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SECONDARY BIFURCATION IN NEURONAL NETS*

G. B. ERMENTROUT? AND J. D. COWAN{

Abstract. The possibility of multiple complex eigenvalues in a neural net is demonstrated. Group
theoretic techniques are used to derive the bifurcation equations near multiple complex eigenvalues. A
selection mechanism between standing and traveling waves is shown that depends only on internal
parameters. Quasi-periodic solutions and hysteresis between different oscillations are obtained. The appli-
cation of this model to the study of epileptic behavior is discussed.

Introduction. One of the most remarkable properties of the electrical activity of the
central nervous system is that it is both ubiquitous and incessant. Anyone who has ever
looked at an electroencephalographic (EEG) record will confirm this observation.
There are many questions to be posed and answered concerning this activity. Which
neuronal structures generate this activity? How is it generated? What is its function? In
what fashion is it related to the firing patterns of individual neurons in the brain? In this
and related papers [Ermentrout and Cowan (1979), Ermentrout and Cowan (1979a)],
we seek to answer some of these questions by showing how organized spatio-temporal
neuronal activity patterns can arise in a net of coupled neurons by a process of symmetry
breaking from an initially uniform resting state. We use bifurcation theoretic techniques
to study the evolution and stability of small amplitude solutions branching from the
unstable uniform state. In two earlier papers, we showed the existence of spatially
periodic stationary patterns when bifurcation occurred at a simple zero eigenvalue and
a variety of spatio-temporal patterns when bifurcation occurred at a pair of imaginary
eigenvalues [Ermentrout and Cowan (1979), Ermentrout and Cowan (1979a)]. In the
latter paper it was conjectured that stable, quasiperiodic patterns could occur in certain
cases.

In this paper we shall demonstrate secondary bifurcation when two pairs of
complex conjugate eigenvalues cross the imaginary axis simultaneously. Bauer et al.
(1975) made use of a perturbation method to study secondary bifurcation for a model of
spherical shells. Using multiple timing methods, Cohen (1977) showed secondary
bifurcation for a system of differential equations when there were multiple complex
eigenvalues. Keener (1976) used a similar technique to determine the bifurcation
structure of a system of reaction-diffusion equations when there were multiple eigen-
values. Here, we utilize the recently developed group-theoretic methods of Sattinger
(1977) to describe the bifurcation structure at multiple complex eigenvalues. We show
that there is a distinct pattern selection mechanism for'stable activity patterns which
depends solely on the ‘““internal” parameters of the set.

1. Neuronal net equations. Definitions and preliminaries. In the appendix, we
introduce the following system of nonlinear integral equations which describe the
activity of a ring of excitatory and inhibitory neurons:

(@  E(x1) =|Sl{h(f)®[a11w11(x) * E(x, t) — aziwai(x) * I(x, D]},
(1.1) (b))  I(x, ) =S{h(t)®[a1zwia(x) * E(x, t) — azw2(x) * I(x, )]}
(© E(x+2m t)=E(x,t); Ix+2m, t)=1I(x, t)
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Here E(x, t) and I(x, t) denote the activities of excitatory and inhibitory neurons and

(a) h(OQu() = J‘ h(r)y(t—7)dr,
(1.2) v
(b) w(x) * v(x) =J w(x—x"ov(x") dx'.

The periodic boundary conditions imply that the net is in a ring. In previous papers, we
have assumed unnecessary artificial symmetries which can eliminate whole classes of
otherwise stable solutions. Here, we drop these assumptions, but still assume that the
tissue is topologically a ring, a condition which is common both anatomically and
physiologically [P. Rinaldi, G. Jukasy, and M. Verzeano (1977)].
The only assumptions we make on the nonlinear functions are:
(@  S0)=0;
1.3) (b) S(u) is monotone nondecreasing;
' (© S(u) is Lipschitz continuous;

(d) S(u) is sufficiently differentiable.

S(u)

F1G. 1. Nonlinear firing rate-potential curve.

Figure 1 depicts a typical nonlinear function satisfying (1.3). The temporal weighting
function, A (), is assumed for simplicity to be of the form:

(1.4) h(t)=exp (—1), t=0.
The spatial weights satisfy:

(a) wi(x)=w(x/oy)/ oy

(b) L wx)dx =1,

(© w(=x)=w(x);

(1.5)

d) w(x) decreases with increasing |x|.

From (1.5b, ¢), the Fourier transform of w exists and it is even. We denote this
transform by W(k?). Then from (1.5a), W;(k®)= W(o2k?). There is histological
evidence supporting these assumptions [Sholl (1956)]; in particular, it has been found
that the connectivity falls off exponentially with distance between cells. Here o; are
space constants determining the rate of falloff between populations i and j,
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Let B denote the Banach space of bounded R?*-valued functions periodic in the
first argument with the sup norm:

lu(x, t)|o={OSUP sup |ui(x, )|+ sup sup |ua(x, )}

=x=27 0=t<c© 0=x=27 0=t<c0
where u;(x, t) are the components of u(x, ¢). Let G(E, I) denote the operator
E(x, t) = S1{h(t) ® (a11w11(x) * E(x, t) —az(x) * I (x, 1))} ]
I(x,t)=S:{h (1) ® (a12w1-2>(x) * E(x, 1) —aznwa(x) * I(x, )}

Then, it is readily shown that G maps B into itself. We define the following linear
transformation on B:

(1.6) G(E, I)= [

Toua(x, t)=u(—x, 1),
1.7) Toulx, t)=u(x+a,t), a €R,
Teu(x, t)=u(x, t+B), BeR.

Each map, T, takes B into itself Vand commutes with the nonlinear operator, G:
T,G=GT,, T.G=GT,, TG =GTp.

The operator T, reflects the x-axis about the origin. The assumption that the cortical net
is isotropic is necessary and sufficient in order that 7, commute with G. T, and T,
represent translations in space and time respectively. That G commutes with T, is
embodied in the assumption of cortical spatial homogeneity. Since the physical proper-
ties of the net do not change with time, all temporal interactions are ‘‘homogeneous”
and thus G commutes with Tp.

We say a solution to (1.1) is linearized stable if there are no solutions to the
linearized problem which grow exponentially for positive time. The linearized equation
about the rest state (E, I) = (0, 0) is:

@ [u] E[—u —h(t) ® [a11S1(0)w11 * u — 2181 (0)way * v]]
0 v -0 _h(t) ®[a12S'1 (O)le * U “&2235 (O)sz * ‘U]

(1.8)

Solutions to this are of the form:
1.9) (:‘) =®@" exp (vut £inx)

where n is a nonnegative integer and ®" and v, are eigenfunctions and eigenvalues of
the following matrix:

(1.10) H(n?) = [—'1 +a11810)Wii(n?)  —a»18%(0) Wzl(’lz)]
@128 (0)Wia(n®)  —1-0283(0)Wy(n®) I

Solutions grow exponentially if for some n, Re v, > 0. This can happen in two ways: a pair
of complex conjugate eigenvalues crosses the imaginary axis for some » or a simple
eigenvalue becomes positive. The first case occurs when the trace of H (n®) changes
from negative to positive, while the determinant remains positive. The second case
occurs when the determinant of H(n?) changes from positive to negative, while the
trace remains negative. In previous work, we discussed these two cases when they
occurred at a unique value of n°. There are at least four other possibilities:
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(1) the determinant vanishes simultaneously for two differing values of »,

(2) the determinant vanishes for n, and the trace for n, # n,

(3) the trace vanishes simultaneously for two differing values of n,

(4) combinations of the above three cases leading to as many as 6 eigenvalues with

zero real parts.

Keener studied (1) and (2) for a system of reaction-diffusion equations and we
expect similar behavior to occur for (1.1). The paper is concerned with an analysis of
case (3) because of its complexity and its novelty. The fourth case is certain to generate a
wide variety of complex patterns, but it is beyond the scope of this brief paper to discuss
them. .

We now introduce two bifurcation parameters, u and A, defining them by a1, =
d11+ s az = dap+A. We assume that for A = u = 0 the trace vanishes for two differing
wave numbers, 71 and n,. In fact for stability, n, and n, must be consecutive. To see this
we plot the real part of »,(A, ») (the eigenvalue of H with maximal real part) in Fig. 2.

Re I/n()\,p.)

F1G. 2. Real part of the maximal eigenvalue, v,(A, ).

As n?increases, Re v, (A, u) becomes negative for all values of u and A. In order for two
different wave numbers to have a zero real part it is necessary that the curve Re v, (), w)
be convex upward for some range of n as in the figure. If n; and n, are not consecutive
then there is at least one other value of n, 7, such that Re »; (i, A)> 0. Thus the initial
instability occurs, not at the pair of wave numbers, (1, n,), but rather at 7. Based on
other results in which there is a discrete spectrum, all solutions bifurcating at n; and n,
will be unstable since the first bifurcating wave number is 7. Thus we require n; and n,
to be consecutive; i.e., n,=n;+1. For all other values of n, it is assumed that at
u=A=0, Re v,(0, 0)<O0. In order for the trace to vanish for two consecutive integers,
we require

a1 =[2+dy, sz(nf)]/ Wu(n%)si 0),

2 Wii(n3)— Wii((n1+1)%)
55(0) [War(n) Wi1((n1+1)%) — Wan((n1 + D) Wiy (nd)]'

Q@22 =

Both a5, and &;; must be positive in order for this to make physical sense. &, is
positive if d; is positive, thus we must determine when &, is positive. Because w(x)
decreases as |x| increases, Wii(n?)— Wii(n,+ 1)%)>0. War(n?) Wia((ny + 1)%)—
Waa((n1+1)%) Wis(n3) > 0 implies

W (a5,n3) W(o?1n3)
W(032(n1+1)%) W(oti(ni+1)%
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This occurs only if o3, > o3, since W(k?) is strictly increasing as a function of k2. The
interpretation of this is that there must be long-range lateral disinhibition, i.e., the
spread of the inhibitory-inhibitory interactions must exceed that of the excitatory-
excitatory interactions. Furthermore, in order that det H(n?) remain positive for all n,
@21 and a;; must be large and o1, and o»; must be small compared with o1; and o15.
This implies strong short-range coupling between the two populations. The lack of
“lateral inhibition” (o1, 021 small) characterizes both isolated [Krnjevic, Reiffenstein
and Silver (1970)] and epileptic cortex [Matsumoto and Ajmone-Marsan (1964) and
Petsche and Sterc (1968)], wherein rhythmic neuronal activity is often observed. Thus
our results and assumptions agree qualitatively with experimental observations: short-
range lateral inhibition is associated with cortical synchronous rhythmic activity.

Let w; =vdet H(n3), w, =vdet H(n, +1)?). Let us denote ®™ by ®@; and ®™ by
®,. Then we have:

H(n})®; = iwy; H(n3)®,; = iw,,
H(”l)d)l =—iw; H(n%)‘i)z =—iw,.

Here a is the complex conjugate of a. With these definitions, it follows that for
u =A =0, the linear operator %y, defined in (1.8) with @11 = &11, @22 = &2, has either a
six or eight dimensional kernel generated by six or eight complex eigenfunctions. If
n1=0 and n, =1, then the kernel is six dimensional and is generated by:

B1(x, )= D1 ™5 a(x, ) =Dy e
(112) ¢3(x, H=o, e"x"'""’z‘; ¢4(x, f)=d, e—ix+iw2t;
¢5(x’ t) = ¢_4(xs t); ¢6(x, t) = (53(x, t),

If, instead, n, # 0, then the kernel is eight dimensional and is generated by the eight
complex eigenfunctions:

(1.11)

d1(x, 1) = Dy e™M* it ba(x, ) =D, ¢~ mxFiont
b2(x, )= B2(x, 0);  Palx, ) =i(x, 1);
bs(x, £) =D, M2 rieat, Be(x, 1) = B, ¢ ~n2F it
d1(x, 1) = bs(x, 1);  bs(x, 1) = Js(x, ¢).

(1.13)

We make one final assumption: w; and w, are not rationally related, in particular, we
except the cases, w1 =2w,, w2 =2w1, w2 =3w1, and w; = 3w,. These can be dealt with
using the techniques of this paper, but complicate matters, while contributing little to
the understanding of the secondary bifurcation.

Remarks. If ; and w, are not rationally related, then the sums of the ¢;(x, ¢) may
give quasiperiodic behavior. This leads to the problem of small divisors in the higher
order expansion for the solution. Thus we presume that this analysis is only formally
valid. By requiring only that the spatial variable be periodic, we have increased the size
of the null-space by a factor of two. If we restrict the symmetry of the spatial pattern
(e.g., by requiring solutions to be waves), we can reduce the dimensionality of the kernel
at the expense of losing a whole class of stable solutions (see § 3).

In two component reaction diffusion systems, this situation can never occur
because the trace of the linearized system is always given by —(D;+ D,)n” + a1 + azs.
There can never be two values of n for which the trace has the same value unless D; and
D, vanish identically. In this case there is no diffusion at the lowest order. Hershkowitz-
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Kauffman and Nicolis (1979) have studied systems with small diffusion and in fact
showed secondary bifurcation to various wave forms.

2. Bifurcation equations. In this section, we exploit the symmetry of (1.1) to
derive the bifurcation equations. Let G(A, u) be our mapping from B into B. At
(A, )=(0,0) and u=0, G,(0,0) has an m-dimensional kernel generated by ¢,
i=1, .-, m If we suppose that it has an m-dimensional cokernel as well, then using
the Lyapunov-Schmidt technique, we can reduce the problem to that of solving an mth
order system of algebraic equations:

(2'1) F‘i(/\,”‘azlyz%“'szm):o’ i=15“"m'

By the appropriate scaling of A, u and z,, it suffices to study only the lowest order terms
of F;. Then to lowest order the solution to (1.1) is given by:

(2.2) | u(r, =3 zh(x, 1

where the z; satisfy (2.1). Thus, solving (2.1) gives us a good picture of the nature of the
solutions to (1.1). In general, the form of the lowest order solutions of (2.1) is nontrivial
to calculate, involving extensive computation.

For problems similar to (1.1), many authors have used multiple time scales and a
variety of similar perturbation procedures. The point we wish to make here is that the
basic structure of the bifurcation equations can be readily obtained by exploiting the
symmetries of the problem. Actual coefficients for the bifurcation equations can only be
calculated by brute force techniques and thus present a tedious algebraic problem.
Because our problem itself is a qualitative abstraction of a real neural net, we believe
that the most important point is the structure of the solutions and not their precise
numerical values. '

Sattinger (1977) proved that if a nonlinear operator is covariant with respect to
symmetry transformations (i.e., the operator commutes with them), then so are the
bifurcation equations. Let F=(F,, F>, - - -, F,,) be the set of bifurcation equations
where m is either six or eight depending on whether or not n, is zero. The coodinates in
7, the null space of %, are (zy, + - -, z,,). Thus any element ¢ € , may be written:

¢= 'Zm:l zi;.

It follows from the above result of Sattinger that T,F = FT,, TgF = FTg and T,F = FT,.
The effect on the kernel of each of these linear maps for n; =0 is:
@) Tulz1, 22, 23, 24, 25, 26) = (21, 22, €23, €24, €25, € *24),
(b) Ta(z1, 22, 23, 24, 25, 26) = (€121, € 125, €¥223,
(2.3) ’ iBw —iBw. —iBw,
e 2z4, 6 " %25, 67" 26),
(C) Tr(zls>z2a tte 326)=(zl’ 22,24, 23, 26, ZS)'

We introduce the map J, which takes the complex conjugate. Since we seek real
solutions, Z; = z; when ¢; = ¢;. Thus JF = FJ and J acts on 7 as

(2.3d) J(z1, 22, + +, z6) = (22, 21, Z6, 25, 24, 23)-
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For the case n,>0, we find:

@  Talzy, -, ze)=(e™%z1, € ™2y, ™ %23, 672y,

in,a —in,a in,a —in,a
e"%zs, e "% 26, €7%27, 7" 23),

(b) Ta(z1,- -+, 28)= (e Pz1, P2y, ez, e TPz,
24 e“zs, €*2Pz6, ¢ P27, 672 7y),
(C) Tr(zls Y 28) = (22’ 21,245 23, 265 25, 28, 27)’

(d) J(z1, -+ +, 28) = (24, 23, 22, Z1, Z8, 27, 265 25).

We now derive the bifurcation equations for n;>0. The case n; =0 follows similar
considerations.
Consider T,F = FT,. This implies that:

Fy(z4, - - -, z8) = F1(22, 21, 24, 23, 26, Z5, 28, Z7),
2.5 Fi(zy, - -, 23) =1‘7'4(Zz, Z1, Z4, 23, 265 255 285 27);

Fs(z1, -« -, z8) = Fs(z2, 21, 24, 23, Z6, Z5, 28, 27),

Fi(z4, -+ +, z8) = Fg(22, 21, Z4, 23, Zé, Z5, Z8, 27)-
From (2.4d) it follows that

Fy(z1,- -+, z8) =F1(Z4, 23, 22, Z1, 28, 27, 265 Z5),

(2.6) _
FS(ZI, ) 28) =F5(249 23,22, 21, 28, 27, 265 25)‘

We have reduced the computation from eight nonlinear equations to two, F; and Fs.
For the case n; =0, we have the relations: :

Fy(z4,+ -+, z6) =F1(22, Z1, 265 25, 245 Z3),
@7 Fy(z4, -, 26) = F3(24, 22, 24, 23, 26, Z5),
FS(ZI’ tt 0, 26) =F3(22’ 21, 25, 26’ 23, 24)’

Fs(z1,+, z6) =F3(22, Z1, 26, 25, Zas 23),
thus only F; and F; must be computed.

Generally, each F; (i=1,- -, 8) is a sum of homogeneous multinomials in the
elements z;:

E =B,!(Zj)+B%(Z]', Zk)+B:i;(Zi’ Zky Zp)+' v

where B(z;,, - -, z;,) is a homogeneous multinomial of degree g. Since each of the
transformations T and J are linear, we only have to examine each B separately.
Consider the linear term for F;:

2 a;z;.
Since T,F = FT, and TgF = FTg, we must have
TaTﬁFl - el’(cxnl+B¢ul) Z aij — Z aj ei(:kansiﬁws)
]

where s =1 or 2 and we take + depending on j. This mﬁst hold for all « and B, thus a; =0
except for j = 1. Thus the linear term for F} is a1z,. Similarly, we find the linear term of
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Fsis b;z5. We remark that both a; and b; depend only on the internal parameters of the
system and on n; and n, and could be computed if necessary.

We now consider the quadratic terms ¥, a;.z;zx. Itis clear that the sum is covariant if
and only if each of the terms is, thus we look at z;z,. From T,TgF = FT, T, we find

inja+iw,B *inaxiof e:l:inra:i:ierajkzj

e Ajk2jZ =€ Zk

where we take +, and s, r depending on the values of j and k. Since we have assumed
that w; and w, are not rationally related and the above expression must hold for all
a, B, itis clear that a; = O for all j and k and there are no quadratic terms. This applies to
Fs as well.

Because there are no quadratic terms, to determine the bifurcation equations, we
must examine the cubic terms. For F;, we must have:

inja+io,B :{:inpa:tio)pB:I:inso::t:iwsﬂ:tinra:tiwrﬂ

e AjkiZiZKZ1 = e Ajk1ZiZkZ1,
where, again, we take £, and p, s, r =1, 2, depending on j, k and /. There are four cubic

terms which contribute if w; and w, are not rationally related:

2
—Aas3Z12a,

—QA4212223,
(2.8)
—0a5212528,

—Aae6Z212627.

The negative sign has been chosen for convenience. For Fs, the cubic terms are:
2
—b325zs,

2.9) —baz32627,
—bszsz124,

—b6252223.

To lowest order, we have determined the bifurcation equations for n, > 0. For n, =0,
we have

(2.10) Fi(z1, 22, + , 26) = @121 — 21(A32122+ as2326 + A62425),
Fs(z1, 22, 26) =b123— 23(b32326 + bazazs+ bsz122).

This still represents a formidable system of six or eight algebraic equations in six or eight

unknowns. For n,>0, we introduce the following transformation, using the reality

condition: .
zi=r e, zy=r e zy=r, e, z,=n e,

(2.11) _ 6, _ i6, —i6, —i6,
Zs=r3e °, Ze=Fre *, Z7=Izé , Zg=1r3¢€ .

For n, =0, we introduce a similar change of variables:

i6. —i6. i6.
z1=re", zy=rie ", zz=re"?,
(2.12)

i —io. )
za=rse'%, zs=rse '3, ze=r,e "2
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Using these transformations, the bifurcation equations become:
airi—rilasri+ asri+asri+aers]=0
aira—rafasra+asri +asra+ asr3]=0

2 2 2 2 (>0,
b1r3—r3[b3r3+b4r4+b5r1+b6r2] =0

(2.13) b1r4—r4[b3r‘2;+b4r§+b5r§+b6rf] =0
ari— rl[a3rf +asra+aer3]=0
blrz—rz[b3r§+b4r§+b5rf]=0 (n1=0).

b1r3—r3[b3r§+b4r%+b5rf] = 0

3. Analysis of the bifurcation equations. To lowest order in (u, A) we have
solutions (E, I):

(E(x, t)

(3.1) Ixf)

) =7, Re ®; &' “1'7%) 4 7, Re @, ' @219

+73Re @, '@ 4% (n;=0)
where 7, solves (2.14) and 6y are arbitrary phase factors. For (n;>0) we have:

E(x,t)

) - fl Re @1 ei(w1t+n1x+61) +F2 Re ‘I’1 ei(wlt—n1x+02)
I(x,t)

(3.2) (

+ 73 Re (DZ et(w21+n2x+03) + ’74 Re CD2 ei(mzt—n2x+04) (nl > O)

where 7, solves (2.13) and 6, are arbitrary phase factors. Solving (2.13) or (2.14) is a
difficult problem and stability of the resultant solutions is even more difficult to prove.
Here, we make the following basic assumption: stable solutions of the algebraic
problem (those in which the eigenvalues of the Jacobian matrix about that particular
solution have negative real parts) generate stable solutions to the full operator
equation. While this is not generally true, it has been shown to hold in a wide variety of
similar problems (see Sattinger (1977a)).

We note in (3.1) and (3.2) several interesting cases. In (3.1) if either 7, =0or 73=0,
then the “2-mode” is a traveling wave (by “2-mode” we mean the solutions with
n = n,). On the other hand if 7, = 73, then the “2-mode” is a standing spatially periodic
oscillation. Similarly, if 7, #0, 7=, =0, and 73#0, then both modes are traveling
waves in (3.2). If 7, = 7,, 73 = F4, both modes are standing waves. If we make any of these
four assumptions, the problems (2.13) and (2.14) reduce to a simpler form:

Aqir— r[A3r2 +Ass?]=0,

(3.3)
Bis—s[Bss>+Bsr*]=0

where Ay, By, r, s depend on which particular assumptions we make: In Table 1, we have
listed the forms of Ay, By, 1, s for each of the four cases. Our major result is that these
solutions are stable solutions of the complete systems (2.13) or (2.14) if and only if they
are stable solutions to the reduced problem (3.3) and satisfy additional assumptions. We
note that there are other similar choices such as 7, =0, r3 # 0 in the case n; = 0. These
are treated in the same manner as below and the stability results are basically the same.

THEOREM 3.1. (n; =0). The reduced solutions

(a) F3=0 or

(b) Fa=T73
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TABLE 1
Values of parameters for reduced systems.

ny= n;=0 ny>0 ny>0
r3=0 Ty=T73 Ta=73=0 Ty=Ty,T4=F3
A, ai a; a; a
A3 as as as as+as
As as as+ae as as+ae
Bl bl bl bl bl
B; b3 b3 +b, b3 b3+b,
Bs bs bs bs bs+bg
r r'l fl fl Fl
s fz 123 r3 73

are stable solutions of (2.14) if and only if they are stable solutions of (3.3) and satisfy
(a) Re b3 <Re b, or
(b) Re b 4 < Re b3
respectively.
Proof. We shall only do case (a) as case (b) follows from a similar proof. We first
remark that:

=2 =2 =2 =2
a;=asri+asrs; b, = bsF5+ bsFy.

Linearizing about 7, 7», and 73 =0, we obtain:

—-2a3r'f 2a5r'2r'1 0
—2F,F1bs  —2bsF3 0
0 0  (bs—baP

The eigenvalues of this matrix are (b3 — b4)7> and the eigenvalues of the 2 X 2 matrix in
the upper left-hand corner. This is identically the matrix obtained by linearizing the
reduced system (3.3) about r = 7; and s = 7, with Ay, By as in Table 1. Thus the result is

proven.
THEOREM 3.2. (1, #0). The reduced solutions
(a) Fa=7r4=0 or 0
(b) Fa=T71, Fa=T3

are stable solutions of (2.13) if and only if they are stable solutions of (3.3) and satisfy
(a) Re {(as—a4)F: +(as—ag)F3}<0 and

Re {(b3—b4)71 +(bs—be)73} <0,
or
(b) the eigenvalues of

[ —27i(as—aa)

_ —2F Fs(as—as)
Mo=| ]

27 F3(bs—bs) —2F3(b3—by)

are in the left half plane, respectively.

Proof. Case (a) can be handled in a manner similar to the method used in Theorem
3.1. While the same method works for case (b), the computation of the eigenvalues is
complicated, thus we will use a slightly different proof. The linearization matrix for
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F2=71, F4=F3 is:

—2a3F% —2a4r'% —2057173 —2(1671’-'3
—261477% —2a3ff —206f173 —2a5r'1f3 _
. . 2 22 =M
—2b5r1r3 —2b6r1r3 —2b3r3 —2b4r3
—2beFiFs —2bsFiFs  —2biF3  —2bsFa
and that of the reduced problem, (3.3), is:
[ —27(as+as) —2FFs (a5+06)]=M
—2F1Fa(bs+bs)  —2F3(03+bs) 1 R
Let
1 0 0O 1 0 0 0
1 1 00 1 -1 1 0 0
P=1o 010" T~ 00 10
0 011 0 0 -1 1

This transformation has the effect of breaking ‘“perturbations’ of the solution 7, = 71,
74 = F3 into symmetric and nonsymmetric parts. Since P is nonsingular, the eigenvalues
of Mg are the same as those of:

i —2r"f(a3—a4) —2a4r'¥ —2f1r'3(a5—a6) —2a(, F1f3
-1 _ 0 “27%(034‘(14) 0 —2r'1r'3(a5+a6)
PMEP = | orirabs—bs)  —2Riabs  —2F(bs—ba) 273,
0 —2F1r'3(b5+b6) 0 —273(b3+b4)

Unlike MF, the eigenvalue equation of this matrix is readily obtained:
det (PMpP ™" —eI) ={[~2Fi(as + as) — 1[275(bs + ba) — e]— 471 F3(as + ae) (bs + be)}
A{[—2FH(as—as) —e][—2F3(bs — bs) — e]—4F175(as — as) (bs — be)}.

(Here I is the 4 x 4 identity matrix. The first factor is the eigenvalue equation for Mxg,
the reduced matrix. The second factor is the eigenvalue equation for

—27(as—as) —2F1F(as— as)]
—2F1F3(bs—bs) —2F(bs—bs) 1

A necessary and sufficient condition for stability of the solution 7; = 7, and 75 = , is that
the eigenvalues of both Mg and M}, lie in the left half complex plane. These conditions
imply (b).

These two theorems considered with a stability analysis of the reduced system
completely characterize the stability of traveling and standing waves for the full
problem. There are undoubtedly other solutions to (2.13) and (2.14), but as we
remarked at the beginning of this section, the wave solutions are the most interesting
physically.

We now analyze the reduced equations (3.3). Since these are complex, we cannot
expect to find solutions in general when A and u vary. This problem can be solved by
introducing the additional parameters, o1, o> which serve to change the critical
frequencies, w1, w, as A, u vary. That is, w1 ~w} + 01, w2~ w3 + 02 Where !, w3 are
defined in (1.11) and o4, o, are small variations of the same order as A, u. This is typical
of Hopf bifurcation problems—the frequency does not remain fixed. These new

|
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parameters only appear (to lowest order) in the imaginary parts of A, B;. We introduce
the parameters as:

(34) A1=a11y,'—a12)t +i0'1, B1=b11M—b12A +io.

It suffices to consider linear dependence on the bifurcation parameters since higher
order terms can be scaled out. a1, a1, b11, b1, are all real and for convenience, positive.
We write:

Asz=A3+iA;,

B3 =B3+iB3,
As=As+iAs,
Bs=Bs+iBs,

and assume A3, B3, As, Bs are positive so that bifurcation is supercritical. A solution to
the bifurcation equations is a (u, A )-parametrization of 7, s, o1, 0»:

anp—apA —(Asr’+Ass®)=0,
01— (Asr*+ Ass?) =0,
biip —b12A —(Bss>+ Bsr®) =0,
02— (Bis*+B5r’)=0.

(3.5)

Thus, fixing u, A determines r, s and consequently, oy, 0.

We finally assume that if A is fixed, then the “2-mode” bifurcates initially as u is
increased, thus, b12/a12<b11/a11. We consider the four most interesting cases.

Case (i): As/Bs>a11/b11> A3/B;. Then Fig. 3 obtains and a secondary branch
with components in both frequencies bifurcates from the “2-mode.” The pure “2-
mode” which is either a standing or a traveling wave loses stability and the new
quasi-periodic solutions obtain. While this behavior may appear ‘‘chaotic’’ or random,
the frequency spectrum would show two distinct peaks at the corresponding frequen-
cies, not unlike the spectrum of actual brainwaves.

s s H

' ' ' el
G (B)

(i) (ii) (iii)

T AT |
&

(iv) (A) (v)

FI1G. 3. Case (i): As/Bs>ay1/b11> A3/Bs;

(3a) Euvolution of the phase plane of (3.3) as u increases and . is fixed (+ denotes a stable equilibrium and
— an unstable equilibrium).

(3b) Corresponding bifurcation diagram. (Dotted lines are unstable solutions and solid lines are stable
solutions.)

(3c) Bifurcation diagrams in (r, s, u)-space.
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Case (ii): As/Bs<ai11/b11 < As/Bs. This case is shown in Fig. 4 and its main point
of interest is the appearance of a stable branch corresponding to the pure ‘“1-mode.”
The existence of multiple oscillations is of physical interest since by perturbing either of
the two stable branches, one can switch between the two frequencies. There are cases in
which such switching occurs in the nervous system and consequently this multistability
may be relevant.

(A)

(B) (C)
FI1G. 4. Case (ii): As/Bs<ai1/b11<A3/Bs; (4a,b, c): same as in Fig. 3.

Case (iii): a11/b11>As/Bs> As/Bs. Figure 5 shows the diagrams for this case.
Here, unlike case -(ii), there is only a finite interval of values for u in which both
frequencies can coexist. As a result, hysteresis between the two oscillations is possible.

(i) _ —
fiell .
(v

- ____._..__-_.F,

F1G. 5. Case (iii): a11/b11>A3/B3> As/Bs; (5a, b, ¢) same as in Fig. 3.
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Case (iv): a11/b11>As/Bs> A;/B;. The most relevant case from a biological
viewpoint and the one which motivated this paper is illustrated in Fig. 6. For small

IRL

F1G. 6. Case (iv): a;1/b11> As/Bs> As/Bs; (6a, b, ¢) same as in Fig. 3.

values of the “2-mode” is stable and as u increases the amplitude gradually increases.
Eventually, this mode loses stability and a stable branch consisting of a mixture of both
“1-” and “2-modes” bifurcates. Further increases in u result in a loss of stability of the
mixed mode and a smooth transition to the pure “1-mode.” If we assume that the
parameters are such that in each of the modes, the traveling waves are selected, then in
this case there is a smooth switch from one frequency to a differing one. Such events are
seen in the gradual transition from tonic to clonic seizures in ictal epilepsy. There is
considerable evidence that epileptic oscillations are in fact traveling waves [Petsche and
Sterc (1968)]. Furthermore it has been proposed that this transition occurs because of
an increase in extracellular potassium as the seizure progresses [Krnjevic, Reiffenstein,
and Silver (1970), Matsumoto and Ajmone-Marsan (1964)]. The effect of potassium
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ions is to increase the ‘““‘excitability” of the network. Since w is related to the degree of
excitation of the net, it is of interest to compare this particular case with the above
transition in epilepsy. In Fig. 7 we have redrawn a recording of the slow transition

tonic — transition —
<1.6s> <2sec>
(i) —= clonic (ii)

(iii) (A)

F1G. 7. (7a) Evolution of an ictal seizure through tonic and clonic stages (from Matsumoto and
Ajmone-Marsan (1964)); (7b) Plausible bifurcation diagram associated with (7a).

between the tonic and clonic seizures. There is initially a small amplitude oscillation
(probably a traveling wave) representing the tonic stage. As the seizure progresses,
there is a mixture of several frequencies (region ii in Fig. 7). This resembles qualitatively
the intermediate region in the bifurcation diagram (labeled ii in 7b). Finally in the later
stages of the seizure, a new large amplitude “‘pure” frequency dominates (the clonic
stage, (iii) in the figure). Thus in an epileptic episode, the possibility of new oscillatory
structures ‘‘branching” from an unstable mode is clearly possible.

Conclusions. There is no doubt that such complex behavior can and does occurin a
neuronal net comprising several cell types. Here, we have considered one of the simpler
possible nets comprising excitatory and inhibitory cells. In the absence of spatial
interactions these two-component systems can admit limit cycles, but for topological
reasons, quasi-periodic behavior is impossible. As soon as we allow aggregates of cells
to interact spatially, there is a jump in the complexity of behavior, to traveling waves,
spatially inhomogeneous oscillations, or quasi-periodic solutions.

While the main point of this paper was to demonstrate that secondary bifurcations
may occur in a neural net, we have also shown the importance of maintaining the innate
symmetries of the problem. Indeed, we have demonstrated a selection mechanism for
either standing or traveling waves, which depends only on the internal parameters of the
system. For example, the sign of Re (b3 —b,4) determines whether there will be stable
standing waves or traveling waves for the n; = 0 case. Had we restricted our solutions to
be traveling phenomena (as is often done in such bifurcation problems) we would have
neglected an entire class of stable solutions. Thus despite the added complexity of the
full bifurcation problem, such symmetry restrictions should not be made, in general.

Acknowledgments. We would like to thank Professor D. H. Sattinger for suggest-
ing the application of group theoretic techniques to the problem. We also express
gratitude to the referees for helpful criticism and to Ms. A. Pasley, for her services in the
preparation of the manuscript.



338 G. B. ERMENTROUT AND J. D. COWAN

Appendix. We consider a net of excitatory and inhibitory neurons distributed in a
line along the x-axis. Let E(x, ¢) and I(x, ) denote their respective firing rates. A
neuron at x is influenced by a neuron at x’ and this influence depends only on the
distance between the two cells, |x —x'|. Thus the effect of E(x’, ¢) on the excitatory cell
at w is wi1(Jx —x'|)E(x', ¢). Similarly, we tabulate the spatial effects of the remaining
interactions:

excitatory (x’)—inhibitory (x); wia(x —x'NE(x', t)
(A.1) inhibitory (x')—excitatory (x); war(jx =x'DI(x’, t)
inhibitory (x’)—inhibitory (x); was(jx —x'DI(x', £).

Here we have implicitly assumed that the net is both homogeneous and isotropic in that
the influences are independent of position and direction. Histological data indicate that
this is a reasonable simplification and furthermore that the w;;(x) are exponentially
decreasing functions of their argument [Sholl (1956)]. We assume that w;; (x) integrate
to 1 over R since they are in some sense probabilities of connection.

The impulses at the presynaptic axonal terminal effect a release of transmitter
which either depolarizes or hyperpolarizes the postsynaptic membrane. This results,
respectively, in an excitatory postsynaptic potential (EPSP) or an inhibitory post-
synaptic potential (IPSP). If f(¢) is the presynaptic firing rate of some neuron, then we
find that the resultant postsynaptic potential is:

(A.2) Vit)=a J:) h(r)f(t—7) dr.

h(t) generally incorporates delays (due to transmitter diffusion), rise times and
exponential decays of the potential. The decay rate is the most relevant facet for the
model, thus we assume for simplicity that 4 (f) =exp (—¢). a is positive or negative
according as the presynaptic neuron is excitatory or inhibitory. Therefore, the post-
synaptic potential of an excitatory neuron at x due to cells at x' is:

PSPE(X, x’, t) =11 j h(T)Wu(lx—x'l)E(x', t—'T) dr
(A.32) °

— a2 J; h(T)Wzl(lx —x’I)I(x’, t—T) dr.

Similarly, the postsynaptic potential of an inhibitory neuron at x due to cells at x’ is:

PSPI(X, x', t) =12 J. h(T)le(lx —x'l)E(x’, t—T) d’T
(A.3b) °
— Q) -[O h(T)sz(lx —x’I)I(x’, t— T) dr.

Since a neuron receives inputs from many spatial regions, the total membrane
potential of the neuron is the sum over space of all of the postsynaptic potentials. Thus,
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if we let ®g(x,t) and ®;(x, ) denote the respective membrane potentials of the
excitatory and inhibitory neurons, we have:

oo

Oe(x, t)= J‘ dx' PSPe(x, x', t),

(A.4)

o

@[(x, t)=J' dx'PSPI(x,x', t).

—00

Finally, to close the system, we note that the firing rate of a cell is a nonlinear
function of the membrane potential. Careful physiological measurements of the
responses or cortical neurons have established that the following relationships hold
[Creutzfeldt, Lux and Watanabe (1966)]:

E(x9 t) = Sl(q’E(xa t))7
I(x’ t) = S2(¢I (x’ t))-

Here, S; and S, are monotone, nondecreasing, bounded, continuous functions such as

illustrated in Fig. 1.
We are interested in the asymptotic behavior (¢ - 00) of a net that is topologically a
ring of size 27r. Thus we impose periodic boundary conditions:

E(x+2mt)=E(x,1t),
Ix+2m t)=1(x,1),

(A.5)

(A.6)

and let ¢ > oo in the temporal convolutions. Combining (A.3)-(A.6) we find that E(x, ¢)
and I(x, t) satisfy:

[S o] [s o]

E(x, t)=Sl[,[ h(T) de_ dx' {a11W11(,x —x’I)E(x’, t—'T)

0

—anwa(lx —x'DI(x, t_T)}] )
(A7)

o

dx' {awia(x —m'))E(x', t—7)

I(x, t)=Sz[J:oh(T) dTJ

- a22W22(|x ——x’I)I(x', t— ’T)}] .
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