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ABSTRACT Hippocampal networks of excitatory and in-
hibitory neurons that produce g-frequency rhythms display
behavior in which the inhibitory cells produce spike doublets
when there is strong stimulation at separated sites. It has been
suggested that the doublets play a key role in the ability to
synchronize over a distance. Here we analyze the mechanisms
by which timing in the spike doublet can affect the synchro-
nization process. The analysis describes two independent
effects: one comes from the timing of excitation from sepa-
rated local circuits to an inhibitory cell, and the other comes
from the timing of inhibition from separated local circuits to
an excitatory cell. We show that a network with both of these
effects has different synchronization properties than a net-
work with either excitatory or inhibitory type of coupling
alone, and we give a rationale for the shorter space scales
associated with inhibitory interactions.

When neurons communicate over some distance, there are
conduction delays between the firing of the presynaptic neuron
and the receipt of the signal at the postsynaptic cell. It is also
known that cells can synchronize over distances of at least
several millimeters, over which conduction delays can be
significant. This raises the question of how cells can synchro-
nize in spite of the delays. Traub et al. (1) and Whittington et
al. (2) suggested that the fine structure of the spiking of some
of the cells may play a part in the synchronization process for
the g frequency rhythm, found in hippocampal and neocortical
systems during states of sensory stimulation. (For references,
see ref. 2.) More specifically, for some models of cortical
structure, they noted that the ability to synchronize in the
presence of delays is correlated with the appearance of spike
doublets in the inhibitory cells. The doublets appear in slice
preparations when there is strong stimulation at separated sites
(1, 2). In this paper, we analyze a mechanism for such
synchronization, using a simplified version of equations of
Traub and colleagues.

The timing of spikes within a doublet is shown to encode
information about phases of local circuits in a previous cycle;
the model shows how the circuit can use this information in an
automatic way to bring nonsynchronous local circuits closer to
synchrony. There are two independent effects in the model.
The first is the response of the inhibitory (I) cells to excitation
from more than one local circuit. The I-cells may produce more
than one spike, whose relative timing depends on strength of
excitation and recovery properties of the cell after the firing of
a first spike; the latter can include effects of after-
hyperpolarization or self-inhibition in a local circuit. The
second effect is the response of the excitatory (E) cells to the
multiple inhibitory spikes they receive from within their local

circuit or other circuits. The maximal inhibition received by an
E-cell can depend on the times and sizes of the inhibitory
postsynaptic potentials it receives, and this affects the time
until the E-cell can spike again. We show that each of the two
effects is enough to allow synchronization. Together, they give
the network synchronization properties that are not intuitively
clear from the properties of either alone.

Previous papers have analyzed mechanisms for synchroni-
zation depending on interactions among I-cells (3–6) or E-cells
(5–10). In this paper, the interactions between the local circuits
include E 3 I and I 3 E. We omit the E 3 E connections,
which are sparse in the CA1 region of the hippocampus (11),
and consider only those I3 I connections that are sufficiently
local to be considered part of a local circuit. By considering
networks with a subset of these connections, we shed light on
the role of each of them in the synchronization process. In
particular, we show that the different kinds of coupling work
together to provide synchrony over a larger range of delays
than either could do alone, and that the interaction provides
a significant increase in the speed of synchronization. The I3
E coupling also helps provide robustness to disruption from
larger excitatory conductances, but it reduces robustness to
heterogeneity. The two effects together give a rationale for the
shorter space scales of the inhibitory interactions. (See Discus-
sion.)

Our analysis considers a pair of local circuits, each having
one E-cell and one I-cell; each cell represents populations of
neurons. We reduce the biophysical equations for the network
to a map that takes the interspike interval of the two excitatory
cells to a new interspike interval after one cycle. The map does
not depend on the details of the biophysical equations. (In the
motivating equations in the Appendix, each cell has basic
Hodgkin–Huxley-like spiking currents.) The map is derived
from two subsidiary maps that encode the times that an
inhibitory cell or an excitatory cell fires after receiving inputs
at two different times as a function of the time difference
between the inputs. From these maps, we are able to read off
information about how different kinds of coupling affect
stability of the synchronized state, the period of the synchro-
nized solution, the rate of synchronization, and the response of
the network to heterogeneity of the cells.

The importance of multiple spikes in the synchronization
process distinguishes the mechanisms of this paper from other
mechanisms of synchronization that deal with the envelope of
bursting activity (3, 9) or single pulses (5–8). Indeed, the
significance of the timing of individual spikes provides a new
aspect of ‘‘temporal coding’’; the spikes encode information
about the synchronization process, rather than information
directly related to sensory inputs.

Biophysical Assumptions and Reduction to Map

In the parameter ranges we use, an isolated E-cell spikes
tonically. The I-cell population of a local circuit can beThe publication costs of this article were defrayed in part by page charge
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modeled either as excitable (does not fire without input) or
tonically firing, and receiving self-inhibition (which can come
from other cells of this population). In either case, the I-cell is
of ‘‘type 1’’ (8, 12). For an excitable cell, this means that, as the
cell receives increasing amounts of depolarized injected cur-
rent, it becomes oscillatory through a saddle-node bifurcation.
That is, the onset of repetitive firing can occur at arbitrarily low
frequencies. For a tonically firing cell, it ceases oscillations
with sufficient hyperpolarizing current, again through oscilla-
tions of arbitrarily low frequency. Type 1 neurons have an
arbitrarily long latency to firing after stimulation.

In each local circuit there is an excitatory synapse from E to
I and an inhibitory synapse from I to E (see Fig. 1 and
Appendix). The parameters of the synapses are chosen so that
the local circuit has the following properties:

H1. A firing of the E-cell elicits exactly one pulse from the
I-cell, providing that the latter has not fired very recently—i.e.,
is not in a refractory state. [This hypothesis can fail to hold if
the E3 I conductance is too large or takes too long to decay;
in that case, a single E-cell impulse can elicit multiple I-cell
spikes. We note that excitatory postsynaptic potentials to
I-cells in CA1 decay quickly (13).] The time between the
receipt of an excitatory pulse and the response of the I-cell
depends (among other things) on the strength of the E 3 I
connection, decreasing with increasing strength of that syn-
apse.

H2. The E–I circuit is an oscillator: With no further input,
the circuit displays a periodic rhythm, with one spike for each
cell on each cycle. The period of this oscillation is determined
mainly by the decay time of the I 3 E conductance, which is
long relative to the recovery time of the I-cell, and which
governs the time at which the E-cell fires after the receipt of
an I-pulse. (In this parameter regime, the onsets of the E 3
I and I 3 E conductances are sufficiently fast that inhibition
to the E-cell arising from a single spike of that cell prevents the
occurrence of the next spike until the inhibition wears off. With
other choices of time constants, it is possible to get more
complicated dynamics, including bursting.)

The local circuits are coupled by adding an excitatory
current to the I-cell and an inhibitory current to the E-cell,
each gated by the voltage of the E-cell or the I-cell of the other
circuit (Fig. 1; see Appendix). We will refer to cells of the circuit
we are focusing on as the ‘‘internal’’ E-cell or I-cell, and the
cells of the other circuit as the ‘‘external’’ cells. There is a
conduction delay d in each synapse between local circuits,
which is taken to be fixed. If there is an absolute refractory
period for the I-cell, we assume that it is smaller than d; hence
a pulse from the external E-cell spiking at the same time as the
internal E-cell can (after the conduction delay) elicit a re-
sponse from the internal I-cell. The value of d is chosen small
enough that the inhibitory pulse from the external I-cell in a
given cycle arrives before the internal E-cell has fully recov-
ered from the internal inhibition.

We take the spikes of each cell to be thin, so their times can
be specified. The independent variable of our map will be the

time between the firings of the two E-cells in a given cycle; the
map produces this time on the next cycle. Synchrony corre-
sponds to a fixed point at a time difference of zero. We assume
that the system is close to synchrony; we can then use the maps
to see if the dynamics brings the system closer to synchrony or
further away. When the system is sufficiently close to syn-
chrony, each E-cell fires one pulse per cycle (with further
pulses halted by the inhibition), and each I-cell fires two pulses
(one each in response to excitation from the external and
internal E-cells).

We use two preliminary maps to consider separately the
effects of the response of the I-cell and that of the E-cell to
their inputs. We start with TI, which encodes the effects of the
excitation to the internal I-cell from the internal and external
E-cell. (If it also gets self-inhibition, we consider this to be a
part of the definition of the intrinsic dynamics of the I-cell.) Let
c be the time between the receipt by an I-cell of the excitatory
pulses from the internal and external E-cells. We let TI(c) be
the time after the second excitatory input at which the
(internal) I-cell fires next. TI(c) depends on the parameters of
the I-cell and the strength of the synapses onto the cell. Fig. 2A
shows the dependence of TI(c) on the strength cei of the
intercircuit E3 I coupling. For weak E3 I coupling between
circuits, the height and slope of TI function can be arbitrarily
large for small c, corresponding to arbitrarily long latency to
firing. For sufficiently weak coupling from E 3 I cells, there
is an absolute refractory period c0 before which the I-cell will
not respond to the second pulse. Increasing the self-inhibition
gii in a local circuit introduces an absolute refractory period or
increases its size. Decreasing the internal E 3 I coupling gei
has a qualitatively similar effect (Fig. 2B).

The map TE encodes the effects of the timing of the inputs
into the internal E-cell. Near synchrony, each I-cell displays a
doublet, because of its response to the internal and external
E-cells. Thus, each E-cell receives four inhibitory pulses, two
each from each of the I-cells. TE is the time after the receipt
of the last pulse at which the E-cell fires next.

Let Eint, Iint denote the E- and I-cells of the internal circuit,
and Eext, Iext those of the other circuit. Let t1 and t2 denote the
times that the internal and external E-cells fire in some cycle.
Let D 5 t2 2 t1. Let tei denote the time after the E-cell fires
that the I-cell of the same circuit fires, assuming no other input.
(If the I-cell is modeled as an excitable cell, tei is the time it fires
after excitation when it is fully recovered.) In terms of the map
TI, the four inhibitory pulses from Iint and Iext are received at
Eint at the following four times, with the following four paths:

1. Eint 3 Iint 3 Eint. Arrives at t1 1 tei.
2. Eext 3 Iext 3 Eint. Arrives at t2 1 tei 1 d.
3. Eext 3 Iint 3 Eint. Arrives at t2 1 d 1 TI(D 1 d).
4. Eint3 Iext3 Eint. This pulse is sent from Iext at t1 1 d 1

TI(2D 1 d) and arrives at Eint at t1 1 2d 1 TI(2D 1 d).

We shall make the approximation that the effect of the first
two spikes on TE is much less important than that of the final
two, and focus only on the latter. This approximation is valid
because the inhibitory synapses are close to saturation after
one spike. Thus, the third spike of inhibition wipes out the
information from the first (both coming from the same cell),
and the fourth spike does the same for spike two. Recall that
TI encodes the extra time due to partial refractoriness that an
I-cell takes to fire after receiving a second pulse. Hence TI $
tei, so that pulses 3 and 4 are the last two to arrive at Eint.

We let f be the time between the last two spikes, so TE 5
TE(f). TE is defined for all f and is a decreasing function of
f (Fig. 3). It is possible to get an analytic formula that
approximates TE and that displays its dependence on inhibi-
tory decay time, t, and the strength of the external and internal
inhibitory synapses, as follows. The inhibitory conductance felt
by the E-cell is ciee2t/t 1 giee2(t1f)/t, where gie is the conduc-

FIG. 1. Network of two coupled local circuits, each with one E and
one I cell.
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tance from the internal cell, which fires first, and cie is the
conductance from the external one. When this quantity falls
below a critical value g*, the E-cell can fire. We can get a
formula for g* by noting that, if the inhibition comes only from
within a circuit, the time at which the E-cell is released to fire
is tp 2 tei, where tp is the period of the uncoupled circuit. Thus
g* 5 gieexp(2tp 1 tei). With the inhibition from both circuits,
the inhibitory conductance reaches g* when t equals

TE~f! 5 t ln$e2fyt 1 cieygie% 1 t ln~gieyg*!

5 t ln$e2fyt 1 cieygie% 1 tp 2 tei. [1]

Note that T9E , 0 and that TE is essentially independent of f
for large f. Fig. 3 shows that formula 1 gives an excellent fit

to the map TE measured directly by numerically integrating the
equations in the Appendix.

We can now specify the time #t1, #t2 at which the Eint and Eext
cells fire in the next cycle.

#t1 5 t1 1 2d 1 TI~2D 1 d!

1 TE~2D 1 d 1 TI~2D 1 d! 2 TI~D 1 d!!. [2]

A similar formula holds for Eext with indices 1 and 2 reversed
and D changed to 2D. Therefore, the difference Gd(D) of the
time of firing of the two E-cells at the next cycle is

Gd~D! 5 D 1 Fd~D! 2 Fd~2D! [3]

where

Fd~D! 5 TI~D 1 d! 1 TE~D 1 d 1 TI~D 1 d! 2 TI~2D 1 d!!. [4]

Stability of the Synchronous Solution

Full Network. There is a locked solution at lag D if Gd(D) 5
D, and synchrony if D 5 0. The synchronous solution is stable
if uG9d(0)u , 1. From formula 3, this means that synchrony is
stable if 21 , F9d(0) , 0. From formula 4,

F9d~0! 5 T9I~d! 1 T9E~d!@1 1 2T9I~d!#. [5]

From expression 5 we can see how the properties of the circuit
affect the stability of the synchronous state. The slope of TI can
be arbitrarily large when the argument of TI is small (as
happens when the E3 I coupling is weak). Thus, the analysis
predicts that stability of the synchronous solution could fail for
d too small, with the stability boundary occurring for larger
values of d when the coupling is decreased.

The effect of coupling strength on the range of delays
yielding synchrony was supported by simulations of the full
voltage-gated equations in the Appendix. For medium coupling
(cei 5 0.1 in Fig. 2 A), the slope of TI is gentle for small values
of the argument, and synchrony is stable for d 5 5. Changing
cei to 0.05 leads to higher value of T9I at that d, and the analysis

FIG. 2. Latency to firing of I-cell after last received E-pulse. (A)
Dependence on maximal excitatory conductance cei between circuits;
gii 5 0.15, gei 5 0.2. (B) Dependence on inputs gei and gii to I cell
within a circuit; cei 5 0.1.

FIG. 3. Latency to firing of E-cell after last received I-pulse.
Discrete data points are computed from equations in Appendix. The
three graphs correspond (top to bottom) to ceiygei 5 1.0, 0.5, 0.25.
Dashed lines for the top two are computed from formula 1 with t 5
20, tp 5 25, tei 5 1.5.
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predicts instability, confirmed by simulation. Keeping cei fixed
at 0.05 and increasing d to 10, the slope of TI decreases to
where synchrony is predicted to be stable, again confirmed by
simulations. In these simulations, only the external coupling is
changed. Changing the internal E 3 I coupling has effects
consistent with the changes in TI shown in Fig. 2B. We also
note that for those graphs TI without an absolute refractory
period, the slope of TI can also be small at d 5 0. For those
values of the parameter, the analysis and simulations yield
stability even if there is no delay.

The I3 E coupling encoded in the map TE has a modulating
effect on the synchronization process, allowing synchrony
when the E 3 I coupling alone (encoded in TI) would not. It
is easy to check from formula 1 that 21 , T9E(0) , 0. Thus,
for a value of d at which T9I(d) 5 21, the value of F9d(0) satisfies
F9d 5 21 2 T9E(d) . 21. Hence, stability can be attained for
a larger range of d, notably for smaller values of d than before.
This effect was checked by simulation; it was found that for
parameter value cei 5 0.1, stability can be attained for d 5 2
while T9I(2) , 21 (Fig. 2A).

Network Without I to E Coupling Between Circuits. For such
a connectivity, each E-cell gets inhibition only from the I-cell
of its own circuit, and hence (near synchrony) receives two
pulses of inhibition, not four. The two inputs are from spikes
1 and 3 as above, both from the internal I-cell. A variation on
the above analysis can be performed to see the consequences
of this change. We let TI be the same map as before. Now f
is the time between these two inhibitory spikes, and T# E(f) is
the time after the second spike that Eint fires. Note that T# E
codes how the E-cell responds to two inputs from its own local
circuit.

As before, let t1 and t2 be the times of firing of the two E-cells
in a given cycle and D 5 t2 2 t1. Thus f 5 D 1 d 2 tei 1 TI(D 1
d). The E-cell of local circuit 1 then fires at

t2 1 d 1 TI~D 1 d! 1 T# E~D 1 d 2 tei 1 TI~D 1 d!!. [6]

and similarly for circuit 2. Let G# d(D) be the difference in the
timing of the two E-cells at the next cycle. By formula 6

G# d~D! 5 2D 1 F# d~2D! 2 F# d~D!, [7]

where

F# d~D! 5 TI~D 1 d! 1 T# E~D 1 d 2 tei 1 TI~D 1 d!!. [8]

From formulas 7 and 8, we can compare the stabilization
properties of this reduced network with that of the full one.
Synchrony is stable if uG# 9d(0)u , 1, i.e., 21 , F# 9d , 0, where

F# 9d~0! 5 T9I~d! 1 T# 9E~d 2 tei 1 TI~d!!@1 1 T9I~d!#. [9]

If T9I(d) 5 21, then F# 9d(0) 5 21. Thus the reaction of the
E-cell to the timing of the two spikes from the internal I-cell
does not affect the range of delays for which synchrony is
stable. This contrasts with the full network, in which the timing
of the I-spikes provide an additional synchronizing mecha-
nism, discussed in the previous section. We note that if the I
3 E synapse saturates after one spike, the map T# E is a
constant. In the full network, the spikes whose times being
compared come from different cells, and are therefore not
subject to synaptic saturation effects.

The slope of T9I(d) can be very negative (Fig. 2 A), and F# 9(0)
is not modified much from that value by the effects of the
E-cell response. When a map has a large slope at a fixed point,
standard analyses show that behavior near that point is apt to
be complicated—e.g., there are solutions with high period or
aperiodic solutions (14). In simulations with no I3 E coupling
such complicated solutions were found in the parameter ranges
in which T9I(d) is more negative than 21.

Network Without E3 I Coupling Between Circuits. In this
network, each E-cell gets inhibition from the I-cells of both
circuits, but the I-cell gets excitation only from its own E-cell.
Thus, there are no doublets. We again let t1 and t2 denote the
firing times of the E-cells, f the time between the receipt of the
two spikes at the E-cell, and TE(f) the time after the receipt
of the second spike that the E-cell fires. We let #t1 and #t2 be the
times at which the E-cells fire in the next cycle. Then

#t1 5 t2 1 tei 1 d 1 TE~D 1 d!;

#t2 5 t1 1 tei 1 d 1 TE~2D 1 d!. [10]

Thus, we get #t2 2 #t1 5 Hd(D), where

Hd~D! 5 2D 1 TE~2D 1 d! 2 TE~D 1 d!. [11]

Stability of the synchronous solution is determined by H9d(0),
which satisfies

H9d~0! 5 21 2 2T9E~d!. [12]

Because 21 , T9E , 0, the synchronous solution is always
stable.

This is not the only stable fixed point, however. One can look
for an antiphase solution by using the first half of expression
10 to get the time of firing of E1 after E2 fires. The next time
for firing for E2 is then given by the second equation of 10, with
t1 replaced by #t1 and 2D by #t1 2 t2. Inserting the equation for
#t1 into that for #t2 and subtracting the equation for #t1, we get that
#t2 2 #t1 5 A(D) where

A~D! 5 D 1 TE~2d 1 TE~d 1 D!!. [13]

The antiphase solution is a fixed point D Þ 0 of formula 13.
Because 21 , T9E , 0, it follows that 0 , A9(D) , 1, so the
antiphase solution is always stable. There can be a significantly
large domain of attraction for the antiphase solution. Simu-
lations show that there are initial conditions for which, with no
E 3 I coupling, at d 5 5 the solution goes to antiphase; when
the E 3 I coupling is added (cei 5 0.1) the same initial
conditions lead to stable synchrony.

Network Properties

Period of the Synchronous Solution. For the network that
has both E 3 I and I 3 E coupling, the period P of the
synchronous solution can be deduced from formula 2 by setting
D 5 0 and subtracting t1 to get

P~d! 5 2d 1 TI~d! 1 TE~d!. [14]

For the network with only E 3 I coupling, the period is
deduced from formula 6 and is

PEI~d! 5 d 1 TI~d! 1 T# E~d 2 tei 1 TI~d!!. [15]

The last term is almost constant, especially if the I3 E synapse
within a local circuit is close to saturation. For the network
with only I 3 E coupling between circuits, the period comes
from formula 10:

PIE~d! 5 d 1 tei 1 TE~d!. [16]

Note that formula 14 is larger than either formula 15 or
formula 16 and depends more on d. The larger period for the
fully coupled network is confirmed by simulations. One im-
plication of this is that a fixed time lag between circuits
corresponds to a smaller phase lag (fraction of period) for the
fully coupled system than for either of the partially coupled
ones. For larger E 3 I coupling, the period decreases. The
periods 14–16 are also larger than the period tp of the
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uncoupled circuit (with no doublets), partly because of the
conduction delay d, but also because the times TE(d) and TI(d)
can be large for small d. That the period of a coupled circuit
is larger than the period of an uncoupled local circuit matches
the experimental and numerical results in refs. 2, 15, and 16.
The period of any of the coupled networks differs substantially
from that of a network of only inhibitory neurons, whose
period is determined mainly by the decay rate of the inhibition
(16–19). The effect of the latter on TE is seen in formula 1.

Rate of Synchronization. Near synchrony, the rate of syn-
chronization of a map Dt11 5 G(Dt) with stable fixed point D
5 0 is governed by the size of uG9(0)u; the fastest rate occurs
if G9(0) 5 0, and the slowest as uG9(0)u3 1. From Eqs. 3 and
7 we see that the maximal rate occurs for F9d 5 21y2 and F# 9d
5 21y2 for the equations of the preceding two sections. From
Eq. 5, we see that the response of the E-cell exerts a positive
influence on the rate of synchronization in the two domains in
which the rate would be small if there were only E 3 I
intercircuit coupling. For small values of d, 21 , T9E , 21y2,
depending on the size of cieygie. With cieygie ' 1, we have T9E
' 21y2. Then from Eq. 5, F9d(0) ' 21y2, the optimal value
for quick synchrony over a range of d. For d, large T9I is small
in a range where T9E is still significant, thus helping with the
synchrony (see Figs. 2 and 3). For the equations without I 3
E coupling, the T# E map does not have this effect, because T# 9E
in Eq. 9 is uniformly small.

Response to Heterogeneity. The local circuits in a network
need not be identical, and the coupling need not be exactly
symmetrical. If so, exact synchrony is not a solution. Instead,
one may ask how large is the deviation from synchrony for a
given amount of heterogeneity, and how much heterogeneity
can the network tolerate without loss of locking. The analysis
of the preceding section enables us to address the first ques-
tion; the second we comment on by using simulations.

The analysis of the effects of heterogeneity is independent
of the kind of heterogeneity. Any asymmetry as above shows
up in the equations as a difference between the maps Fd(D)
associated to the two circuits. Thus Eq. 3 is replaced by

G̃d~D! 5 D 1 Fd
1~D! 2 Fd

2~2D!, [17]

where Fd
i (D) is approximately Fd(D). Linearizing Eq. 17, the

right-hand side is approximately D 1 [Fd
1(0) 2 Fd

2(0)] 1
2F9d(0)D. Let « 5 [Fd

1(0) 2 Fd
2(0)]. Then the fixed point,

satisfying G̃d(D) 5 D, is given approximately by D 5 2«/
2F9d(0). For cieygie 5 1, T9E(d) ' 21y2 for small d (see formula
1 or Fig. 3) and so D ' «. But if cieygie is small, then T9E ' 21.
Hence (from formula 5) near the stability boundary T91(d) '
21, F9d(0) is small, yielding large D. Thus, for small delays, it
is important that the external and internal coupling strengths
be comparable in size.

If there is no I to E coupling, the map with heterogeneity is
a variation of formula 7, namely

Ĝd~D! 5 2D 1 F# d
1~2D! 2 F# d

2~D!. [18]

If « is now 5 [F# d
1(0) 2 F# d

2(0)], then the linearization gives a
fixed point at D 5 «y2[F# 9d(0) 1 1]. In this analysis, Dy« can be
changed by scaling the variables. However, the ratio uF9d(0)y
[F# 9d(0) 1 1]u of the effect of heterogeneity in the network with
only I3 E coupling to that in the full network is independent
of choices of variables. The smaller this number, the more the
advantage of the reduced network in producing smaller time
lags for the same heterogeneity. For d large enough so that T9I
is ignorable (e.g., d $ 6 ms) it follows from expressions 5 and
9 that this ratio is 'uT9Eu. For cie 5 gie, uT9E(d)u ' e2d/t[e2d/t 1 1],
which is '1y2 for d small and smaller as d increases; this shows
that the time lags for the full network are more than twice as long
as for the network with no I 3 E coupling. The analysis is
confirmed by simulations with heterogeneities up to 15% in the

intrinsic frequency of the oscillators. For heterogeneities of 20%
or more, synchrony can be lost, and one gets more complicated
dynamics andyor suppression (20). We note that networks with I
3 I coupling alone have been reported to be much less robust to
heterogeneity (17, 20).

Variations

Two Local Circuits, More I-Spikes per Cycle. In the previous
analysis, the reduction to the map assumed that, in each cycle,
each I-cell and each E-cell produces exactly one spike in the
absence of coupling between circuits. This assumption fails if
the E 3 I coupling conductance is sufficiently increased.
Simulations were done with a conductance large enough to
produce a double spike in an I-cell from one excitatory
postsynaptic potential. In the network with both E 3 I and I
3 E intercircuit coupling, the trajectories of the I-cells con-
tained doublets, triplets, or even higher numbers of spikes, but
the E-cells of the two networks continue to synchronize well,
even in the presence of moderate heterogeneity. In the net-
work with no I 3 E intercircuit coupling, the extra I-spikes
disrupted synchronization. We noted that persistence of the
synchronization (in the fully coupled case) occurred when the
last two inhibitory postsynaptic potentials to arrive at an E-cell
were from different I-cells, and in the order required by the
analysis in the section on stability. (See ref. 21 for related
work.)

More than Two Local Circuits. The previous analysis dealt
with just two circuits, but the effects are seen in larger arrays
of local circuits as well. Simulations with arrays of five local
circuits produce synchrony when the connections at the edges
are modified as in ref. 1 to reflect the extra density of
connections at the edges of the CA1 slice (R. Traub, personal
communication).

Discussion

It has been suggested that g-range rhythms have behavioral
significance for complex motor acts (22) and sensory process-
ing (23). The current work shows that the timing of spikes
within a doublet or burst can be of major importance in the
synchronization process. It helps to determine the time it takes
the E-cell to overcome the inhibition. In turn, the time between
the spiking of the E-cells in a given cycle determines the timing
of the spikes in the next doublet.

It should be noted that it is not the doublet per se that
encourages the synchronization. Rather, what is important is
that the two spikes of the doublet occur in response to
excitation from different local circuits. If a doublet is produced
by a strong E 3 I synapse within a local circuit, it will not
contribute to synchrony unless there is also a response from the
excitation of the E-cell in the other circuit. The simulations of
refs. 1 and 2 did not distinguish between these effects, but such
a distinction can be made using the analytical models.

As shown above, the analytical models capture very precisely
the behavior of the full biophysically based equations. There
are many parameters even in the two-circuit network, and it is
difficult to see from simulations alone how and why changes in
some of these affect the synchronization process. The analysis
provides a framework for dissecting out these effects; it shows
that the behavior of the network can be understood once one
has the functions TE and TI. Thus, the network effects of
changing parameters can be understood by seeing how those
parameters change the maps TE and TI. Using the maps, one
sees many ways in which the synchronization process may be
modulated to produce stable synchrony or nonsynchronous
behavior.

The analysis showed that the different kinds of connections
(I 3 E and E 3 I) between circuits have different synchro-
nization properties. The two-circuit network that contains
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both synchronizes over a larger range of conduction delays
than the network with just E 3 I, whereas the network with
just I3 E can also form stable anti-phase solutions. Thus, for
synchrony in a homogeneous network, the network with both
sets of connections is most robust. We have also shown that the
addition of I 3 E connections enhances the rate of synchro-
nization over the network with only E 3 I connections, and
makes the network more stable to potentially desynchronizing
large E 3 I conductances.

In a network whose local circuits are not identical, or whose
coupling is not symmetric, full connectivity is not optimal, in
some parameter ranges, for providing stable solutions with
small time lags. If d is relatively large, the network with both
E 3 I and I 3 E connections can produce large lags; by
contrast, the network with only E 3 I connection was shown
to produce a significantly more synchronous solution for a
given amount of heterogeneity.

The above results may help us to understand some of the
spatial scales in cortical networks. In CA1, the excitatory
pyramidal cells have axons that extend approximately 3 mm
(24). Interneurons of the hippocampus, including chandelier,
basket, and bistratified cells, have spatial scales about 1 mm or
smaller (25). Within this smaller distance, the I 3 E connec-
tion can help to synchronize the local circuits that have small
conduction delays between them and buffer the synchroniza-
tion process against a larger set of excitatory inputs. At larger
distances, with longer conduction delays, the I3 E connection
can become a liability when there is heterogeneity in the
network.

The two-circuit problem, or even its generalization to a chain
of N circuits, is still a major idealization of a network that is
more of a continuum, without discrete local circuits. Simula-
tions of networks in which the connections extend over many
cells in a continuum-like manner have been done (R. Traub,
personal communication), and both doublets and synchroni-
zation have been found. In addition, a more faithful network
architecture would also include I3 I coupling among circuits,
which is critical for synchrony in the absence of phasic exci-
tatory input to the interneurons (3–7, 16, 17, 20, 21). With
many different subclasses of interneurons (25), it is likely that
effects of such neurons can be felt at different space scales,
providing additional mechanisms for modulating network
behavior. Furthermore, the synchronization process may be
influenced by thalamocortical interactions (26). The current
study provides some of the building blocks for a more inclusive
analysis.

Appendix

The equations for each cell are obtained from a reduction of
the model of Traub and Miles for spiking (27). (The results are
the same without the reduction.) The equations are

CdV
dt

5 2gL~V 2 VL! 2 gKn4~V 2 VK! 2 gNam3h~V 2 VNa!

1 I0 1 Isyn

with ion channels for leak, sodium, and delayed rectifier
potassium. Here m 5 m`(V) 5 am(V)y[am(V) 1 bm(V)]
where am(V) 5 0.32(54 1 V)y(1 2 exp[2(V 1 54)y4]) and
bm(V) 5 0.28(V 1 27)y(exp[(V127)y5 2 1]). The K-gate
n(t) satisfies dnydt 5 an(V)(1 2 n) 2 bn(V), with an(V) 5
0.032(V 1 52)y[1 2 exp(2(V 1 52)y5)] and bn(V) 5
0.5exp[2(57 1 V)y40]. A reduction to a two-dimensional
equation is obtained (28) by setting h 5 max(1 2 1.25n, 0).
Parameter values are C 5 1, gL 5 0.1, VL 5 20.67, gNa 5 100,
VNa 5 50, gK 5 80, Vk 5 2100, I0 5 0.5 for the I cells and I0

5 8 for the E cells. C is measured in mFycm2, conductances in
mSycm2, currents in mAycm2, voltages in mV, and time in ms.

Each synaptic current has the form gsyns(t 2 d)(V 2 Vsyn).
Here gsyn 5 gii, gie, gei, cie, or cei. The subscripts denote the
source and target of the synapse, the gs denote conductance
within a circuit, and the cs denote conductance between the
circuits, gii 5 0.15 or 0.3, gei 5 0.2, gie 5 2. cei and cie were
varied. d 5 0 for synapses within a local circuit. s satisfies
dsydt 5 AS(V̂)(1 2 s) 2 Bs, where S(V̂) 5 1 1 tanh(V̂y4)
and V̂ is the presynaptic voltage. For excitatory synapses, A 5
20 ms21, B 5 0.333 ms21, Vsyn 5 0; for inhibitory synapses, A 5
1 ms21, B 5 0.05 ms21, Vsyn 5 280 mV.

The maps are computed by driving a two-cell oscillating E–I
circuit with another one that is at rest and stimulated at
different times to elicit a spike. All simulations were done using
G.B.E.’s package, XPPAUT, available from ftp:yyftp.math.
pitt.eduypubybardware. The usual method of integration is a
Gear-type integrator adapted for use with delay equations. All
equation files are available from G.B.E. upon request.
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