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PERIOD DOUBLINGS AND POSSIBLE CHAOS IN NEURAL MODELS*
G. BARD ERMENTROUT#

Abstract. A formal perturbation method is derived for the study of bifurcation near a degenerate zero
eigenvalue. This results in a third order differential equation with a single quadratic nonlinearity. Numerical
solutions of this show successive period doubling bifurcations and eventual “chaos.” The problem arises
in the study of neural equations when an additional excitatory channel or cell is added to standard
two-component models which oscillate. It also applies to a Van der Pol oscillator coupled to a simple RC
circuit. Numerical simulations of a modified FitzZHugh-Nagumo system agree qualitatively with the behavior
of the bifurcation equations.

1. Introduction. Chaos is a loosely defined term for deterministic nonperiodic
behavior of a dynamical system. Examples of this phenomenon exist in both nature
and mathematical models of natural phenomena [9], [16], [18]. The best understood
chaos is that which appears via successive period doublings in certain discrete systems
[4], [15]. For differential equations, the best known examples of chaos are in periodi-
cally forced systems such as the Van der Pol oscillator [ 7] and systems with a homoclinic
orbit [1], [6], [8], [11]. Little is known of the transition to chaos in autonomous
systems; most work involves numerical computation of solutions [16], [18].

In this paper, we introduce a class of general systems which numerically appear
to admit autonomous chaos. This nonperiodic behavior seems to rise from a succession
of period doubling bifurcations in a certain reduced equation. Included in this general
class of systems are certain neuronal oscillators with an additional positive feed back
term. This has a curious effect of restabilizing the oscillating neural net in some
instances. On the other hand, under certain easily computable conditions, there is a
loss of stability of the rest state at a zero eigenvalue with algebraic multiplicity three.
We describe a formal bifurcation method for analyzing this degeneracy which is in
many ways similar to the one rigorously described by Kopell and Howard [13].

In the next section we describe the neural models which are extensions of the
familiar FitzZHugh-Nagumo equation [21] and the Wilson—-Cowan equation [22] for
excitatory and inhibitory neural populations. Section 3 describes our bifurcation
method and § 4 presents a numerical and analytical description of the bifurcation
equations. In the final subsection of § 4, we compare numerical solutions of the reduced
model to those of the full modified FitzHugh-Nagumo model.

2. Some neural models. Many neural models of diverse phenomena are qualita-
tively similar in that they consist of two distinct components. One of these activates
or excites the “tissue” and the other inhibits activity. Coupled together, these two
component systems admit a wide variety of different behaviors including excitability,
multiple states and oscillations. Among the best known examples of two-component
neural models are the FitzHugh-Nagumo equation (FHN) and the Wilson-Cowan
equations (WC). The FHN system consists of a voltage variable v and a recovery
variable w and has the form

dv

dw
2.1) ;,;—f(v)—w—v +Jo, Z—azv—:(w,
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where f(v)—v is a cubic shaped function which is negative for v >0 and large and
positive for v <0 and large. « and a, are positive constants; x is proportional to the
time constant of recovery. Jp is an applied current. This model was devised as a
simplification of the Hodgkin-Huxley model of the squid axon. w can be viewed as
a “potassium”-like variable and f takes into account rapid sodium influx.

The Wilson—Cowan system is a model for corticothalamic interactions and com-
prises a population of excitatory pyramidal cells, P, and a population of inhibitory
interneurons, I [22]. This system can be written as:

dP dal
(2.2) ar =—P+a1151(P)—a2S.(I), E;= —kl +a1281(P).

S1, $, are sigmoidal or linear functions which represent the firing rates of a cell given
the membrane potentials, P and I. a; are synaptic strengths which are positive and
correspond to the amplitude of post synaptic potentials. We notice that —P +a1,51(P)
and —v +f(v) are qualitatively similar in shape. Both (2.1) and (2.2) admit small
amplitude stable oscillations [21] which arise from a Hopf bifurcation. In [3] it is
shown that (2.2) admits a small amplitude homoclinic orbit. Thus, if a small periodic
forcing is applied, the results of Keener [11] could presumably be used to prove the
existence of chaos. Such solutions are reminiscent of the small amplitude ‘“noisy”
behavior of the resting EEG under rhythmic thalamic modulation [2].

In spite of the complexity of behavior associated with these systems, they cannot
produce autonomous aperiodic solutions. We therefore ask what effect an additional
‘““excitatory” variable has on the system. This could take the form of an excitatory
interneuron in (2.2) or an additional inward conductance in (2.1). There are many
situations which seem to dictate this addition: Rall and Shepherd [17] pose a 3-variable
system for olfactory potentials; Shepherd [20] suggests that many cortical networks
can be modeled by a large excitatory pyramidal cell and excitatory and inhibitory
interneurons. In Fig. 1, we depict such an arrangement abstracted from Shepherd [20,
p. 354]. If E represents the firing rate of the excitatory interneuron, then the mathe-
matical model of Fig. 1 corresponding to (2.2) has the form:

dpP
Z =—P+a1151(P)—aS>I) +a3S3(E),
(2.3) dl dE
Z= —«I +a1281(P), 217= —pE +a138:1(P).

F1G. 1. General schematic diagram for the neocortical network (adapted from Shepherd).
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If a;3=a3; =0, then (2.3) is identical to (2.2). ‘
Suppose we allow the existence of an additional linear inward conductance in
the FHN model, u. Then (2.1) can be rewritten as:
dv dw du
2.4) ;17=f(v)—v—w+u +Jo, E—=azv—:<w, Z=agv——pu.
Conceivably, u could represent an additional sodium channel. The two-conductance
model proposed by Goldstein and Rall is an analogous example:

gd7v= -V+€(1-V)-#(V+.01),
23) d% ds
2?=k1V2+k2V4—k3g—k4f, E=ksg+kﬁgl—k7f.

Here 4 is analogous to w in (2.4) and I in (2.3) while & is like u or E. As a final
remark, models of this type turn up when a Van der Pol oscillator is resistively coupled
to a simple RC circuit such as shown in Fig. 2 with equations:

do_p .zov L dy_ dz__z v-z

(2.6) Cu~fO=y+0p= Ly=v, O =gt~
Rc
WAVAVAVA:

c c = R JZ_

F1G. 2. A Van der Pol oscillator resistively coupled to a simple RC circuit.

We ask first, what is the effect on this additional component on the stability of
the rest state, and second, whether these systems can become chaotic. Rossler has
shown conceptually that positive feedback to oscillatory systems can sometimes result
in chaotic behavior [18]. To begin to answer this question of chaos, we review the
results of Keener [11]. Suppose that a system of differential equations, linearized
about an equilibrium point, has a zero eigenvalue of algebraic multiplicity two. Then
under fairly general circumstances, this degeneracy can be unfolded to yield a one-
parameter family of homoclinic orbits [13]. Keener applies a weak “slow” periodic
modulation to this system and uses the results of Chow et al. to obtain chaos in general
equations [1]. Thus, periodic forcing of an arbitrary system near a degeneracy can
develop aperiodic solutions. Obviously by ‘“‘coupling” two such second order systems
together to form a fourth order system, one could obtain autonomous chaos. But we
wish to find such solutions with only third order systems. Langford [14] studies
bifurcation to tori in third and higher dimensional systems near a critical point. In
their case, the linear system simultaneously admits a zero eigenvalue and a pair of
imaginary eigenvalues. More recently Holmes has shown ‘“chaotic’’ behavior for this
singularity [8]. If we let

p(A)=A3+a2A2+a1A +ao
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denote the characteristic polynomial of the third order linearized system, then both
of the above results correspond to the vanishing of two of the three coefficients. If
ai1=ao=0, then zero is an algebraically double eigenvalue. If a, =a,=0, a; >0, then
0, +iva, are eigenvalues. The next level of complexity occurs when a; =a;=ao=0;
that is, zero is an eigenvalue with multiplicity three and geometric multiplicity one.
This is the case which we study in this paper. The analysis is given in the next section
for the general n-dimensional case.

Before continuing with the formal analysis, we return to the neural equations.
When can this type of degeneracy occur? In all cases; we will suppose that the phase
plane for the two-variable model has the form depicted in Fig. 3. With no loss in

- P

F1G. 3. Phase plane configuration for the neural models. The x axis is the inhibitory variable and the y
axis is the excitatory variable.

generality we assume the unique equilibrium point is (0, 0). Both (2.1) and (2.2) can
be arranged into this configuration. If we let S,, S5 be linear, a; =f'(0) or S1(0)a;1,
a=a281(0), az=a1351(0), and a1 =as; =1 (with appropriate scaling), then the
linearization about (0, 0, 0) of third order systems has the form:

d VA —1+4+a, -1 1 YA
(27) Et' Zz = aj —K 0 Z2 .
Z3 as. 0 -p. Z3

Note that the configuration of Fig. 3 implies a;>0. Our parameters are the
excitatory terms a1, d,, as, which correspond to the effects of V or P on w, u, v or
I, E, P. The eigenvalues of this matrix satisfy:

A+AMT+AN+AL=0,
Ar=1+k+p—a,,

2.8) : '
Ai1=a—az—(a,— 1)k +p)+«p,

Ao=a1p —asK —Kp(al— 1)
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The equilibrium point (0, 0, 0) is stable if and only if
(a) A1>O, A2>0, A0>O,
(b) ) A2A1“""A()>O.

Condition (a) requires that the activator or excitatory influences, as, a;, are not too
large. Condition (b) which'is the Routh-Hurwitz criterion takes the form

(2.10) (azk —asp)—(a1—1)(az—as)—(a1— 1)k +p)*+(a1—1)*(x +p) + (x +p)xp >0.

The first three terms can contribute to instability. If the inhibition is strong enough
and a, is large, (2.10) will be violated and will result in a Hopf bifurcation. It is clear
that parameters can be arranged so that A=A ; =0 or A, = A, = 0. Hence bifurcation
to tori and homoclinic orbits can probably occur in this system. We now establish
conditions on (k, p) so that a triple zero eigenvalue occurs. This requires A, =A; =
A() =0or:

(2.11) ar=1+k+p, ar=«*/(k—p), as=p*/(k—p).

2.9

Since a; must be positive, we find « >p is a necessary and sufficient condition; the
inhibitory interneuron or outward current acts more quickly than the excitatory
interneuron or secondary inward current. Self activation, a;, must be large enough
to overcome the decay effects due to the time constants. Finally, we note that («, p)
can be chosen less than or greater than 1, hence, these two terms can respond slower
or quicker than the principle activation, V or P.

As a final comment suppose we set a3 =0. Then the two-variable system when
linearized has the form:

k+p -1

3
K

K—p
The eigenvalues of this are complex and have positive real parts so that, in most cases,
the two-variable model admits an oscillating solution. Tuning a; corresponds to
injecting a positive feedback term back into the oscillation; thus the situation resembles
that discussed by Rossler. , :
The remainder of this paper concerns the behavior of these third order nonlinear
systems when a1, a,, a3 depart from criticality. Since the method is completely general,
we treat an n-dimensional system in the next section.

—K

3. Canonical reduction. We consider the equation:
du o

3.1 Z=A(M’ v, y)u+Q(u,u)+h.o.t.

where (i, 7, ¥) are parameters, A is an #n X n matrix (n >2), and Q is an n-vector of
quadratic forms. ‘h.o.t.” means terms in higher order in the parameters and in u. We
suppose that A(0,0,0)=A, has a zero eigenvalue with geometric multiplicity one
and algebraic multiplicity three. Therefore, there are 3 unique real vectors (e1, €2, €3)
which satisfy:

(3.2) A0€1=0, A082=€1, A0e3=e2, €; -ek=6,~k.
There are also 3 unique real vectors (f1, f>, f3) Which satisfy:
3.3) Aif3=0, Aif2=fs Aifi=f» fi*ex=58
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where “T”’ denotes the transpose. The characteristic polynomial of A is a function
of the three parameters and can be written:

(3.4) P)=det(A-A)=A"+Y ¢ 7, 7.
i=0

Since zero is a triple eigenvalue of A, we have:
(3~5) CO(O9 0’ 0) = 01(0, 0’ O) = C2(07 0’ 0) = 0’ C3(0, 09 0) # 0'

We demand that the remaining eigenvalues of A, lie in the left half complex plane
so that our constructed solutions can be linearly stable. A “transversality”’ condition
on the independence of the three parameters must be assumed. We let:

ac; ac; aci
(3.6) Cj1=i_] ’ Cj2=‘(:} ’ st=_c_] , 7=0,1,2.
a1 0,0,0) vl 0,0,0) Y 1(0,0,0
We suppose that:
3.7 det (cp) #0.

(3.7) allows us to introduce a nonsingular change of parameter coordinates which
satisfy:

(3.8) u~ca@, 7, %), v~cil@, 7,7%), v~col@ 7, 7).

In general the computations required to verify (3.7) are tedious since (3.4) must be
calculated. The following lemma provides a straightforward means of calculating the
coefficients, c; without the use of the characteristic polynomial.

PROPOSITION 1. Let c3, c4, cs be the coefficients of P(\) when g =v =5 =0 (note
¢3>0, c4=0, c5 =0, for stability). Then:

c3 0 0\ sk C2f
3.9) ca C3 0)(3,- ==lcy) =123,
Cs €4 €3/ \@ Coj
where
aj=f3Aje1, Bi=faAjetf3A e,
(3.10) ki=fiAje1+ L Aje;+ f3A e,
A1=a—4:‘ s A2=% > A3=§é .
o 1 0,0,0) 07 1(0,0,0) Y 10,0,0
Proof. A satisfies its own characteristic polynomial:
(3.11) A"+ +esAT A + 034+ A 1A +co=0.

Pick a parameter, differentiate (3.11) with respect to it, and set (&, 7, ¥)=0- - -
<ot es(AFAAS) + ca(ASAAg+ Ag A;AD)
(3.12) +c3(ASA+AgAjAo+ A;AY)
+0yjA5+¢1jAg+ coj=L;=0.

L; is a linear operator on R". We apply L; to e, and take the inner product of the
result with f;. This leads to the expressions for a;, B;, and ;. This completes the proof
of the proposition.
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Let
(313) M =f}A1 €, Nji =f}'A2 €y and 8k =fjA3 €.
Proposition 1 implies:

¢cs 0 O\ /mu+tmyp+mss niyytnaptni giitg2+gs3
CM=lcsy ¢c3 O moy+ms; na1+H32 g211+g32

Cs C4 C3 msy n31 831

(3.14)

C21 C22 C23
=—|c11 c12 ci3|=C
Co1 Co2 Co3

Det (C) = c3 # 0, so to verify (3.7), we need only evaluate det M. Since each component
of M is easily computed through (3.10), the verification of the ‘“transversality”
condition is trivial. We assume that det (C") # 0, so that M is invertible.

To obtain the canonical equation, we take as our ansatz:

(3.15) ) u(t)=z-:3e1x +e4e2y +&esz +w, T=¢t,

where w - ¢; =0, ¢ is a small number, and (x, y, z) are functions of 7. We substitute
(3.15) into (3.1) and apply the adjoint vectors fi, f», f3 to the resultant equation. This
leads to:

dx X _ _ _ _ _ _
(a) Z=y+;(umu+Vnu+vgu)+y(um12+vn12+7g12)+8R1,
dy X _ _ Yy, - _ _
(b) 27 7 +?(Mm21+ Z(PH +7821)+;(Mm22+ naz+¥822)
(3.16) B
+z(;1m23+17n23+yg23)+€R2,
dz X, _ _ _ _ - _
(c) E=qx2+?(um31+Vn31+vg31)+§(umsz+vnsz+vgsz)

z _ - _
+;(um33+vn33+yg33)+eR3
where R1, R,, R3 depend on the parameters in higher orders and q =f3 - Q(ey, €1).

We must assume that q is nonzero, which is in general true. We differentiate (3.16a)
twice, (3.16b) once, and combine with (3.16c¢) to obtain the third order equation:

d’x 1__ - _ d*x
2;?= ;[I»L(mu + Mo+ maz)+i(ni+nx+nss)+¥(g11+ 822 +833)] P

1 d
(3.17) +?[11(m32+m21)+17(n32+n21)+7(g32+g21)]d—:

1 .
+—5[@ms1 + pns1 +yga1x +qx’ +terms in (@, 7, 7, €).
£

We use the fact that M is invertible to introduce new parameters:

m
(3.18) Ml |=— %)
7
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This leads to the equation:

d’x d*x  dx 2
Pl ——4+yv—+ — = O .
(3.19) dr’ tu a2 Udr Ll ()

(3.19) is our canonical three-parameter unfolding of the singular vector field d >x/dr> =
gx*. The remainder of this paper is devoted to an analysis of (3.19) for various
parameter values.

Before analyzing (3.19), we must show that the three parameters a;, a,, a3 in
the neural models are sufficient. That is, we must show that the matrix M defined by
(3.13) is invertible. At criticality,

k+p -1 1
3
- 0
A()— K—p “ .
p3
0 —_
K+p p

A is the zero matrix with a 1 in the top left corner, A, is zero with a 1 in the
second row, first column, and A; is zero with a 1 in the lower left corner. The
eigenvectors and adjoint eigenvectors are easily computed:

2 2
€1=<1, X s u ), f1=(190,0)3
K—p K—p
(3.20) e2=(0, kT ) fo=(c+p, 1, 1),
K—p K—p
1 1
€3= (0’ 5 )9 f3 = (KP, -7, M)-
K—p K—p
Finally, the matrix M is given by:
1 0 0
(3.21) M=<K+p -1 1
Kp —p K

and its determinant is p — k # 0. Thus transversality holds and the parameters a1, a, as
are sufficient to unfold the degeneracy. We now compute g, the nonlinear term,

q=f3-Qley,e1).
For the FHN system:
f'(0)
2
Q. y.2)={ |
0
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and for the Wilson—-Cowan system
(1+k +p)S1(0)x>~S5(0)y” +85(0)z>
3

1 K " 2
Qx, y2)=5 K-pSl(O)x
3

P §10)x>
K=p

Thus, we find
" 0
q="= fz( ) (FHN),
(3.22)
S3(0)«>  83(0)p>
=310, 2 2 (WO).
2 K—p

In particular if S5 and $; are linear, g is nonzero if $7(0) # 0. Similarly, we demand
f"(0) # 0 as well. Finally, if $3 =355, q for the WC equations is:
[S1(0) +(x +p)S3(0)]
> .

Generally g # 0, so that all of the conditions required in this section are satisfied for
the neural models and we can expect them to behave as does equation (3.19).

4. Analysis of the canonical system. (3.19) is the simplest general third order
nonlinear system; there is but one quadratic nonlinearity. Yet it seems that this system
is capable of generating a wide variety of interesting behavior. We will only concern
ourselves with periodic solutions and the numerical transition to chaos. We fix u, »
and increase 7. Initially the rest state is stable. For increasing y there is a stable limit
cycle which arises through a supercritical Hopf bifurcation. This bifurcation loses
stability and a new 27-periodic solution arises. Continued increase of y results in a
succession of period doubling bifurcations ultimately ending in what appear to be
chaotic solutions.

4.1. Periodic solution. We rewrite (3.19) when &€ =0 as the third order system:

dx dy dz 2
1 —=y—ux, —=2zZ—vX, ——=qx —yx.
“. dar VTHE TR g ax =
There is a pair of equilibria, Xo=(xo, Yo, 20)=(0,0,0) and x;=(x1,y1,21)=
(q/v, nq/v, vq/v). Both equilibria cannot be simultaneously stable; we therefore
restrict our attention to x,= (0, 0, 0). Stability of x, is determined by the roots of

4.2) A3+/.LA2+VA +y =0,
that is, we require
(a) w>0, v>0, y>0,
(4.3) .
(b) pwy—y>0 (Routh criterion).

If (4.3b) is violated, a pair of complex eigenvalues crosses the imaginary axis and may
result in an Hopf bifurcation. Suppose y = uv. Then (4.2) has roots —u and +ivy
and if (4.3) is satisfied these are imaginary roots. For |y —uv| small there may be a
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limit cycle. Existence and stability of this cycle are determined by the direction of
birfurcation. g can be scaled out of the problem so we take ¢ = 1. Through by-now-
standard techniques, we obtain the bifurcation direction:

Y ~uv +82y2+0(63),
0 =Vv+82w,+0(8>),
(4.4) 2u’+6v 5«1,
Vo=,
' [uv(u”+4v)]
-2
Bovu(?+4v)]

Here w is the frequency of the oscillator and § is the amplitude. Since y,>0, the
bifurcation is supercritical and a stable small amplitude limit cycle exists. We remark
that Keener [10] studies the appearance of small amplitude oscillations when there
is a zero eigenvalue of multiplicity two. In his problem, terms of order ¢ are necessary
to obtain the bifurcation direction. The higher order calculation is unnecessary for
our system. The remainder of this section is a numerical study of (3.19) when ¢ =0
and y > uv. We also show that the chaos persists for £ # 0 in the FHN example.

4.2. Cascading bifurcations and chaos. Before resuming our analysis, we show
that (3.19) is identical to one of Rossler’s prototypes for chaos in third order systems.
In [18], Rossler studies the following system:

4.5) i=-y-z, y=x, Z=a(y—y?)-bz.
If we differentiate the second equation twice and the first equation once, we obtain:

d37 Ly Ay

at
With w=b, v=1, y=a +b, q =a, we see that (4.6) is identical to (3.19) so that
Rossler’s prototype is within the class of our canonical unfolding.

We return to (4.1) and study the effect of increasing y. In our simulations of
4.1),q=2,v=2, u=1, so y. =2. Solutions to (3.1) were found by integrating the
differential equations until a periodic solution was reached. Numerical integration was
performed using a package Gear—~Adams technique contained in MLAB [12]. In Fig.
4, we depict the limit cycle for y = 3. This and subsequent figures are all drawn as
stereo pairs. As vy increases a critical value y; =3.089 is reached at which the limit
cycle loses stability. A new periodic solution with twice the period bifurcates from
the unstable cycle. This “2T-periodic” cycle is depicted in Fig. 5 for y =3.25. This
oscillation remains stable until y =y, ~3.351. A new periodic solution with period
approximately four times that of the original cycle appears when the 27-periodic
solution loses stability. In Fig. 6, we depict this “4T-periodic” cycle for y =3.38.
Again, this solution remains stable until a value y =y, ~3.410 is reached. An “87-
periodic” solution bifurcates and is shown in Fig. 7 for y=3.42. In Fig. 8, we depict
the “16T-periodic” solution which bifurcates from the 8 T-periodic solution at y =y, ~
3.423. Beyond this point it becomes very difficult to calculate higher harmonic solutions
although we believe that they exist. For y above about 3.45 chaos-like solutions
appear, that is, there are bounded aperiodic solutions to the equation. A typical
chaotic solution is shown in Fig. 9 for y = 3.5. This behavior persists for y up to about
3.75. We remark that the chaotic attractor appears to be a twisted two-dimensional

(4.6) +(a +b)y —ay*=0.
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FIG. 4. Periodic solution to (4.1). p =1, v=2, q=2, y=3. Initial conditions: (x(0), y(0), z(0)) =
(.8528, —.8309, —.6271) Axes are x, y, z starting at bottom and going counterclockwise. Axes: —.35<x < 7,
—4<y<.61, —.28 <z <.7S; left image is for right eye and vice versa. (To view hold 40 cm from eyes. Cross
eyes so that there are 4 images. If the two center images are fused and brought into focus, 3-dimensional

S

FIG. 5. Same as Fig. 1. Initial conditions: (—.6372, —.1615, 1.433) Axes: —.35<x <.7, -.38< y <.65,

-3<2<.75; y=3.25.

FI1G. 6. Same as Fig. 1. Initial conditions: (1.199, .3470, .7449) Axes: —.35<x<.7, —=.37<y<.65,
-3<2<.73; y=3.38.

L/

X

shape appears.)

%/

"
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FIG. 7. Same as Fig. 1. Initial conditions: (.3945, 1.699, 1.799) Axes: —.35<x<.7, —.37<y <.65,
-31<z<.71; y=3.42.

F1G. 8. Same as Fig. 1. Initial conditions: (1.0428, 1.681, 1.000) Axes: —.34<x <.7, -37<y<.65,
-31<2<.74; y=3.428.

FIG. 9. Aperiodic solution, same as Fig. 1. Initial conditions: (1.115, .1238, .7274). Axes: same as
Fig. 5; y=3.5.
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F1G. 10. Conjectured bifurcation diagram showing successive period doubling bifurcations preceding
chaotic behavior.

band. The divergence of (3.1) is —u <0 so that the dimension of the attractor cannot
exceed 2. This succession of bifurcations is similar to the analogous sequence for a
large class of discrete models. One is tempted to suggest the bifurcation diagram
shown in Fig. 10. Feigenbaum [4] has recently shown for a large class of mappings
that if b, is the value of a parameter b at which a 2"-point cycle occurs, then

4.7) lim 5, =22

n->c bnia—bns1

=4.669 - - -

is a universal constant. We have tabulated the analogous ratio for the 4 bifurcations
that we have computed. The results, shown in Table 1, indicate that the ratio will
eventually be Feigenbaum’s universal constant. This is not surprising since the existence
of these period doubling bifurcations can be ascertained by looking at the Poincaré
map as a function of y. Feigenbaum’s result holds for such maps.

Based on the numerical results of this section, we conjecture that for certain
ranges of u, v >0, as v is increased there will always be a sequence of period doubling
bifurcations ultimately ending in chaos. More exact numerical techniques must be

TABLE 1
Bifurcation to 2" T-periodic solutions.

n Yn (7n+1—7n)/(7n+2—7n+1)56n
0 2.000 4.1565

1 3.089 4.4407

2 3.351 4.5384

3 3.410 -

4 3.423 -
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used in order to find exact values of the bifurcation points and perhaps the existence
of period-3 oscillations. This could be done by following the Floquet exponents of
the basic periodic solution.

4.3. Full problem. We have demonstrated numerically that (3.19) admits chaotic
solutions when £ =0. We turn now to the FHN equations for € # 0 and show that
chaos persists in this system. The FHN equations can be written as a simple third order
system. We substitute the critical values of the parameters (ab,a,,a;)=
(k+p, &3/ (k=p), p?/(k—p)) into this system. When « =2, p =1, we find the scaled
full system can be written as:

Y +uy"+vy' +yy +2y>=eH(y, y', y", &),
H(y,y', y" €)=2¢y>+9y'(2y —3e’y*)+2ey"*(1-3¢"y).

When ¢ =0, we have (4.1). Although an exhaustive check of parameter ranges has
not been done, we find that the limit cycle persists even for ¢ as high as 0.5.
Henceforth, y will vary while (i, ») remain fixed at (1, 2). In Fig. 11, the solution
to (4.8) is shown in the (y', y")-plane with ¢ fixed at ¢ = 0.1. Initially, there is an Hopf
bifurcation which leads to a stable limit cycle as y increases. This is shown in

4.8)

1.75

.25

-1.25
=.75

(© (d)

FIG. 11. Integration of the full FHN equation with € = .1 for vy increasing; (a) y =2.5, a stable limit cycle;
(b) y=31,a doubled loop oscillation; (c) y = 3.2, the eight-looped solution; (d) y=3.25, “chaos.” Plotis V
vs V.
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Fig. 11a for y=2.5. In Fig. 11b we depict the double looped oscillation at y=3.1.
The 8-looped cycle is shown in Fig. 11c for y =3.2. When y = 3.25, the solution is as
in Fig. 11d, which bears a qualitative resemblance to the ‘“‘chaotic” solution shown in
Fig. 9.

This example shows that the numerical chaos is robust and does not disappear
when high order terms are added. We are led to conclude that (1) a triply degenerate
zero eigenvalue can be unfolded to a system which admits chaos-like solutions and
(2) that various neuronal oscillators with excitatory feedback can behave chaotically.
The chaos we have investigated seems to arise from a succession of period doubling
bifurcations; this sequence follows Feigenbaum’s general rule. ‘

The technique described here can be applied to arbitrary systems of order 3 or
higher. The resultant canonical equation is simpler in form than most other systems
which have been shown to behave chaotically. Because of this simplicity it may be
easier to show how the chaotic behavior arises as vy is increased. Recently Marzec
and Spiegel [23] have studied a class of third order systems which lead to chaotic
behavior via period doubling bifurcations. We can write these as:

n—2
4.9) i=y, y=—-vy-— [x" —kZO ak()t)xk], A=—¢[A+g(x)]
where g(x) is a polynomial in x and ¢ is small. (4.9) was suggested as a generic recipe
for producing chaos in third order systems. One can derive (4.9) by slowly changing
the bifurcation parameters in one of Thom’s catastrophes. If ag(A)=dA +O(A %) and
g(x)=gx +O(x?), then (A, y, x)=(0, 0, 0) is an equilibrium point and the eigenvalues
for the linearized system satisfy:

(4.10) p>+(w+e)p’+vep —deg =0.
If, as suggested in [23], » = €8 and additionally we set & = & >a, (4.10) becomes
4.11) p+e(@+1)p*+e%8p +elag =0.

When n =2, under suitable scaling of (x, y,A), we see that (4.9) can be reduced to
the form (4.1) with the following identifications: u =6 +1=v+1, y=ag. So (4.9)
with n =2 is a restriction of (4.1) to u = v + 1. Since Marzec and Spiegel are primarily
concerned with the cases where n is odd, our results for n# =2 complement their
observations as well as producing a derivation of the equations from a general nth
order system. In the event that the quadratic nonlinearity in (4.1) vanishes, similar
techniques might be used to derive the more general system (4.9).
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