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LARGE AMPLITUDE STATIONARY WAVES IN AN EXCITABLE
LATERAL-INHIBITORY MEDIUM*

G. B. ERMENTROUTT, S. P. HASTINGS aAnD W. C. TROYT§

Abstract. Pattern formation in a system of reaction-diffusion equations which exhibit both lateral
inhibition and excitability is investigated. The system studied is derived from the FitzHugh-Nagumo nerve
conduction model. The existence of solitary and periodic stationary wave solutions is proved. Numerical
computations show that some of these waves are stable as solutions of the partial differential equations.
Further, arguments are given which indicate that these patterns arise as a result of excitability of the system
and not as a result of a Turing mechanism.

1. Introduction. One of the most important problems in developmental biology
is to determine the mechanisms responsible for pattern formation. In the early 1950’s,
two landmark papers were published on this topic. The first of these consists of the
celebrated Hodgkin-Huxley model of nerve conduction. The Hodgkin-Huxley
equations describe the formation and propagation of an electrical impulse along the
nerve axon. At about this same time, Turing [10] was investigating the formation of
stationary, nonpropagating patterns. He considered a physical system whose temporal
component has a stable equilibrium state. Under the proper conditions he showed that
the effects of introducing diffusion into the system can destabilize the steady state and
lead to the formation of stationary spatial patterns. That is, in an appropriate class of
reaction-diffusion equations, as one of the diffusion coefficients passes through a critical
value, the steady state loses stability and there occurs a bifurcation of small amplitude
stationary wave solutions.

In this paper we investigate a mechanism for pattern formation in a system of
reaction-diffusion models which is substantially different from that considered by
Turing. Briefly, we consider a two variable system in which u is considered to be an
activator and w acts as its inhibitor. By calling u an activator we mean that u is
autocatalytically involved in its own production. Similarly, the inhibitor w causes a
decrease in the production of u. Next, we assume that the system is excitable. That is,
there is a globally attracting steady state, (u,, w,), as well as a threshold of excitation.
With these basic assumptions in mind we first consider the case in which the rate of
diffusion of w is negligible relative to that of u. Then a local perturbation in u which
exceeds threshold can grow into a large peak. Subsequently, this large excursion in u
quickly spreads to neighboring regions, triggering them to undergo a large excursion
in u. In this way, a wave of u can form and propagate through the medium. As
explained by Hodgkin and Huxley [4], this mechanism is responsible for the formation
and propagation of nerve impulses. Suppose, however, that the rate of diffusion of w
is large relative to that of u. Again, a local perturbation in u which exceeds threshold
can form into a large, local peak. However, this peak may be prevented from propagating
due to the rapid diffusion of the inhibitor w into the surrounding region. This mechan-
ism, popularly known as “lateral inhibition,” has been proposed by Meinhardt [7],
and Gierer and Meinhardt [3] as possibly playing a role in the formation of complex
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linear structures such as blood vessels, leaf veins and dendrites of nerve cells. It has
been suggested that lateral inhibition may also contribute to pattern formation in
plankton populations [8], the budding of hydra and yeast [3], and the formation of
localized peaks of electrical activity in neural net models for short term memory [1].

In this paper we study a prototype model which exhibits both lateral inhibition
and excitability. This model consists of an extension of the FitzHugh-Nagumo [9]
equations, namely

u=u,+u(l—u)(u—a)—w,

(1)
w, = Dw,, + e(u—yw)
where u, we R, t=0, —co<x <00, D=0, >0, y>0,and 0<a<1/2.
Our main goal is to investigate (1) for the existence and stability of stationary

spatial patterns. To ensure that equations (1) have a unique equilibrium solution we
. assume that 0< y <y, where 1/v,>max,.o (u—a)(1—u). Further, if we take ¢ >0 to

be small, then the point (u, w) = (a, 0) acts as a threshold of excitation in the kinetic

system

(2)

u=u(l—u)(u—a)-—w,
w,=¢e(u—yw).

That is, if we keep w(0) =0 (the resting level of w) and let u(0) > 0, then the following
occurs:
(i) if 0<u(0)<a and >0 is small, then (u, w) decays to rest (possibly with.
damped oscillations),

(ii) if a<u(0)<1 and £>0 is small, then u quickly approaches a peak value

near u =1 followed by the return of the solution to rest.

In § 2 we describe our main results and state two theorems concerning the existence
of periodic and nonperiodic stationary wave solutions of Egs. (1). We discuss numerical
computations which suggest that some of these solutions are stable.

The proofs of our theorems are found in §§ 3 and 4.

2. Statement of main results. Stationary waves are time independent solutions of
(1). Therefore we set u,=0 and w,=0, and consider the system

3) u' +f(u)—w=0, Dw"+e(u—yw)=0

where '=d/dx, f(u)=u(1—u)(u—a) and 0<a <3. Lateral inhibition requires that
we take D> 0 to be large. Since the kinetic equations (2) are excitable, we also assume
that £ >0 is small. Recall that we let 0 <y <y, in order to guarantee that (2) and (3)

have a unique equilibrium solution.
It is convenient to require that solutions satisfy the initial condition

(4) u'(0) = w'(0) =0.

From (3) and the transformation £ = —x it follows that solutions which satisfy (4) are
symmetric about the origin x =0. Thus, condition (4) greatly simplifies our investiga-
tions since it allows us to restrict both our mathematical proofs and numerical computa-
tions to the interval 0= x <co.

In our first theorem we describe stationary wave solutions which tend to equilib-
rium at £00.

THEOREM 1. Let y€ (0, v,). If e/ D> 0 is sufficiently small, then the problem (3)—(4)
has at least two nonconstant, bounded solutions each of which satisfies the following:

(i) limgoo (u, u', w, w')=(0,0,0,0);
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(ii) u(x) and w(x) have exactly one relative maximum on (—00,0) which occurs

at x=0.

Our second main result concerns the existence of periodic stationary wave
solutions.

THEOREM 2. Let 0<y<1y,. Ife/ D> 0 is sufficiently small, then the problem (3)—(4)
has a continuum of periodic solutions.

Discussion of results. At this point we find it illuminating to discuss numerical
results which indicate the stability properties of solutions found in Theorems 1 and 2.
That is, we determine classes of initial data for (1) which evolve (as t-> +00) either
into a periodic or a solitary stationary wave. For these simulations we use the collocation
solver PDECOL [6] which solves a general system of nonlinear parabolic partial
differential equations in time and one space dimension. All computations were done
on the University of Pittsburgh DEC-10 computer.

For ease of computation (i.e. minimal cost and maximal speed per run) we split
the effects of D and & by the scaling x = sD'/?, and solve the system :

1
®) w= 5 e S =W, W=t e yw).

By way of example, we let a=.25 and y=.1. For these values there is a unique
equilibrzium solution, (u, w)=(0,0). To reflect lateral inhibition we let D =10 and
e=10"".

All of our computations are restricted to the interval 0=s=28 with Neuman
boundary conditions at each end. The grid size was As =0.1 so that the entire interval
was broken into 280 points. In most simulations we set w(s, 0)=0 for s €[0, 28], and
u(s, 0)=0 on [0, 28] except for a small subinterval where u(s, 0) = 0.65> a, the thresh-
old. These perturbations evolve into stationary solutions on the finite interval [0, 28].
By symmetry, we can extend these to periodic solutions on the whole line. An isolated
pulse peak centered at s =0 was considered to represent the solitary pulse although
the domain was only finite. Earlier numerical investigations indicate that for other
domain sizes, this isolated solution still exists.

In Figs. 1, 2 and 3 we follow the evolution of a single square impulse as - co.
Figure 1 shows initial data consisting of two square impulses centered at s =+5.5 and

t =20000
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FiG. 1. Initial perturbation is w(s, 0)=0, and u(s,0)=0 on [—28, 28] except for the intervals [-6, —5]
and [5,6] where u(s,0)=.65. Dotted curve denotes the evolution of the initial condition into a wave after
t =20,000 time steps.
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0 160000 . 320000
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FIG. 2. Given t>0, s(t) denotes the positive value at which the wave has a peak (e.g. s(20,000) = 11.4).
Numerical experiments show that s - 14.0 at t > and the stationary periodic wave has formed.

having width As=1. As ¢ increases, the initial data evolves into a large amplitude
solution with two peaks. After 20,000 time steps the peaks have spread out and are
centered at s = +11.4. However, the peaks continue their slow movement for still larger
values of t. Thus, in Fig. 2, we compute the positive value s at which the peak occurs
as a function of ¢ and find that §(¢)> 0 for all £> 0, and it appears that lim,_ ., s(¢) = 14.
(Similarly, the negative s value at which a peak occurs satisfies § <0 for all t>0, with
lim,, s(t) = —14.) In Fig. 3, the solution has ultimately evolved into a large amplitude
stationary wave which is periodic in s with period 28. This is a two peak periodic
solution on a finite domain. But if we identify the endpoint s = —28 with the point
s = +28, we see that the peaks are actually periodic with period 28. In this manner we
can patch together these solutions to obtain a solution on the infinite line. Our results,
however, tell us nothing of the stability of this solution in the infinite domain. Further-
more, we conjecture that such a periodic solution could only evolve from initial data
which was infinite in extent.

N

-0 -200__| -120—-40 40 ——120 | 200" 280

F1G. 3. After 36,000 time steps the wave solution shown in Fig. 1 evolves into a two peak periodic solution
as t— 0o, with peaks at s = +14.
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Figures 4 and 5 show that there are other large amplitude, stable, periodicstationary
wave solutions with periods 18% and 14. (See figure legends for further details.) That
we can find “periodic” solutions of these particular periods is not at all surprising
when one takes into account that we have proven the existence of a continuum of
solutions. That is, for any sufficiently large number, P, there is a solution to (3)—(4)
which has period P. We have found solutions of period 28, 182, and 14 numerically,
representing 56/2, 56/3 and 56/4 periodic solutions.

ul 93

N

280—=200|_-120—-40 ] | 40——120—_] 200_—280

FIG. 4. Initial conditions w(s,0)=0 on [—28, 28], and u(s,0)=0 on [—28, 28] except on the intervals
[—16, —15]U[—1, 1]U[15, 16] where u(s, 0)=.65. This initial perturbation evolves into a three-peak periodic
stationary wave as t increases, with period t = 183.

s
| | T T T T T 1
280200 =120 | 40 40] | 120 200\ 280
FIG. 5. Initial conditions w(s,0)=0 on [—28,28], and u(s,0)=0 on [—28,28] except on the intervals

[-21,—20]U[~11.5, -10.5]U[10.5, 11.5]U[20, 21] where u(s, 0)=.65. The initial perturbation grows into a
four-peak periodic stationary wave as t increases, with period t = 14.

In Fig. 6 a single square impulse of width 1 unit and centered at s =0 has evolved
into a large amplitude solitary stationary wave solution.

Our numerical computations indicate that over a fixed spatial interval and para-
meter set, (5) have a unique, stable, stationary wave which tends to equilibrium as
x - +00. All other stable patterns are periodic and there are only a finite number of
these solutions. However, as D increases, the number of stable periodic solutions
increases, their amplitudes remain constant, and the width at the base of each peak
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FIG. 6. Initial conditions w(s,0)=0 on [—28,28] and u(s,0)=0 on [—28,28] except on the interval
[~1, 1] where u(s,0)=.65. This perturbation evolves into a single peak stationary pulse solution as t increases.

narrows. If we extend the domain to o0, then it is possible that there is a continuum
of periodic solutions. This is a problem for further study. Another interesting problem
is to determine whether there are stable stationary wave solutions which do not satisfy
these conditions. Such solutions would be “nonsymmetric”.

3. Proofs. The proofs of our two theorems rely on a shooting method which in
turn relies on a functional derived from (3). Thus, we subdivide this section into three
parts. First, we develop the mathematical properties of the functional. Following that
we give an outline of the shooting method, and then proceed with the final details of
the proofs.

Consider the functional

© =y -2 0w
where

(7 Q(u, w)= yw> +2F(u) —2uw
and

(8) F(u)= Juf(s) ds.

It easily follows from (3) that P'=0 along solutions. Therefore, P=c where c is a
constant. Since we assume that u'(0) = w'(0) =0, it follows that

9 Q(u(0), w(0))=c.

In Theorem 1 we seek solutions which tend to (u, w) = (0, 0) as x - 0. Therefore, such
solutions remain on the surface P =0 and, from condition (4), (u(0), w(0)) must satisfy

(10) Q(u(0), w(0)) =0.



LARGE AMPLITUDE STATIONARY WAVES 1139

FIG. 7. The dotted curves T, T, T's represent solutions of the equation Q(u, w)=0. For £ =0 and w= W,

the solution of (11) with u(0) = &, is periodic and its trajectory projected onto the (u, w) plane is represented
by the line segment I.

The solutions of (10) consist of the four sets (see Fig. 7)

1
r= {(u, w)|uz0, w=gl(u)E$+; (u>—2yF(u))'?1,

I,= {(u, w)luz0,w= gz(u)Eg—l(uz—%’F(u))”2
Y Y

b

—— e N !

1
r3={(u, WluS0,w=gi(w) ="+ (= 2yF ()"

r,= {(u, w)u=0,w=g,(u)= %—% (u2—2yF(u))'/2}.
Each of these sets is a smooth function on an open half line. We make several
observations about g, g, and g;. (The set I, is not used in the proofs.)
(a) gi(u)>1/y for u>0.
(b) Since j'(',f(u) du> 0, then there is a unique u, in (a, 1) such that g,(u,)=0.
Also, there is a unique u, € (u;, 1) for which g,(u,) = f(u,), g, is increasing foru € (uy, uy)
and g, decreases on (u,, ).

(c) g4<0 for —o<u<0,and 8=sup,, g5(u) is negative. We shall assume that
(¢/D)"/? < —&. (Further restrictions on the size of (c/D)"? will be required.)
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In the proof of Theorem 1 we restrict our initial condition to a subset of I',, namely
the set
(11) A={(u, w)eT,juzu}.
We shall also refer to the half line segment
L={(u, u/y)luz0}.

Outline of the proof of Theorem 1. The first step in our analysis is to consider the
case € =0 in (3)—(4). This causes w to remain at a constant value, say W, and the system
is reduced to

(12) u'=z z'=w—f(u).
Equations (12) can be rewritten as the single equation
(13) u"+f(u)—Ww=0.

If we assume that 0 < W < g,(u,), then there is a unique value a € (u,, 4,) such that
(W, @) € A. A key step in our analysis is to determine the behavior of the solution of
(13) with initial condition

u(0)=a, u'(0)=0.

As we shall show, this solution is periodic. Therefore, the set i= {(u(x), w)|x=0} is
a finite line segment (Fig. 7). Furthermore, I lies to the right of the curve {(u, f (u)|u=
0}, since u”>0 at a minimum value of u. Also, in I'; = since T'; lies to the left of
w=f(u) for u<0.

Further, since u(x) is periodic, the function (u(x), ) intersects L infinitely often.
Thus, from a continuity argument it follows that if & >0 is sufficiently small then the
solution of (3) with initial value

(14) u(0)=a, w(0)=gyxd), u'(0)=w'(0)=0

must intersect L at least 2 times, before either (u, w)eI'; or w=0. We let g, =
(t4, UL, wo, wh,) denote the solution such that ¢,(0) = (e, 0, g,(), 0). Then for small
e/ D> 0 we define the following nonempty sets:

Q, = {a = u,|there exists x; = x;(a)> 0 with (U (x,), wa(x,)) € L
and w,(x)>0 for 0= x=x,},
Q,= {a € Q,[there are values x,> x,> 0 with

(1) (ua(x;), wa(x;))e Lfori=1,2,
(ua(x), we(x)) 2 L for all xe[0, x;) U (x, x,),

(i) (uy(x), we(x))2T5 and w,(x)>0 for all x [0, xz]}.

To proceed with the proof of Theorem 1 we need several auxiliary lemmas. First, for
small £/ D> 0 we show that (), is nonempty, open and bounded, with

< a,=inf Q, < a’=sup Q, <.
Following that we consider solutions of (3) with either

(u(0), w(0), u'(0), w'(0)) = (a, gx(a2), 0,0)
or '
(u(0), w(0), u'(0), w'(0)) = (a?, gx(a?),0,0).
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We then show that these two solutions satisfy Theorem 1.
Completion of the proof of Theorem 1. As stated in the outline given above the
first step in our analysis is to consider the special case € =0. This reduces (3) to

(15) u’ +f(u)—w=0.

Let fiin=ming<, <, f(u) and f,,., = maxo<,; f(u). Then for each W € (fiin, fmax) there
are three distinct roots, u; (W) <0< uy (W) < ug(W), of the equation

(16) f(u)—w=0.

Further, g,(u,) <fmax, 85(42) =0> f'(u,) and for each we (0, g(u,)) there is a unique
value & such that (&, w) € A. That is,

17) 2F(a)—2aw=—yw>
We further restrict w > 0 so that
up ()
(18) J (f(s)—w) ds>0.
up (W)

Finally, we shall use the two auxiliary functions

(19) (W)= 2F(u (W)) —2Wu,(w)
and
(20) (W) =2F (up (W) —2Wup (W).

We now consider (15). The qualitative behavior of solutions of (15) is well known.
The function H(u, u') = (u')*>+2F(u) = 2uw, is constant along solutions. Suppose that

21) H(u,u')=K

where K is constant. If K = u(w), then (20) describes the trajectory of a homoclinic
orbit leading to and from the equilibrium point (u, u') = (u (W), 0). If K = (W), then
the solution (20) consists of the single point (u, u’) = (uy, 0). If n(W) < K < u(w), then
(20) describes the trajectory of a periodic solution of (15). The particular solution
which we are interested in satisfies

(22) u(0) =q, u'(0)=0.

From (17) and (22) it follows that H(u, u’) = —yWw>. Thus, to show that the solution
of (15)-(22) is periodic we need to prove that

(23) (W) < —y#? < w(W).
From the definition of 1(W) we conclude that
1n(0) =2F(up(0)) <0 and 7'(0)=—2u,(0)<O0.

Therefore, (n(W) +yw?) = —2up, (W) +2yWw <0 and n(W) < —yw? for small w > 0. Since
w(w)>0 for w>0, the requirements of (23) are satisfied for small w>0 and the
solution of (15) and (22) is periodic. Therefore, in the (w, u) plane the functions
(u(x), w) traces out a straight line segment i (Fig. 7). An algebraic computation shows
that this function intersects the line w=u/y at the point (yw, w) and that

(24) mi{)l u(x)<yw< max u(x).

This concludes our analysis of the case £ =0.
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We now consider the full system, (3) for small ¢/ D>0. It follows from our
discussion of the case £ =0, and the continuity of solutions with respect to parameters,
that if ¢/ D >0 is sufficiently small, then Q,# . We will show that Q, is a proper
open subset and that (), has at least two boundary points. These boundary points have
the following properties:

(i) They correspond to solutions which tend to equilibrium as x> +c.

(ii) The u and w components of these solutions have exactly one positive relative

maximum which occurs at x =0, and u(0)> a.
From the properties described in (i)-(ii) above it follows that there are at least 2
homoclinic orbits of (3).

A further restriction which we need to make on the size of the parameters ¢ and

D is to assume that

(25) (¢/D)"*<min{-8,1/y}.

In the following three lemmas we show that any solution of (3) which intersects
either of the curves L or I'; must cross those curves. These properties are crucial in
showing that our “shooting” sets €}, and ), are open.

LeMMA 1. If (u,, w,) € L for some x,> 0, and u,(x,) >0, then (u,, w,) crosses L
at xo.

Proof. Since P = 0 along solutions, and Q <0 on L then (u'(x,))> — D(w'(x,))*/ & >
0. This, and the restriction (25) imply that |w’,(x,)/ u%(xo)| <(e/D)"*<1/y. Thus,
(u,, w,) cannot be tangent to L at x,, and therefore must cross L at this point. This
proves the lemma. .

LEMMA 2. If (u,, w,) intersects I'5 at some x = x,, (u'(xy), w'(x,)) #(0,0), and
u,(x,) <0, then (u,, w,) crosses I'y at x,.

Proof. Since 0<(g/D)"?<—8, then the lemma follows by the same type of
argument used in the proof of Lemma 1.

In the next lemma we consider the possibility that (u, w) = (0, 0) for some finite
x> 0. For this we need to define g3(07) =1lim,_ <o g5(u). From the definition of & it
follows that g5(07) =é.

LemMa 3. Let L, denote the entire line u = yw and set

T={(u, w)|ifu=0 then w= g5(u), while if u=0 then w=g4(07)}.

If (u,, w,) =(0,0) for some first x,>0 then (u,, w,) crosses both L, and T at x,.

Proof. If there is a first xo>0 for which (u,(x,), w.(xo)) = (0, 0), then P(x,)=
Q(u,(x5), wa(x,)) =0. From this and uniqueness of solutions it follows that u/,(x,) #0,
and therefore |w'(x,)/ u'(xo)| = (g/D)">. Since both L, and T have slopes greater than
(g/D)"?, then the result follows.

Using Lemmas 1 and 2, we now prove:

LEmMMA 4. Q, and Q, are open.

Proof. That Q, is open follows immediately from Lemma | and continuity of
solutions with respect to initial conditions. Next, let ay€ (,. Then there are values
x> x>0 for which (ue(xX;), we(x;)) € L for 1=i=2. From the definition of {2, we
observe that each of these intersections with L is nontangential, (u,, w,) ¢ I'; for any
x€[0, x,], and w, >0 for all x€[0, x,]. Thus, the result follows from Lemmas 1 and
2, and continuity of solutions with respect to initial conditions.

In the following lemma we show that each (1, is bounded.

LEMMA 5. Q, < (u, 1).
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Proof. By definition, O, < (u,, ). To show that Q, < (u,, 1) we consider a solution
of (3) with initial conditions satisfying u(0) > 1, w(0) = g,(#(0)), u'(0) = w'(0) =0. Then
u">0 and w"<0 for x>0 as long as w>0 and u > 1. This proves the lemma.

We have now shown that each set (}; (j=1, 2) is nonempty, open and contained
in the interval (u,, 1). Therefore, Q, has at least two distinct limit points a,=inf (),
and a®=sup Q,. We consider the solutions of (3) which satisfy either

(26) u(0)=ay, w(0)=gx(a), u'(0)=w'(0)=0
or
(27) u(0)=a’, w(0)=gy(a), u'(0)=w'(0)=0.

We need to show that each of these two solutions has the following properties:

(i) limy .o (u, u', w, w')=(0,0,0, 0),

(ii) u and w have a unique maximum in [0, ) which occurs at x =0, and u(0) > q,

the threshold for the kinetic system (2).

For convenience we restrict our attention to solutions which satisfy property (26). The
arguments for solutions satisfying (27) are similar and are therefore omitted. Suppose,
first of all, that w =0 at some first x> 0 before (u, w) € L. Then equations (3) imply
that w'(x) <0 and (u, w) crosses the line w=0 at x = X. By continuity the same thing
happens for values of a near a,, contradicting the definition of a,. If w>0 and
(u, w) ¢ L for all x € [0, ), then (3) imply that (u, w)>(0,0) as x>0 and 0<w<u/y
for all x = 0. However, this is not possible since a linearization of (3) shows that the
stable manifold of solutions leading to (u, w) =(0,0) does not point into the region
u>0,0<w<u/vy. Therefore, (u, w) must intersect L at some first x, >0, and by Lemma
1, this intersection is nontangential. Lemmas 1 and 2, and a continuity argument
imply that (u,w)el3;UL for any x>x,. Next, consider the set S=
{(u, w)|w>0, g5'(w) <u<yw}. We have just shown that (u, w) cannot intersect the
boundary of S at a point where w> 0. Suppose, therefore, that there is a first X> x;
where (u(x), w(x))=(0, 0). Recall that P(x)=0 for all x= 0. Since Q(u, w)> 0 for all
(u, w) € S, it follows from (6) and (25) that |w'(X)/u'(X)|=min {1/, —8}> (¢/D)"".
Thus, P(X) #0, a contradiction. Therefore, (u, w) remains in S°, the interior of S, for
all x> x,. To complete the proof we need to show w'<0Vx=x,. Thus, for the
sake of contradiction, we suppose that there is a value X>0 such that w'(x)=0. If
w'(x) =0, then w"(x)>0. Thus, from the definition of S, and (3) it follows that
w'>0Vx=x and (u, w) must enter the set (Fig. 8)
(28) R={(u, w)|W=2fnax, 85 (W) <u < yw}
at some X = X. Thus, w(X) =2f,,., and w'(%¥)> 0. To eliminate this possibility we need,
the following:

LEMMA 6. If (u(X), w(X)) € R and w'(X) > 0 for some £= 0, then (u, w) must leave
R through the set T';U L.

Proof. We assume, for the sake of contradiction, that (4, w)e R Vx= % Then
equations (3) imply that w'>0 and u"> f,.>0 Vx = £. Thus, there exists x= £ such
thatu = 12\/8’)’ and f(u) = —u’/3 Vx = x. From these observations and (3), it follows that

u"Z4eyu and w'<eyw Vx=x

An integration of each of these inequalities shows that, for sufficiently large x,

(29) %m—e; and %<JE.
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FIG. 8. A solution entering R (shaded region) at some x = X must leave R either through T'; or across the
line L.

A further integration of (29) shows that there are values A;>0, A,>0 and £> X such
that

(30) u(x)>A, e and w(x)<A,e** Vxz=x
Combining (29) and (30), we obtain

w_’(_x_)é«/___z A, e/ x gy =5

u'(x) J3 A,
Thus, w'/u’' <1/ for all large x and (u, w) must leave R through L, contradicting our
suppositions that (u, w) € R for x = X.

We now continue with our proof. From Lemmas 1, 2 and 6 we conclude that
(u, w) leaves R across I'; or L. Either of these possibilities, together with a continuity
argument, contradicts the definitions of a,. Therefore, it must be the case that w'<
OVx = x,. From this, and (3), it follows that lim,_. (u, u’, w, w')=(0,0,0,0). This
completes the proof of Theorem 1.

Proof of Theorem 2. To prove the existence of periodic solutions we use a shooting
method similar to that used in the proof of Theorem 1. First, in order to avoid the
possibility that a solution tends to an equilibrium point at +00, we assume that P(x) = 2c,
¢ being a small negative constant. From this, and the condition u'(0)=w'(0) =0, it
follows that

(31 Q(u(0), w(0)) =2c.
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Thus, our solution starts on the solution set of the equation

(32) Q(u, w)=2c.

Before describing the solution set of (32), we need to determine the behavior of the
related function

u

(33) p(u, c)=2y j

(i—f(s)> ds +2vyc.

o \Y

If ¢ =0, then p has a double root at u =0, dp(u, 0)/0u <0 for all u<0, dp(u, 0)/ou>0
for all >0, and lim,. p(u, 0) =0c0. Therefore, for ¢ <0 it follows that there are

exactly two real zeros of p, ti(c) <0< uy(c). Furthermore, dp(u, ¢)/du<0 for all
u<i(c), ap(u, c)/ou>0 for all u> uy(c), and

ap(u, c)
u

lim

Jul>c0

From these observations on p, and the definition of Q(u, w) (see (7)) it follows that
the solution set of (32) consists of the four sets (Fig. 9)

w
]
! /
! /
| F‘/
\ /
\ /’ w=u/y
\
\ /
\ /
| /
' /
\‘ 7 L
~ / <
I w=f(u)
\ /
\ gi(u) 4
! /
\
/
\ Py
\ / /// ~ r
\\ / V2 \\ 2
/ ’ .
! II  &u)
\ /
\ /
\ /
: < / A
\ / ,
.
\ /
/ /
\ / /
_ A — L ____ -

FIG. 9. A solution with initial condition (u(0), w(0)) = (B, g3(B)) € E must cross L, twice before (u, w) € f3

or w=gs(ug).
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I= {(u, w)|u = uo(c), w =g|(u)E$+%(p(u, C))”z},
I,= {(u, w)|uz uo(c), w= gz(")E$—$ (p(u, C))”z},
Iy= {(u, w)lu=i(c), w= gs(u)ng% (p(u, C))”z},

Iy= {(u, w)lu=i(c), w=ga(w) =42 (p(u, C))"z}-
Y v

We shall only use the sets I';, I'; and part of I'; in our analysis. As in the case ¢=0
we make several observations about the functions g;, g, and gs: For small ¢ <0 there
are positive values u,(¢) and u,(c) such that 0< ug(c) <a<uy(c)<uy(c)<l,
lim 4o uo(c) =0 and
(a) gx(uo) = gx(ur) =uo/ v,
g (u) <uy/y for uy<u<u,
g4(u)>0 for u; <u <u,, g,(u,)=f(u,) and
g5(u) <0 for u>u,;
(b) gi(u)>1/y for u>u,;
(c) there is a unique u°(c) <0 for which g;(u®) = uo/ ¥, limcro u®(c)=0, gi(u)<0
for all u<u® and &, =lim,q,0 g3(u) <O.
As in the proof of Theorem 1 we assume that

(34) (e/D)"?<min {-8,, 1/ v}
The initial point (#(0), w(0)) lies on the set (see Fig. (10))

Ac = {(us g2(u))|u = uO(C)}'
We shall refer to the half-line
Lo={(u, u/y)luzuyc)}
and the line segment
I ={(u, uo(c)/ y)|u’(c) = u=uo(c)}.
The part of 'y which we use in our analysis consists of the set

= {(u, g5(w))|u=u’(c)}.

Outline of proof of Theorem 2. We note that for each B e (u,, u,) there exists a
unique value w? = g,(B) such that (B, w®) € A.. Let qg = (ug, up, wp, wp) denote the
solution of (3) with gg(0)=(8,0, wP,0). As in the proof of Theorem 1 it follows
from continuity of solutions with respect to initial values and parameters thatife/D>0
and ¢ <0 are sufficiently small, then there exists B € (u,(c), uy(c)) such that (ug, wg)
crosses L, twice before wg = uo/y or (ug, wg) el

Therefore if ¢/D>0 and ¢<0 are sufficiently small, then we can define the
nonempty set

E ={B € (u(c), )

(i) (ug(x:), wa(x;))e Le (i=1,2),
(ug, Wwg)€ L, x€ [0, x;) U (x4, X2),

there are values x,> x; >0 with

(i) wg> uo(c)/y and (ug, wg) £ T, for all x€[0, xz]}.
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. F1G. 10. If the solution enters AU (shaded region) at some x = X, and w'(X) Z 0, then it must leave U across
UL,

In Lemmas 8-13 we prove that E is an open bounded set. Therefore, the numbers
(35) B,=infE and B,=sup E

are well defined and finite with u, =8, < 8,<c0. In the remainder of the section we
show that gg, and g, are periodic solutions of (3).

We now proceed with the details of proving Theorem 2. Lemmas 8-12 give
conditions under which a solution that intersects any of the curves f‘3, L. or I, must
cross that curve.

LEMMA 8. If (ug, wg) € L, for some xo>0 and ug(x,) > uo(c), then (ug, wg) crosses
L. at x,.

LEMMA 9. If (ug, wg) € T, for some x,> 0, ug(xo) <u’(c) and (up(xo), wi(xo)) #
(0,0), then (ug, wg) crosses T at x,.

The proofs of Lemmas 8 and 9 are the same as the proofs of Lemmas 1 and 2,
and we omit the details.

LEMMA 10. If (ug, wg) €l for some x,>0, and u’(c) <xo<uo(c), then (ug, wg)
crosses I, at x,.

Proof. If (ug, wg) is tangential to I, at x = xo, then wj(x,) =0. The definition of [,
implies that Q(ug(xo), wa(x,)) > 2c. Therefore, it follows that P(x,) > 2c, contradicting
the requirement that P(x)=2c

In Lemmas 11 and 12 we determine the behavior of solutions which intersect I,
at either of its endpoints. First we consider the left endpoint. For this we extend the
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definition of I~“3 and define the set
V. ={(u, w)|if u=u’(c) then w = g;(u), while

if u=u°c) then w=8.(u—u°) +uo/ v}

LEMMA 11. If (ug, wg) = (u°, up/y) for some x>0, and (up(xo),wp(xo)) # (0, 0),
then (ug, wg) crosses both I, and 'V, at x,.

Proof. At x=x, it must be the case that Q(ug(x,), wg(x)) =2c and therefore,
(u'(x0))*— D(w'(x,))?/ € =0. From this and the assumption that (up(x,), wp(x,)) #
(0,0) it follows that uj(x,) #0 and |wj(xo)/ up(xo)| = (e/D)"?. This and condition
(4.5) imply that (ug, wg) crosses V, and [, at x,, completing the proof of the lemma.

In Lemma 12 we determine the behavior of a solution which intersects I, at its
right-hand endpoint, (uo(c), uo(c)/v). Since the proof of Lemma 12 is essentially the
same as that of Lemma 11 we omit the details. We define

Ly ={(u, u/y)|ue(~c0,0)}

and

L, ={(u, uo/ y)lu>u’(c)}.

LEMMA 12. If (ug, wg) = (uo(c), uo(c)/v) for some x,>0, and (ug(x,), wp(xo)) #
(0,0), then (ug, wg) crosses both L, and L, at x,.

LEMMA 13. E is open and E < (u,(c), 1).

Proof. Let By€ E. Then there are x,> x, >0 with (ug,, wg,) £ T, and wg, > uo(c)/y
Vx [0, x,], (ug,(x:), wg,(x:)) € L. (i=1,2), and (ug, wg,) £ L. for x€[0, x;) U (xy, x).
From this, Lemmas 8—12, and continuity of solutions with respect to initial conditions,
it follows that B € E if |8 — Bo| > 0 is sufficiently small. Thus, E is open. The proof that
E = (u,(c), 1) is exactly the same as the proof of Lemma 5 and is therefore omitted.

From Lemma 13 it follows that the values B, and B, defined in (45) satisfy
u(c)<B,<B,<1. It remains to be shown that gg (x) and gg,(x) are periodic. For
ease of notation we set q,=¢qg. We show that there is a first x,>0 for which
(uy(xy), wi(x))) e f‘3U I, wi<0on (0, x,), and ui(x,) = wi(x;) =0. It then follows from
the symmetry of (3), and the translation 7= x —x, that g, is periodic with period 2x;.
We shall omit the details for g,(x) since they follow in a similar fashion.

First, we claim that (u,, w,) € L, before (u,, w,) € [, or w, = u/ . If this were false,
then there exists £ >0 with w,(x) € (uo/ 7y, u,(x)/v) for all xe (0, X), w,(X) = uo/y and
either u,(X) = uo(c) or else u,(£) > uy(c). If u,;(X) > uy(c), then equations (3) imply that
wi(£)<0Vxe(0, ], and u, > uy, w, < uy/ v for x to the immediate right of X. But then,
by continuity, and (3) it follows that 8 ¢ E if | —B,] > 0 is sufficiently small, contradict-
ing the definition of B,. Next, we suppose that u;(X) = uo(c). Then Lemma 12 implies
that (u,, w,) crosses both L, and L, at X, and again by continuity, 8 ¢ E if |B —[31| >0
is sufficiently small, a contradiction. Therefore, there is a first x,>0 for which
(u1(x0), wi(Xo)) € L, w1 <0 on (0, xo) and w(xo) > uo/ .

Next, we determine the behavior of q,(x) for x>x, as (u;, w,) enters the set
(Fig. 10)

U={(u, w)lw>uo(c)/ v, g5' (W) <u<yw}h.

From (3) it follows that w; <0 for 0< x < x,, since w”"<0 on (0, x,). We claim that
w) < 0 for x> x, as long as (u,, w;) € . If this were false, then there exists a first > x,
such that w/(£)=0 and (w,, u,)e U for all xe(xy, X]. It then follows from (3)
that w{ >0 for x= X as long as (u,, w,) € %. Suppose that (u,, w,;) were to leave U at
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some first X > X, and that (u,(x), w,(X)) € f3. Then wi{(X)>0, hence Lemma 9 implies
that (u,, w;) crosses I'5(c) at . Then again, continuity implies that B £ E if |8 — 8,|> 0
is sufficiently small, a contradiction. A similar contradiction arises if we would.suppose
that (u,, w,) leaves 4 through L. Therefore (u,, w;)€ U and wi>0 for all x>x.
Eventually (u,, w,) enters the set R (defined in (28)) at some X > X, and remains in R
for all x > X. But this is not possible by Lemma 7. Our conclusion must be that w; <0
for x> X as long as (u,, w,) € U. However, the closure of % contains no equilibrium
points. Therefore, there is a first x,>x, for which (u,(x,), w;(x,)) intersects the
boundary of %. Lemmas 8 and 12 and continuity prevent the possibility that
(u(x)), wi(x,)) € L. and u,(x,) = uy(c) unless the solution is periodic. Therefore, we
can assume that (u,(x,), w,(x;)) €T3 U L and u,(x,) < uo(c). .

If u®(c) < uy(x;) < ug(c), then (u;(x,), wi(x,)) € I, and Lemma 10 forces the solution
to cross I, at x = x,. Again, a continuity argument contradicts the definition of B, in
this case. Therefore, the only possibility left is that (u(x;), w,(x)))e f3. If
(uf(x;), wi(x)) = (0, 0), then the solution is periodic and the theorem is proved. Other-
wise Lemmas 10 and 11 imply that (u,, w;) crosses ' (if u,(x,) <u®) (or V, and I, if
u,(x;) = u®). In either case a continuity argument contradicts the definition of B,. The
proof of Theorem 2 is now complete.
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