamic network because of the large effective
delay. At gsyn values near the threshold for lurching, however,
subsequent spikes may have an effects. As a result, very low
velocities can be obtained in simulations of thalamic networks
(20), whereas in our model velocity cannot be smaller than a
finite minimal velocity.

In this work, the thalamic network model is reduced to a
network of reticular thalamic neurons coupled with effective
excitation with delay. Rinzel et al. (22) have reduced the same
network into a system of thalamocortical cells coupled by
effective inhibition. The two pictures are complementary. Our
reduction is exact in the limit sIE ,, sEI (Fig. 1B), where sIE and
sEI denote the inhibitory-to-excitatory and the excitatory-to-
inhibitory footprint lengths, respectively, whereas the reduction

Fig. 5. The normalized length of the lurching period L/s as a function of
gsyn/VT. The analytical solution for the case t1 5 0, t2 ,, t0 ,, td (Eq. 18) is
represented by the solid line. Simulations were carried out with N 5 200,000
and r 5 500. Simulations results with the corresponding parameter set: td 5

1000 ms, t0 5 30 ms, t1 5 0, t2 5 0.002 ms, denoted by E, fit the analytical
solutions almost exactly. The symbol 3 denotes simulations with td 5 20 ms,
t0 5 30 ms, t1 5 0, t2 5 0.002 ms; the symbol p denotes simulations with td 5

20 ms, t0 5 30 ms, t1 5 0, t2 5 2 ms; and the symbol h denotes simulations with
td 5 20 ms, t0 5 30 ms, t1 5 0.3, t2 5 2 ms.
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of ref. 22 is exact in the limit sIE .. sEI. Experimental results
and computational models indicate that the sum of these two
lengths is small, of order 100 mm (20, 21), but there is yet no
direct measure of each length separately (31, 32). Rinzel et al.
(22) showed that propagation can proceed smoothly with off-
center footprint shape in a parameter regime in which lurching
occurs with an on-center footprint shape; in some parameter
regime, the wave can lurch in one direction and propagate
smoothly in the other direction, exhibiting bistability. Here we
show that the parameter regime in which lurching or smooth
propagation occur depends on the footprint shape. Preliminary
simulations of the corresponding RE-TC network model (20)
indicate that for a square footprint range there is a transition
from a lurching wave to a continuous wave as the AMPA
conductance increases, with possible bistability, consistent with
the results of the present model; ‘‘tongue’’-like structures, how-
ever, were not observed.

Our model constitutes a framework for comparing and ex-
plaining the velocity and type of pulses and waves in various
tissues, whose dynamics can be reduced to that of Eqs. 2 and 3.
The main reason that thalamic spindle-like waves propagate
much more slowly than paroxysmal discharges in neocortex,
hippocampus, and piriform cortex is that the effective delay in
the thalamic network is much larger ('100 ms in comparison to
'2 ms in cortex). When inhibition is mediated by GABAB
inhibition only, the time needed for a TC neuron to rebound
from hyperpolarization is larger in comparison to the case when
GABAA inhibition is intact; the number of Na1 action potentials
within a burst is more prolonged (16, 17), which may result in a
stronger effective gsyn. The combined effect is that the velocity
is reduced with GABAA blockade (19–21). Paroxysmal dis-
charges propagate in disinhibited tangential slices of neocortical
layer IV with a velocity which is about an order of magnitude
smaller than the propagation velocity in disinhibited coronal

cortical slices (33). The slow velocity is partly explained by the
fact that these discharges are mediated by slow NMDA receptors
(larger t1 and t2, see Eqs. 4 and 14), but assuming that the
footprint length in layer IV is small in comparison to that in layer
V [which mediates mostly the propagation in coronal slices (34)]
is also needed to explain the slow velocity. Measurements of the
minimal velocity nmin [by gradual blockade of excitatory EPSCs
(3)], together with our theoretical model, should be carried out
in order to estimate the footprint length in layer IV networks.
The model predicts that if the effective synaptic delay or
conductance strength could be manipulated experimentally,
there may be a transition from continuous to lurching pulses. The
values of the parameters at the transition depend on the foot-
print shape.

Our theory enables us to estimate the footprint length based
on the critical velocity, provided that we know the footprint
shape, the synaptic kinetics, and the delays td and c. Experiments
on synaptic plasticity reveal that the response of a neuron to the
first presynaptic spike may vary (either be enhanced or be
depressed) in response to artificial (35) and natural (36, 37)
conditions. If indeed the global excitation gsyn is increased but
the footprint shape remains unchanged, at least within a re-
stricted domain, the discharge velocity in a disinhibited slice
should increase but the minimal velocity nmin remains un-
changed. Therefore, performing such experiments can corrob-
orate or refute theories about global synaptic enhancement or
reduction.
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