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LARGE SCALE SPATIALLY ORGANIZED ACTIVITY IN NEURAL NETS*

G. B. ERMENTROUT{t AND J. D. COWANY

Abstract. A model for the spatiotemporal activity of neuronal nets is proposed. Stationary periodic
spatial patterns are discussed from the point of view of bifurcation theory. Existence of spatial patterns on the
whole line is established by the implicit function theorem. Singularity theory is used to study the local
structure of the bifurcation equations. A Poincaré-Lindstedt series is developed to establish the form of the
periodic stationary states and their stability. The biological relevance of these patterns is briefly discussed.

1. Introduction. In the past few years, numerous models of large scale neuronal
interactions have been proposed [2]-{4]. These models all share several common
mechanisms which we now describe. Suppose we consider a set of interconnected
neurons distributed over the line with the following simple properties:

(1) Each neuron has a membrane potential, V), associated with it.

(2) The output firing frequency (impulses per second) or current, I, is a function of

the membrane potential, I, = S(V}).

(3) The net current ¢, contributed by the neuron at k to another neuron at j is

weighted by some constant, ay;; Y = axily.

(4) The total postsynaptic potential, ¢;;, contributed by this current depends on

the temporal characteristics of the dendrites:

bii = L h(t—7)¢Yy(7) dr.

Here, h(t) is characteristic of the dendrite cable properties and may contain
delays, etc. For our purposes, we take h(t) = exp (—¢/u)/u ; which represents a
simple RC-network, with u the time constant of the membrane.

(5) Finally these postsynaptic potentials are summed to yield the total membrane
potential of the neuron:

t

(1.1) V,-(t)=§¢k,~=J‘_ h(t—r)%akiS(Vk(T))dT+J h(t—7)P;(7) dr,

where we have also included external stimulating currents, P;(¢). Taking h(t) as above

h(t)
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FIG. 1. Neural net described in text.
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leads to the system of ordinary differential equations:

dv; ’
(1.2) p,d—t’=—-V,-+%ak,-S(Vk(t))+P,-(t), j=0,1,2,---.

We assume that the weights may be written

o =aw(|j—kl|); % w(k))=1,

that is an absolute number, «, times a “probability” of connection, w(|j]). Since w
depends only on the distance between connections, we are additionally assuming that
the tissue is isotropic. Under these conditions, we may take the continuum limit of (1.2),
assuming there are infinitely many neurons distributed along the x-axis:

o

13 e Zwn=-VeEota] wlx-y)S(Ve0)dy+Pe .

In general, S(z) is a bounded monotone increasing function with an inflection point
occurring at the ‘“‘threshold.” Examples include the logistic function and the Heaviside
step function. Data indicate that the i — v characteristic of cortical neurons has this
form, shown in Fig. 2 [10]. For this paper and numerical simulations, we shall take

(1.4) §@)= (222 )11/ +exp (—v(z = 6)) ~ 1/ (1 + exp (v6))),

where qo is the charge delivered per impulse, r the refractory period; » determines how
rapidly S increases, and 6 determines the inflection point in the i — v characteristic. We
have subtracted an additional term from S(z) so that §(0) = 0. This is a mathematical
simplification and does not alter the qualitative results significantly.

So far we have assumed « is positive and in so doing considered a population of
excitatory neurons (if « <0, then they would be inhibitory). A more realistic model
incorporates various other cell types, so we generalize (1.3) to a multipopulation model.
Let V,.(x, t) denote the membrane potential of the nth cell type at point x and time ¢.

-1

F1G. 2. Nonlinear ““i —v’’ characteristic for a single neuron.
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Then (1.3) generalizes to:

oV, M it
P (x, t) = _Vn(x’ t)+ Zl Amn J Wmn(lx‘xll)sm(vm(x’: t)) dx'

Kn

(1.5)
+Pn(X,t), n=1,"-,M

Sm (V) is of the same form as (1.4) with different thresholds, 6,,, and “excitabilities,”
Vm. in is the time constant of the nth population, am,, determines the absolute synaptic
strength between populations m and n, and w,,,(x) determines the rate of falloff of
these connections. For notational convenience we write W * U to mean the spatial
convolution,

o

J Wkx-x)U(x')dx'.

Let S(V)=(S1(V1), -+, SmM(VM)), V=(V4,- -+, V), P=(Py, - - -, Pnp), and K(y)=

(@mnWmn). Assume w, =u,n =1, -, M. Then (1.5) may be written as: .
)%
(1.6) ﬂ-a—;=—Y+K*5(Y)+B

Define Y (x, t) by

1.7) V=K*Y+P
Then (1.6) may be written as
18 w2 yisEsy+p),

at

where we now assume the inputs, P, (x), are independent of time. Since S, is bounded
above and below, so are the solutions Y(x, ). This work is concerned with the
stationary solutions of (1.8) bifurcating from the zero solution for the cases M =1, 2,
thus we study the stationary equations:

1.9) -Y+SKx*xY+P)=0.

2. Mathematical preliminaries. In order to rigorously apply bifurcation methods
to (1.9), we must make some additional assumptions on $ and K, as well as the topology
of the network. Except in § 3, we assume that the system or tissue is connected in a ring
of length, A, i.e., we impose periodic boundaries. Because of the symmetry of K(x), i.e.,
K(x)=K(—x), we observe that K * Y + P is even in x as long as P and Y are even, thus
we may restrict the solution space to even, continuous, bounded, periodic functions. Let
Z denote the Banach space of even, periodic functions with the Cy norm. For a large
class of weighting functions, w,,(x), the operator, O:Z - Z, defined by O(Y)=
K * Y + P is compact and thus the nonlinear operator,

n(Y)=S(K* Y +P)

is also compact. We assume that §( V') is smooth so that the Fréchet derivatives of n(Y)
exist to sufficiently high order. It is readily verifiable that n: Z » Z.

We now review the Lyapunov-Schmidt method and an application of the
Malgrange preparation theorem to bifurcation problems (see [1] for a complete
discussion with applications). Let A(A, -+, A,):Z > Z be a nonlinear map, Fréchet
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differentiable with respect to z € Z, and to each of the real parameters, Ay, - - -, A,
Consider the equation:

(2'1) A(Ala T ,A”)Z =0

and suppose that there is always a trivial solution, z = Z(A4, - - *, A,), which we take to
be zero.Let T=A(0,0, - - -, 0). Assume that DT (0) is singular with a one-dimensional
kernel generated by wo, and a one-dimensional co-kernel generated by v,. We wish to
investigate the bifurcation of solutions of (2.1) as the parameters vary. Let E: Z -
range (DT(0)) and Q:Z - Ker (DT(0)) be the standard projections to the range of
DT (0) and the kernel of DT (0). Because DT'(0) is one to one as a map from (I — Q)Z to
EZ, there is an inverse map, M:EZ »(—Q)Z. Write z=y+w, where ze Z,w=
Qz,y = —Q)z. Then (2.1) may be written as

(2.2) DT(0)z =—Az+DT(0)z.
Applying the operators, ME and (I — E), we obtain:
(2.3a) y=ME[-A(w+y)+DT(0)y],
(2.3b) (I-E)A(w+y)=0.

Using the implicit function theorem applied to (2.3a), we solve uniquely for y =
y * (A, w), with y * (T, 0) = 0. Substituting into (2.3b), we obtain

(2.4) I—-E)A(w+y=*(A,w))=F(w,A)=0.

The operator F(-, A) defines a map from ker (DT (0)) to co-ker (DT(0)), so that for
W = uwo, there is some real number, f(u, A), such that F(uw,, A) = f(u, A)v,, since the
co-kernel is one-dimensional. If we now assume that A depends on the A; in some nice
fashion, then solutions to (2.1) correspond to solutions to

2.5) U321, A2, -+, A,)=0.

We have reduced the infinite dimensional bifurcation problem to one of finding the
zeros of a real valued function depending on parameters. Since this is only a map from
the reals to the reals, we can use some very powerful geometric theorems developed in
the last 25 years.
THEOREM 2.1 ([12]). Let f:RXR" >R and suppose that f(u;0,0,---,0)=
Cu*+0®u**"), C #0. Suppose that
of

k-2 ui ‘1
_‘(u;O’O”“,O)=z al'i-_+o(u )’ i=1’2,-..’n’
oA j=o J!

and that the rank of (a;;) is k — 1. Then there is a coordinate system near the origin:
Xl'=£i(A1,A2"“1An)7 i=1’2s”':n:
u =T)(u; Al’ AZ’ e ’Au)

such that f has the following normal form:
f—l(ﬁ; xlax2" * "xn)=iik+ ) xiﬁi—l-
For k =5 this is simply elementary co-rank one catastrophe theory. The result we

obtain in § 4 is that for certain parameters, the bifurcation set associated with the
solutions of (1.9) is equivalent to that of the butterfly catastrophe.
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3. Bifurcation to spatially periodic solutions on the whole line. In contrast to § 2
and the rest of this paper, we shall consider a model which is distributed over the whole
line. We demonstrate the existence of a two-parameter family of periodic solutions
bifurcating from the trivial solutions in the case M =2. We shall also show that only
spatially homogeneous solutions bifurcate from the rest state when M = 1. The model
we use is due to Feldman and Cowan (1975), but the method can easily be generalized
to other models with more than two populations of neurons. Before proceeding, we
remark that it will be demonstrated that strong inhibitory influences are necessary
(“lateral inhibition”’) in order for bifurcation to occur at a nonzero wave number. Thus
this is in some sense a minimal model for generating stable periodic structures. We
consider the following equations:

Y.

ot =-Y, +Se(aee(A)wee * Ye‘aie(A)Wie * Y:),
(3.1

Y,

_67= =Y+ Si(@i(A)wei * Yo —ais(A)wi; * Y)),

where we have scaled out the time constant, i, a,..(A ) are the weights which we assume
depend on A analytically when A is near zero. Assume that the w,,,(x) satisfy:

(1) Wmn(x)=w(x/0mn)/Tmns

(i) [, e™w(x) dx =W (k?) exists and is analytic in k2,

(iii) limg oz (k%) =0; W(0)=1,

(iv) w(k?) decreases as k? increases.

We remark that w,., (k%) = w(k*c%,,) and that o, are space constants determining how
rapidly w,,,(x) fall off as x increases.

Since S;(0) =0, it follows that Y, = Y; =0 is a solution to (3.1) for all values of A.
This solution corresponds to the cells firing at resting level. We wish to examine the
stability of the rest state with respect to small perturbations of various wave numbers.
This requires looking at the solutions to the linearized problem:

3 (u\ _ (—u+Sc(O)aceA)Wee * u—atic(M)wie * 0]\ _ u
(3-2) 5(0) - ( —0+ 8 (0)[@ei(A)Wei * u —a(A)wi * v] )—L(A)(v).

From the above assumptions, (3.2) has solutions:

(3.3) (”("’ 0

— 2 2 . )
v(x, z)) = ®(A, k%) exp (£(A, k)t +ikx);

where ®(A, k?) is an eigenvector with eigenvalue £(A, k?) of the matrix, H(A, k2):

—-1+S8.(0)a.. W)W (k’0%)  —S.(0)a(A)W (k0%
Si(O)ae:(A)W(kzai —I—SE(O)CYii(/\)W(kZO'iZi '
The following assumptions must be made on the eigenvalues, ¢(A, k2):

ASSUMPTION 1. There is a A = Ao, which we take to be zero for convenience, and a
k3> 0 such that for all |k*— k3| < 81]A —Ao| < 82, H(A, k?) has a unique eigenvalue with
maximum real part and it is real and simple. Denote it by & (A, k*). Let I, =
{k?|&1(A, k%)= 0}. Then we assume that:

(%) fOer“62<A <Ao,
I ={k for =)o; k3>0,
bounded interval of positive length fordo<A <Ao+és.

(3.4) H(\, k)=
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In Fig. 3, we illustrate this assumption. The requirement that k3 # 0 implies that the
instability occurs at a nonzero frequency. We shall show that strong lateral interactions
are necessary for k3 #0. From Assumption 1 it follows that det (H(0, k3)=
0, H(0, k3) has a simple zero eigenvalue, with eigenfunction:

(3.5) ®(0, k2) = (;)

where p =[—1+5.(0)a..(0)W (k302)1/[S.(0)aic () (k5072)].

Re&, (k%)

)

LEN ¢
A%

A<
>\=Xo

F1G. 3. Assumption 1 (see text for details).

Similarly the adjoint or transpose matrix, H ‘(0, k3) has-an eigenspace spanned by
5 1
(3.6) w0,k)= (p)

where p*[1 - S.(0)a..(0)# (k502.))/[Si (0)a.:(0)W (k5o 2:)].

Since S.(0), S (0) are both positive, as are the a,.(0) and w(k30%,), then in order
for det (H (0, k2)) to vanish, we must have S’(0)o..(0)w (kac2)>1 for otherwise the
determinant would always be positive. Thus p* <0 and p > 0. Biologically this implies
that for some range of A and k3 the excitatory cells exhibit local recurrent excitation
(excitatory-excitatory interactions) greater than the decay rate due to membrane
leakage. (This is very similar to the situation in activator-inhibitor models studied by
Fife and others). We further remark that for M =1, a zero eigenvalue occurs only if

—1+52(0)a.. (0)W(k%a2.)=0.

Since W(kzo%e) decreases as k> increases, the maximum for this expression always
occurs at k =0, so that only spatially homogeneous solutions initially bifurcate from
zZero.

Before turning to Assumption 2, which is a kind of transversality condition, we
show that lateral inhibition is a necessary condition for k3>0.
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LEMMA. A necessary condition for k2 >0 is that

a'zeaee (0) _ o't?iaii (0)

5:(0) 5.0

@ei(0)atie (0)[ 0% + 02]> e (0)i (0) 0% + 02 ]+

The proof of this lemma is in the appendix.

We thus see that if the lateral interactions, a.;(0), a;(0), 0w, 0, are large
compared to the ‘“‘self” interactions, a;;(0), a..(0), o.., o, that k3 # 0. Thus in order for
such spatial patterns to occur in the absence of boundary conditions, we require
inhibition.

ASSUMPTION 2.

( 1 )(s;(O)a;e(O)W(k%aie ~S.(0)a L (0)W(kso2)
p*/\ 81 (0)aL(0)W(kiol) —Si(0)ai(0)W(k5a?)

()70

where

, d
anm(o) = aanm(/\)|)\=0‘

If we expand H (A, k3) as H(0, k3)+AH1(0, k3) then Assumption 2 implies that the
inner product, (¥(0, k3), H1(0, k3)®(0, k3)) # 0 or that

i)
o Re (€1, k3))x=0#0.

THEOREM 3.1. Given Assumptions 1 and 2 and that the nonlinear function is
C'(r=2), then the stationary equation may be written as

3.7 LA)u+G(A, u)=0,
where
_(Y.(x)
”‘(xu»'

L(A) is as in (3.2) and G (A, u) comprises the remaining terms of higher order in Y,, Y,
and A. Itis easily shown that G is C™™*, and for u and A near zero, G(A, u) = Cl|u|f*. Under
such conditions there is a two-parameter family of periodic functions,
(Y.(x;¢,q), Yi(x; €, q)) and a real number, A (¢, q), continuous in € and q, and defined
for |e|, |q| small, such that

(1) Y., Y, satisfy (3.7) for each fixed € and q,

(2) Y., and Y; are periodic in x with period 2/ N ko2 +q=p,

() fo[Ye(x;e,q)+p*Yi(x; ¢, q)lcos xdx =&,

(4) A(0,0)=0and Y.(x;0,0)=Yi(x;0,0)=0.

In the appendix, we sketch the proof of this theorem, which in a somewhat similar
situation has been demonstrated by Fife (1977). He studied a system of partial
differential equations occurring in reaction and diffusion, rather than integral equations
as in (3.1). Under the above conditions, the bifurcation diagram shown in Fig. 4 arises.
Case (a) corresponds to supercritical bifurcation, case (b) to subcritical bifurcation. We
conjecture that all solutions bifurcating subcritically are unstable, while there exist
infinitely many stable supercritical solutions (see Fife for a more complete discussion of
stability).
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[|ull llull

Ao
(a) (b)

F1G. 4. Two parameter bifurcation ; (a) supercritical, (b) subcritical.

Summarizing, we have shown the existence of spatially periodic solutions even on
the entire real line. The reason one does this is to examine the systems of type (3.1) in
absence of any boundary effects. Hence all behavior found in these systems is due solely
to interactions between populations of cells and not to anisotropies at boundaries.

4. Multiparameter generic bifurcations. We show that under certain generic
conditions on a set of parameters, (A1, A2, A3, A4) the number of stationary solutions to
the model system (4.1):

ad (Ye> _ _(Ye)+[se((aee +A1)Wee * Ye_aiewie * },l'+/\3Pe)]

at Y; Y; Si((@ei +A2)Wei % Yo —aiwi; * Yi + A4 P;)

4.1)

Y. (x, t))

=A(A1, A2, A3, A ; =(
(A1, A2, A3, A8)w w Yix, 1)

is the same as the number of solutions of a certain fifth order polynomial with
coefficients dependingon A1, A,, A3, A4. In fact, the bifurcation set of (4.1) is shown to be
equivalent to that of the butterfly catastrophe or in a somewhat less restricted case that
of the cusp catastrophe. As in § 2, we restrict our results to a ring of tissue in which
solutions even in space are sought, i.e., w(x + A) = w(x) and w(—x) = w(x), where A is
the length of the ring. Changing the length of A is equivalent to changing the critical
frequency at which bifurcation occurs, thus we can assume without loss in generality
that A =27

If bifurcation occurs at the zero wave number (i.e., spatially homogeneous solu-
tions), we can study the phase plane as the parameters change from their critical values.
Thus we can see directly the evolution of the new solutions as A1, A2, A3, A4 are altered.
Before continuing it is worth mentioning that the restriction to even functions is not
necessary to apply the Lyapunov-Schmidt method, but only to use Theorem 2.1.
Indeed, without this restriction and appropriate scaling of the parameters, the system
(4.1) can be reduced to finding solutions to a pair of third order polynomials in two
variables.

We can immensely simplify the necessary calculations by assuming that S, (z) and
S:(z) are symmetric functions in z, i.e., S;(—z) = —S;(z). If we put S asin (1.4), thisis the
same as setting 6, =6, =0. This is not unreasonable since the thresholds may be
absorbed into the external inputs, P,, P;; thus the system (4.1) is still quite general.

Following the method outlined in § 2, we examine the linearized operator, DT (0),
obtained by setting A; = 0 and taking the Fréchet derivatives with respectto Y, and Y;
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evaluated at zero:

u —u +S; (O)[aeewee * U~ AjeWie * D]
proft)-(% )
© v =0+ S (0)aeiwe: * u —ayw;; * v]

With the assumptions of periodicity and evenness in x, DT (0) is Fredholm with zero
1 .
index and one-dimensional kernel generated by (p) cos kox where where p is as in

(3.5). We note that A;, A, modify the “weight’’ of excitatory coupling within the net of
cells and A, A4 modify the stimulus intensity. Given (4.1) and parameters A; we show
that there are conditions under which the assumptions of Theorem 2.1 are satisfied.
Appendix C outlines the procedure and technical results necessary to verify that
Theorem 2.1 with k =5 holds. We can summarize the results by stating that certain
computable qualities must not vanish. In particular, if we expand the stimuli, P,(x) and
P;(x) in terms of their Fourier components:

e

P.(x)\ _ T (a; .
(P,-(x)) —,-:.Z'o (a}) cos 1%,

then aj,, aLo must be nonzero. This is to be expected since only the components of the

critical frequency can ‘“‘excite’” the unstable mode and contribute to the bifurcating

solution.

To help visualize the effects of the parameters on the small amplitude solutions, we
consider the simplest case when the critical frequency is zero. In this case, the isoclines
give a complete picture of the effects of A1, A2, A3, As. In Fig. 5a, the case when
A1=X2=A3=A4=0 is shown corresponding to a fifth order degeneracy of the zero
state. As A; or A, increase two new solutions appear, Fig. Sb which depending on the
balance between A; and A, are either stable or unstable. We note that there is a
symmetry of the solutions when A3 = A, =0 but that as these parameters change the
symmetry is broken, Fig. 5d. In Fig. 6a we show the bifurcation diagram associated with
the transition from Fig. 5a to Fig. 5b, while in Fig. 6b, the transition from Fig. 5a to Fig.
Sd is shown. Another possibility is shown in Fig. Sc, where for certain changes in A1, A»
there are five solutions. This may be regarded in some sense as a secondary bifurcation.
Again as long as A3 = A4 =0, there is symmetry of the five solutions but introduction of
A3 or A4 destroys this symmetry, Fig. Se.

By the results in the Appendix, the same situation occurs for ko # 0, the only
difference being that the theorem can be conveniently displayed for ko =0 using the
phase plane. In Fig. 7a we show the bifurcation set of the polynomial:

u5+xlu4+xeu2+xzu +X4 =0.
Here, u is rotighly equivalent to the size of the component in the kernel of DT (0) of the
Y.(x)
Yi(x)
A3, Azand Ay, A;0n Ay, Ao. When Az = A4, A1 = A, and equality A.8 of the Appendix does
not hold, then the bifurcation set (Fig. 7b) is that of the cusp catastrophe:

solution, ( ), and because of symmetry, we suggest that A3, A, depend only on

u3+7¢1u+)~\3=0.

As a final remark, we suggest that experimentally one will never see the sharp
transitions as in Fig. 6a, but rather the imperfect bifurcation shown in Fig. 6b. Constant
inputs and noise levels of the brain have the effect of adding symmetry breaking
parameters to the system.
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l *Ye Ye

(a) (b)

(c) Yi (d)
\

Y \'Ye

(e)

FIG. 5. Isoclines with fifth order degeneracy: (a) one degenerate solution, (b) 3 solutions, +u, 0, (c) 5
solutions +u, tuy, 0, (d) 3 solutions, uy, uz, us, (€) 5 solutions, uy, u,, us, us, us.

+
(a) (b)

FIG. 6. Bifurcation diagrams: (a) symmetric solutions, (b) “‘imperfect” bifurcation.
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(a) (b)

F1G. 7. “Butterfly” catastrophe: (a) A, >0, (b) A, <O0.

5. Asymptotic expansions for two-dimensional nets. In this section a Poincaré-
Lindstedt series is developed for the bifurcating steady states. With the same conditions
on the boundaries, the one-dimensional system becomes:

s <]

Y.0)=S.(A wlE-xDY.) '),

(5.1)
Ye(X+A)= Ye(x); Ye(_x)=Ye(x)s

where we put A as the length of the ring of tissue. Linearizing about Y, = 0, leads to the
problem:

[s <]

(5.2) —u(x)+S.(0)A J' w(x —x'|)u(x") dx'=Lou =0.

This has solutions u(x) = A cos 2kwx/A, where k is a nonnegative integer, if and only if
A satisfies

(5.3) A=A =1/[SL0)W(4k>7*)A%)],
where

W(w?) = J w(x) e™* dx.

The points of bifurcation are at A, and these can be ordered Ay, <Ag,<---.By
well-known bifurcation results [9], only the first bifurcating branch is stable, thus
Amin =ming Ax must be determined. Since W(w?) is strictly decreasing, 1/ Ww(w?) is
strictly increasing so that the minimum must occur at w’ =0, whence, Amin=XA0=
1/S.(0). This is the trivial wave number and the solutions bifurcating from A, are
constant, indeed they are solutions to Y =S,(AY). We can solve this graphically and
similarly determine that all bifurcations are supercritical and thus stable (see Fig. 8).

The more interesting case arises when inhibition is introduced into the network,
thus we consider the case of two populations, excitatory and inhibitory. As was shown in
§ 3 this is necessary for the appearance of spatial structure without introducing
inhomogeneities in the system of the boundaries. The steady state equations for a
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) y=u
A\
A<

-U

F1G. 8. Graphical solution of the one-dimensional neural model.

typical two-population net are:
Y. = Sc(ateeAWee * Y, — aieWie * Y)),
Y =Si(acdwe * Y. — aiw;; * Y)),
Y.x+A)=Y.(x), Yix+A)=Yix),
Y(-x)=Y.(x), Yi(=x)=Yi(x).
Linearizing about the trivial solution, Y, = Y; =0 leads to:

(5.5) L(A)(L‘)E _(u> +(SL(0)[aeez\wee * U= QWi * v])=0.

v Si (O aeidwei * u — aiw;; * v]

(5.4)

This has solutions

(u(x))=<1>(k,)\)cos @, k=0,1,2,3,---,
v(x) A

where ®(k, A) satisfies H(A, 4k*7*/A*)®(k, A)=0 and H(\, »?) is as in (3.4). Here,
Qee(A) = Aoy @ie(A) = @iey @ei(A) = aid, aii(A) = ;. This has a nontrivial solution if and
only if det H(A, 4k*7%/A%*) =0. This yields an equation for the discrete Ay, k=
0,1,2,---. As above, we may order these

0<Ak1<)tk2<' ..

and similarly, only the branch bifurcating from the smallest will be stable. By the result
in § 3, we know that sufficient ‘‘lateral inhibition” often implies that

Amin = mkin Ak

is not Ao, the bifurcation point at the zero wave number. Hence, we may assume
Amin = Ak, With ko # 0, so that the bifurcating solutions will be nonconstant over space.
Asin § 4, we may also assume that S, and S; are symmetric so that their even derivatives
vanish. Thus we assume that at A = A, an eigenvalue of the full linearized evolution
system becomes zero, and at all other wave numbers, the eigenvalues have negative real
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parts. The eigenfunction associated with A, is
e (X 1 2komx
59 (G~ () o5
where
—1+8.(0)echioWee (4kim?/A)
S%(0)aieie (4kom”/A?)
Asin § 3, p>0,and wy (w?) is the Fourier transform of w;(x). We expand Y. (x), Yi(x)

and A — A, in terms of small parameter, ¢, which is essentially the amplitude (see below)
of the bifurcating solution:

ooty I osreid K R ) B

p=

(5.7) (

A —/\ko=871+€272+—-

Substituting (5.7) into (5.4) and collecting equal powers of ¢ leads to a sequence of
linear inhomogeneous equations:

(5.8) L°[};8;}=[ZEB] n=0,1,2, -,

with Lo= L(A,). The first few a,(x), bn(x) are
ao(x) = bo(x)=0, ai(x) =v1S:(0)aceWee * Yeo,
bi(x)= 'YIS; (0)aeiWei * Yeo,

m

a2(x) = —S’e(O)aeewee * (72 Yeo + Y1 Yel) —?e(o)(Akoaeewee * Yoo~ QieWie * Y'i0)3,

m

ba(x) = =S (0)aciwe * [y2Yeo+ 71 Yoi]— —6L(0)[Akoaeiwei * Yoo — aiiWii * Yio]3-

Since Lo is Fredholm and has a nontrivial kernel, the equation, Lo W = f is solvable
if and only if f is orthogonal to the eigenfunction of the adjoint L§:

¥ _[~0F +5.(0Ai@eewid® +Si(0acki,wid !

(5.9) La“[d,;]—[ —¢F —S.(0)awio* —SI(0)aiwkdF ]

(5.9) has a solution:

(d,f(x)) - ( 1 ) o 2o 1 — 8 (0)Ai@ecWee (4k57?/A%)
oFx)) ¢ \p* A P T TS0 eaawa (ka7 /A)

{*=1/(1+pp*).
1
As before p* < 0. Note that we have multiplied the vector <p*) by a constant ¢*. In

Appendix D it is shown that this factor is not infinite (pp* # —1). Our purpose is to
normalize the solutions in some sense, for now the inner product

(&N L[ @t ot ot whas=1.
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Thus we assume that the solutions we obtain using the perturbation scheme satisfy:

@5 (x)\(Ye(x;€)
510 ((Gra) (i o)==
(10 650\ Yiw; 0))) =
This determines the solutions uniquely, as well as the amplitude, €.
Solving (5.8) for n =0, 1, we obtain:

(Vo) Q) emsatomsins (E)=(0): wmo

The solution for Y,;(x), and Y;;(x) obtains from the normalization condition, (5.10).
Finally to O(e>) we find:

(Ye(x;e)

Yi(x; e)> = (;) cos 2komx/ A+ O(e?),

_[82(0) . S7(0) ,
72_[S;(0)3+S:(0)3p p*]'

The direction of bifurcation dermines the stability of the solutions, thus if vy, is positive,
bifurcation is supercritical and the small amplitude solutions are stable. On the other
hand if vy, is negative, bifurcation is subcritical and the small amplitude solutions are
unstable. Since p°p*<0 and S (0); S/ (0)<O0 if S¥(0)/S;(0)o’p*>—S~ (0)/S.(0)>,
ie.,

A= Ao=7y26>+O0(e);

Sl"” (0) [ [— 1+ aeesi’ (O)Akowee (4'77'21(3/1\2)]4
Si(0)* L{ciewic (47 K/ AP)PLS! (0)aidei (4kom [ A)]
Thus for strongly recurrent excitatory nets (o, large) we have unstable solutions while

for strong lateral inhibition, there is stability. In Figs. 9a and 9b we draw the bifurcation
diagrams for the stable and unstable cases respectively.

] <—-5"(0).

lotl'4 il

Xko
(c)

F1G. 9. Bifurcation diagram: (a) supercritical stable solutions, (b) subcritical unstable solutions, (c)
conjectured ‘‘full” picture showing “‘large amplitude” stable solutions.
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Remarks. It is assumed that |p*p>| # 1 for otherwise we would have to continue the
calculations to the next two highest orders. This is the situation we had in section four
where there was a fourth order degeneracy of the rest state.

Numerical calculations of the above system indicate that for subcritical bifurcation,
stable large amplitude solutions exist both super- and subcritically. This leads us to the
conjectured bifurcation diagram 9c. In this particular network, subcritical bifurcation
leads to hysteresis with respect to changes in the parameter A. As A is increased beyond
Ak, the net must switch to the new large amplitude solution. As A decreases below Ay,
there is a value, at which the system must switch back to the zero state. Because of this
multistability, the subcritical case may in fact be the more biologically relevant:
multistability and hysteresis are quite common in the nervous system.

6. Conclusions. Evidently, the one- and two-dimensional nets considered here
exhibit a startling range of stationary behavior. However, in order to make the analysis
more tenable we had to make some simplifications at the boundaries. The true system
should be considered over a finite domain rather than the circle of tissue considered
here. Following the technique of Pazy and Rabinowitz, we have demonstrated bifur-
cations in the single population mode; in nonperiodic domains which are not spatially
homogeneous. Thus there are some major differences between our simplified system
and the actual system for the single excitatory model. On the other hand, numerical
simulation of the two-population model in a finite nonperiodic domain yields solutions
qualitatively very similar to the ones obtained in § 5. As we mentioned previously, the
boundary conditions seem to exhibit little qualitative effect in the two-population
system.

Most applications of bifurcation theory and nonlinear analysis in the biological
sciences have been concerned with the study of systems of reacting and diffusing
chemicals. In these applications, the nontrivial solutions have been supposed to
represent the mechanism of pattern formation in developing embryos. We believe such
pattern formation arising from instability commonly occurs in the vertebrate nervous
system.

The biological significance of these spatially periodic solutions is not completely
clear although we believe they may be related to certain simple visual hallucinations.
Indeed, in his book, Kliiver discusses the ubiquity of periodic phenomena in mescaline
induced hallucinations [6]. Furthermore, many simple visual hallucinations exhibit
startling periodicity of a few very simple patterns (see for example [11]). We hope to
extend this work to two spatial dimensions in an attempt to further elucidate the spatial
structure of cortical networks at an instability.

Appendix A. Proof of Lemma 3.1. In order that k3> 0, we want the determinant
A0, k*)=det H(0,k*) to obtain a minimal value at k>=k%#0. Since
limg2. A0, k?)=1 and for k large A(O, k?) increases, we require A(0, k%) to be
decreasing at k*=0;ie.,

ad 2
—_— <0.
A1) o2 A0 KD, <0
Let
oW
Wo= k2o
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Then
—:fz(o, k)| . =—wol(1+8:(0)ai(0))ozae (0)S2(0)
k<=0

(A.2) +(—1+5.(0)a..(0) o (0)S: (0)]
' +woS! (0)S.(0)ai (0) (o + %)
Since wo < 0 by assumption (iv), the inequality (A.1) becomes

a'zeaee (0) _ a'x?iaii (0)

2 2 2 2
aei(o)aie (0)(0'&' + o'ie) > (o'ii + a'ee)aee (O)au(o) + S: (0) S; (0) >

as is required.

Appendix B. Proof of Theorem 3.1. Because Fife’s result [5] is for a set of
second-order differential equations, we shall show how to set up our system of integral
equations as a map between Banach spaces and thus apply his proof. We seek solutions
which are small with an amplitude, ¢, and a spatial frequency, k near k,. Since all spatial
interactions are even, we let g = k*>—k2 denote the deviation from the critical wave
number. This is the second parameter of the two-parameter family of Theorem 3.1. To
simplify analysis we scale the space variable x by setting y = kx. Thus we seek solutions
which are 2#-periodic in y. With this assumption, the convolutions wj(x) * u(x)
become, in the new variable, (1/k)w;(y/k) * u(y). We wish to expand this convolution
in terms of q as is done in Fife for the operator

k*Dd?/dx* = (k3 +q)Dd?/dx>.

In general, this is not easy, but we present a technique which works for a large class of
connecting functions. Let

Wj,(a)z) = J exp (iwx)wj(x) dx

be the Fourier transform of w;(y), then the transform of (1/k)w;(y/k) is
Wik>w?) = wu((k5+q)w?).
Since we have assumed that the Fourier transforms of the w;(x) are analytic, we may
expand W,-l((k?)+q)w2) as:
Wi((kd +q)w®) = Wa(kdw®) + g (kiw®) + " Wi (kiw?) +- -
We next invert this to obtain a sequence of connection functions:
wi(y/k)/k = wa(y/ko)/ ko+awi(y)+ @ wa(y)+- - - .

As an example, we take w(x) = exp (—|x|)/2; then
2

ST

A 2+ 2 = [ _ + —_
W((kotw)a’) 1+w’ks 1 q1+w2k3 1+ w’k2)’

and upon inverting, we obtain the sequence:

w(y/k)/k =51;;exp (~hel/ko)+ £ W)

(“1)"77 dn[ n—1/2e—|x|~/;

—_—— _ 2,
k(2)+2nn! dzn ]z—l/ko

w"(y)=
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The original problem may be written as

(B.1) LA, qQu+G@A, q,u)=0,
with L(A, q)u = Lou + AL1ou +qLo1u +AqL11u+- - - . Lou =0 has solutions
1 1 d
y=a< )cosy=¢, —a( )siny=¢’, "=
p - p : dy

where a € R is picked so that
1 27 »
@ $)=—| loPdy=1.
™ Jo
The linear adjoint problem has two linearly independent solutions
1 (l)cos ' (1)si
= ys =- ny.
p* p*

Define P, P, to be the projections onto span {, ¢}, e.g, Pif=
(f); Pof=(f,y")'. Let E=1—P;—P, be the projection onto the range of Lo.
Let X be the Banach space of continuous, bounded 2+ -periodic functions with values
in R?. Write X = {6, d'}YPZ sothat ze Z > Loz #0. Ly: Z » EX is one to one so that
M = L;" exists as a bounded operator from EX to Z. Since X = {¢$, #'}® Z all solutions
in X may be decomposed to

u=p1¢+p2¢'+v =a(;) (Bicosy+Bzsiny)+v, veZ

We may translate the y coordinate at will since the connection functions, w;(y —y’) are
invariant under translations, thus we may assume that 3, = 0. We seek solutions which
have small “amplitudes,” letting 8; = ¢ be the amplitude, we see

1 27
— J u(x)¢(x) dx =¢.
m Jo -

Thus solutions of the form

u(y)=el¢)+wly)), weZzZ,

are sought. Finally, let F(u, ¢, A, q) =(1/e)G(eu, A, q). Our problem (B.1) may be
written:

(B.2) Low+ALi(¢+w)+qLoy(¢ +w)+- - -+eF(d+w,A,0)=0
or Low+R(w+ ¢;¢,A,q)=0. For each (g, A, q), R: Z > X. Applying E, Py, P>, we
observe (B.2) is equivalent to
Low+eR(w+@;A,¢,9)=0,
(B.3) PiR(w+¢;A,6,q)=0,
P,R(w+¢;A,6q)=0.
The remaining results derived by Fife hold now and the theorem is verified. Clearly, Q,

M, Lo, R preserve even functions so we may pick w to be even so that P,R(w +
&; &, A, q) vanishes.
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Appendix C. Generic bifurcation structure of the network. We derive the neces-
sary expressions for application of the Malgrange preparation theorem. Recall that X is
the Banach space of even continuous, bounded 2=-periodic functions and
A(Aq, A2, A3, Ay) is a four-parameter operator mapping X toitself. Let T = A(0, 0, 0, 0)
and assume that DT (0) is Fredholm with a one-dimensional kernel and co-kernel. We
showed in § 4 that the kernel is generated by

¢= a(:)) cos kox

1
and the co-kernel by (_//=a*(p*) cos kox. The inner product on X is (f, g)=

(1/m) fo" f1g1+f2g2 dx and we put a=(1+p*)7", a*=(1+p*)" so that (y, y) =
(¢, ¢)=1. In this case, X = Z. The projection E is given by I — P where N

Pf=(f(x), g(x)¢(x).
We also need the operator, ME. E is obtained by applying I — P. To get M we write

DTO)=v,
where v = Ez, z € X, and solve for r. This always has a solution since p € ran (DT (0)) by
definition. In terms of actual computation we start with some function f= ;1 g; and
2

obtain Ef:

B R I T R S

Next the linear inhomogeneous system of equations:

(—gl(x) +8e(0)[@ceWee * 81— ticWic * gz]) _ (vl(x))

C.1
€1 —g2(x) + S (0)[@eiwe: * g1 — aijwii * g2] va2(x)

is solved. since v;(x), v2(x) can be expanded in a Fourier series, (C.1) is reduced to
solving systems of algebraic equations for the components of (gi(x), g2(x)). Thus
MEf=g.

"Our principal task is to obtain the various derivatives of the function
f(u, A1, A2, A3, A4) evaluated at u =0, A; =0. We know that y satisfies

Y@, A1, A2, A3, Ag) = ME[—A (A1, A2, A3, Aa)(udp+ Y)+ DT (0)(ugdp + y)].
To simplify calculations we expand A(A1, A, A3, Ag):

Y3> _ [— Yo+ S2(0)(CteeWee * Ye = ieWie * y,.)]

A, A2 A3, )u)( Y; =Y+ S:(0)(aeiWei * ye — aiiwii * yi)

_l-[S;” (O)[aeewee * Ye —QjeWie * Yx]3]
6L S (0)aciwe: * Y. —asw;; * Y-‘]3
1 [S(ev)(o)[aeewee * Ye —QjeWie * Y':]S
-12—0 SSU)(O)[aeiWei * Y, —aiwy; * Yi]s ]
$¢(0)
2

(C.2) Wee * Y.(S.(0))+

+A1 (aeewee * Ye — QWi * K)2

0
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0

+A w
2|y, Ye(s:(O))+S 0

(@eiWei * Yo —ayywy; * Yi)z

Sm (0)
2

L 0

i 0

+A P m +h- h
4 S ©) S (0) (s * Y — cawy * ) igher order terms,

S.(0)+———

+A3Pe (aeewee * Ye —Q;iWi; * Y1)2

where the higher order terms are in A, YS, Y, etc. Using implicit differentiation of
the functions F(u, T) and y(u), we find:

F °F

Ton=0 Zon-o ‘”f(o T)= (I~ E)D*T(0)[4, 6, 6],

'F 5F

220,020, X0, 1)=U-BID’TOIS 4.8,4, 61+ 10D°T(O)8. $]¥"0)]

Y (0)T)=y"(0,T)=0,  y"(0, T)=—ME[D’T(¢, ¢, $)].

Here, D"T(0) is the nth Fréchet derivative of the operator T, y'(0), y"(0), etc.,
represents the various derivatives of y with respect to the scalar, u, evaluated at u = 0.
We use the definition of ME to find:

Aj; cos kov +Ajs cos kox]
A21 CcOos koU +A23 Ccos kox ’

y"0, 7)=|

where the coefficients A1, A13, A21, Azs depend on the various parameters and
S¢ (0), S7 (0) and are quite complicated. Note that A;; + A,;p™ = 0. In order for fourth
order degeneracy to occur, we require 9°F/du>(0, T) = 0 that is:

P (VTSIO) e SO et
©3) o’ 6ma* )y Si(0) % kox + S10)7° P eos kox dx
[slll(0)+slll(0) 3 *] O'
S.(0)* " 87(0)°

If as in § 5, if we assume that S, and S; are the same, then the expression, (C.3), is the
same as that obtained in § 5. Evaluation of 3°F/du’ determines whether we must
continue to higher orders;

5 f 0,1)= (I - EYD*T(O)$, 6, 6, 6, )+ D*T(O)b, b, y" ()11

From the argument at the end of four based on phase plane techniques, we know that
there can at most be five steady states, thus for ko = 0, this expression does not vanish.
We believe that in general for nonzero ko, it does not vanish.

To determine the derivatives of f with respect to A; and hence verify the trans-
versality condition, we consider the operator T +A;R;. Here R; is any one of the four
operators multiplied by A; in (C.2). Evaluating these various derivativesat u =0, A; =0,
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and again using implicit differentiation, we obtain
’F
a)\,' du

g{ (0, T)=(I - E)R;(0), ©. T)= - E)DR,0)d,
o ’F

a)t,' ou
4

aAa 5:43 (O’ T) = (I _E)[D3T(O)[<_b’ ‘_b’ YMAi(O)] +D3Ri(0)[?’ ?’ ?] +DRi(0)ym(0)].

5(0, T)=(I - E)[D*T(0)[¢, ¢, y,,(0)]1+D’R;(0)[, ¢]),

Forj=1,2,
é ee 0
R;(0) = D*R,(0)=0, DR1(0)¢ = [S O], DRO=[ gy 00 1 ]
and finally,
Wee * ¢IS;” (0)(aeewee * 1~ QpeWie * ¢2)2] ] =1
D’R;(0)[¢, ¢, ¢] =% 00
Wei * 18" (0)(@teiWei * 1 — aiiwi; * ¢2)2]’ =2
where
(1 _ (1
o= (¢2) = a(p) cos kox.
Forj=3,4,
S.(0)P, 0
DR;(0)=D’R;(0)=0, Ri(0)= [ ( L (x)]’ Ra(0)= [S-(O)P-(x)]
and
I’_eéx—‘)sgl (0)(aeeWee * ¢1 — QieWie * ¢2)2 , ]= 3,
D?R;(0)=4 ~ g
%QS;” 0)(aeiwei * 1 — auwy; * ¢2)2 ’ j=4.

From these expressions, the importance of the inputs is now evident, for we can now
show that the matrix, (a;;) of Theorem 2.1 is not of rank four if either of the inputs has no
component in the critical frequency. The derivatives of y with respect to the parameters
are:

Y= —ME[SL (OLPZ (x)]’ Yr= _ME[S§ (0;)P,~(x)]’ Y=Y = (g),

0 S.(0)w.. (k) cos kox
Y»\au=yt\4u=(0)’ yA1u=—ME[ 00 ° ]’

0
Yaau = ~ME [s;(O)W,i(ké) cos kox]'
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Suppose that P, for example has no components in cos kox, then clearly since ME
“preserves” frequency, neither do y,,(0). 3F/dA3(0, 0) is zero since there are also no
components in ¢. Computation of 8°F/aA au>(0, 0) also shows that this is zero, since Yas
has no components in ko. Thus the third row of the matrix, (a;;) consists of zeros and
consequently is not of rank 4. Other conditions which are computable must also hold,
but this particular example is the most intuitive.

Appendix D. Proof of the statement in §5 (1+pp*>0). We show that
1+ pp*>0. Suppose instead that 1+ pp* =0. Put

Bee = aeewee (4772kg/A2)S; (O)Ako: Bei = aci‘:'ei (47Tkg/A2)Sx’ (O)I\ko),
Bie = icWie (A’ k3/APSL(0),  Bi=aawi(4mwk3/A)S}(0).

Then, if 1+pp* =0, we find:

(_1 + Bee)2
(D.1 —Peel 2 1.
) Beiﬁie
Since det H (Ax,, 47°k5/A%) = (=1 + B..)(1+ Bii) + BeiBic =0, (D.1) becomes
(D.2) SCMB o C14B)- (148020,

(1+8:) ~

But the expression on the left hand side of (D.2) is the trace of H (A, 47°k3/A?) which
is strictly negative, so we have a contradiction and 1+pp*>0.
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