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PARABOLIC BURSTING IN AN EXCITABLE SYSTEM COUPLED WITH
A SLOW OSCILLATION*

G. B. ERMENTROUT} AND N. KOPELL}

Abstract. We investigate the interaction of an excitable system with a slow oscillation. Under robust
and general assumptions compatible with the more stringent assumptions usually made about excitable
systems, we show that such a coupled system can display bursting, i.e. a stable solution in which some
variable undergoes rapid oscillations followed by a period of quiescence, with both oscillation and quiescence
continually repeated. Under a further weak condition, the bursting is “parabolic”, i.e. the local frequency
of the fast oscillation increases and then decreases within a burst. The technique in this paper involves
nonlinear changes of coordinates which transform the equations into ones which are closely related to Hill’s
equation.
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1. Introduction. The term ‘“bursting” refers to the dynamic behavior in which
some variable undergoes rapid oscillations followed by a period of quiescence, with
both oscillation and quiescence continually repeated. This behavior is found in many
electrically excitable biological systems (see [1], [2] for references) as well as in
chemical reactions [3], [4], [5].

In a number of the biological systems, the bursting appears to have extra structure.
There is an underlying *“slow wave” which modulates the frequency and amplitude of
the fast oscillating bursts. High frequency spikes or action potentials appear to “ride”
the maxima of the slow oscillations, resulting in burst-like structure. The interspike
intervals within a burst are not constant; the initial intervals are long, then they decrease
and finally increase again. Such a pattern is called parabolic bursting. (For a picture
see [6].)

The purpose of this paper is to present a mathematical mechanism for parabolic
bursting that describes the interaction of a slow oscillation with an excitable system.
The hypotheses are very weak and are compatible with the more stringent assumptions
usually made about excitable systems. For reasons important in the applicatons of
these results (to modelling of the aplysia abdominal ganglion and smooth muscle, to
be done in a companion paper [7], and to pairs of neurons in, e.g. the lobster
stomatogastric ganglion) we allow the slow oscillation to be significantly affected by
the excitable system, so we are not describing merely a slowly forced excitable system.
We show that, under very general conditions, one gets parabolic bursting as well as
the more regular rapid oscillations known as “beating”.

The present article is organized as follows: In § 2, a general mechanism is described,
and we explain why our assumptions on the excitable system can be satisfied by
Hodgkin-Huxley like models of membranes. Section 3 contains the bulk of the
mathematical results. It is shown that a large class of equations which embody this
mechanism is transformable by successive nonlinear changes of coordinates to
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234 G. B. ERMENTROUT AND N. KOPELL

equations which contain (in some nonuniform limit) Hill’s equation. The stability
diagram associated with Hill’s equation then turns out to give information about
bursting and beating. Section 4 contains an example of a Hill equation that is analyzed
completely, and it is shown how transitions between different bursting patterns occur.
The final section is a discussion which relates our results to other mechanisms for
bursting, and to experimentally observed bursting phenomena in the Belousov-
Zhabotinskii reaction [3], [4]. We also discuss applications not contained in [7].

2. A mathematical mechanism for bursting. The class of models to be analyzed is
quite abstract with very few hypotheses. The equations are:

(2.1) x=f(x)+e’g(x, y, e),
(22) y=¢h(x,y,¢)

where xeR?, yeRY, e« 1 and f, g, h are smooth (e.g. C”) functions. The hypotheses
are as follows:

(A) x=f(x) has an attracting invariant circle with a single critical point (a
sink-saddle). This critical point is at x =0.

(B) y=~h(0, y,0) has a stable limit cycle solution.

The variable x in (2.1), (2.2) will be interpreted as the vector of transmembrane potential
and ionic gates that are used to describe the dynamics of electrically excitable tissue.
The vector y consists of the slowly oscillating variables which underly the bursting.
(For the applications to be discussed in [7], the slow oscillation we have in mind is
cytoplasmic, involving electrochemical processes not in the cell membrane. This sharply
differentiates our mechanism from most accounts of bursting which make use only of
properties of the cell membrane [8], [9].) Thus, x generates the spikes and y generates
the slow waves. The function g represents the coupling of the slow waves to the spiking
mechanisms.

It is obvious that (2.2) and Hypothesis B imply the existence of a slow oscillation.
What is not so clear is how (2.1) and Hypothesis A describe an electrically excitable
system. We now show how this situation arises in a natural way from the properties
of Hodgkin-Huxley like equations. None of the phenomena to which the model is
intended to apply involve spatial propagation. Thus, we start with the “space-clamped”
system. One such version of the equations has the form:

(2.3) C%,=—G(V, m, n),

(2.42) B S(mal V)= m)/ 1Y),
d

(2.4b) :1%' = &(no(V) = n)/7,(V).

Here, V(?) is the transmembrane potential and m and n are vectors of “activators”
or “inhibitors” of gates allowing ionic currents to flow inward or outward. For example,
in the classic Hodgkin-Huxley equations, there are two variables for sodium current
(outward) and one for potassium current (inward). In (2.4), the gates have been
separated into those which equilibrate quickly (5> 1) and those which act slowly
(e« £« 1, i.e., slow equilibration, but not as slow as the “slow” oscillation underlying
the bursts). In the standard Hodgkin-Huxley equations, g is linear in V; however the
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full system is very nonlinear. (2.3) and (2.4) are generally simplified by the use of a
pseudo steady state hypothesis: since m is large, m approaches my(V) quickly, so
(2.3) is approximated by replacing m by my(V). (The elimination of the fast variable
can be justified by using invariant manifold theory, e.g., [11].) The resulting function, -
G(V, n)= G(V, my(V), n) is assumed to have a “cubic” shape as a function of V (for
fixed n) [8], [12], [13], [14], [15].

For purposes of clarity, assume first that n is one-dimensional so that the reduced
system (m = my(V)) is two-dimensional. The most important of the slow gates is
potassium activation, so we associate n with this process. The curve n.(V) is typically
“S” shaped (like hyperbolic tangent), monotone increasing with small slope for V
very large or very small and large slope when V is intermediate in value. The null clines
for the reduced system are shown in Figs. 2.1a and 2.1b. Three of the possible phase

(@ (b)
FI1G. 2.1. Null clines for the reduced Hodgkin- Huxley system. (a) Voltage null-cline. (b) Recovery null-cline.

planes to the reduced system are shown in Figs. 2.2a, 2.2b and 2.2c. In Fig. 2.2a, there
is a stable periodic solution which can be viewed as an invariant circle with no critical
points. In Fig. 2.2b, there is in addition to the unstable source, a stable critical point
and a saddle point. This type of system is often called ‘‘excitable’’; a small perturbation
in V above a certain threshold leads to a trajectory which makes a large excursion
before returning to rest. In this case there is also a stable invariant circle which is the
closure of the unstable manifold of (i.e., trajectory leaving) the saddle point. On this
circle there are two critical points; one is stable corresponding to the stable rest point
and the other is unstable, corresponding to the saddle point. For this type of system,
the transition from oscillatory activity to excitability (Fig. 2.2a to Fig. 2.2b) involves
a bifurcation on the invariant circle in which a pair of critical points are born. (The
existence of a smooth invariant attracting circle for the system of Fig. 2.2b is guaranteed
close to the bifurcation point by the existence and stability in the system of Fig. 2.2a.
For, by invariant manifold theory [16], the smooth attracting circle cannot disappear
when Fig. 2.2a is perturbed, even if critical points appear on the circle, until eigenvalues
at the new critical points are comparable in size to the rate of normal attraction to the
circle.) This type of transition and this model for excitability were used in [17] to
study waves in an excitable or oscillatory medium. At the end of this section, we list
some models which exhibit this transition. At the bifurcation point (Fig. 2.2c), the
system satisfies Hypothesis A and is on the boundary between excitability and periodic-
ity. Note that in (2.1), g(x, y, 0) may contain terms independent of y; hence x = f(x)
could be replaced by an equation which is a small amount (O(&?)) on either side of
the boundary.
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(b) (c)

F1G. 2.2. Phase portraits of the reduced Hodgkin- Huxley system for various parameter values. (a) Stable
oscillation. (b) Excitable. (c) Criticality.

The following simple example of a system on the unit circle illustrates these
bifurcations:

do
(2.5) T (1—cos 0)+a(1+cos8), 6OeS"
For a>0, do/dt is >0 and the variable § moves continuously around the circle. For
a <0, there are two singular points, one stable and one unstable. (For a small they
are +2v/|a| respectively.) Thus, a = 0 is the bifurcation point; 6 =0 is the unique critical
point on the circle.
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We remark that in (2.1), the forcing terms £°g(x, y, £) appear to be much smaller
than the right-hand side of (2.2). However, in some applications, g(x, y, €) can be
quite sizable, for example, when there are many spikes per burst. This is discussed
further after Lemma 4 of § 3.

While we have shown how the behavior desired can arise from somewhat abstract
Hodgkin-Huxley type equations, we list here some systems in which it has actually
been found within the parameter ranges prescribed by the investigators of these systems.
Rall and Shepherd proposed a 3-variable model for impulse propagation in mitral
cells, the kinetics of which show exactly this behavior [18]. Hastings [19], in discussing
certain discrete models, shows that the Tuckwell-Miyra model for spreading depression
[20] satisfies Hypothesis A. In [21] travelling waves are found in a model of cortico-
thalamic interactions. A study of the phase plane for the 2-variable “space-clamped”
system shows that excitability occurs via the mechanism discussed above. Finally,
Rinzel and Ermentrout (unpublished) found that Connor’s model for class I axons
[12] (first described by Huxley [22]) has dynamics which are close to this mechanism.

3. Beating and bursting. In addition to bursting, electrically excitable cells also
display behavior known as “beating”, which denotes regular rapid oscillations. The
same cell under different conditions can burst or beat [23]. In this section, we show
that (2.1) and (2.2) embed in a natural way in a two-parameter family of equations;
for different values of the parameters, thé solutions can display beating or bursting
with different numbers of spikes per burst. For some range of the parameters, there
are no spikes and only the slow oscillation is evident. When there are spikes, they
occur only in a limited interval of phases of the slow oscillation, the interval depending
on the parameter values. These assertions and others are made explicit in the following
series of lemmas.

Lemma 1 says that the stability of the invariant circle, S, for X = f(x) allows one
to ignore all the x-variables except one, denoted x,, which parametrizes S'. This means
that (2.1) and (2.2) can be reduced from an equation on R? xR? to one on S' xR
The lemma is quite technical, the difficulty arising from the noncompactness of y which
forces one to construct only a “local” invariant manifold. (Because of the stability of
the limit cycle solution to y = h(0, y, 0), this construction is all that is required.)

LEMMA 1. Let N, <= R? be any precompact neighborhood of the image L of the limit
cycle of y = h(0, y,0). There is a neighborhood N of S' in R? and £,>0 such that for
€ = g, there is a (q+1)-dimensional submanifold M (e) = N x N, = U, parametrized by
x, and y € N, with the property that if (x(t), y(t)) satisfies (2.1), (2.2) with (x(0), y(0)) €
M(e), and (x(t), y(t))e€ U for t=1t,, then (x(t), y(t)) € M(¢e) for t=1t, (Le., M(¢) is
a local invariant manifold.) Furthermore, M (€) is locally attracting: if (x(t), y(t))e U
for all t=0, then the distance from (x(t), y(t)) to M(&) goes to zero as t > co.

Proof. The assertion follows from the invariant manifold theory as described in
Fenichel [16]. By hypothesis, S is an attracting invariant circle of (2.1) for £ =0. Thus,
when £ =0, S'xR? is invariant and attracting for (2.1) and (2.2). The result we wish
follows from the persistence of attracting invariant manifolds under perturbations [16].
However, to apply [16], we must restrict ourselves to a compact subset of R? (e.g.
c1(N,)) and modify the equations to achieve a technical condition known as “overflow-
ing invariance”. Let N =R” be any precompact neighborhood of S' such that the
vector field X = f(x) points inward on 9 N. Let N,, N; be open sets = R? with c1(N;) <
N,, c1(N,) = N;. Modify (2.2) on R? x (N;— N;) such that, for all ¢ sufficiently small
(including £ =0), the new vector field points outward on {x} Xxd N, for all xe N. (In
the unmodified equations, at € =0, the vector field is tangent to {x} X 9 N,, since y =0.)
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The results of [16] then imply that for £ > 0 small enough, there is an attracting invariant
manifold M(¢) close to S'x N,. Since the equations are unperturbed on N x N;, a
subset M(¢) is a local invariant manifold for (2.1) and (2.2). (M(e) depends on the
modification on N;—N,; and can be made arbitrarily smooth by making the
modifications small enough.) 0O

On M(€) (2.1) and (2.2) have the form

(3'1) xl=f(xl)+€2g-(xl9y9€)’ xlesla
' (3.2) .}}= EE(xb y’ 3), yeRq‘

Suppose S'=[—1,+1]/({—1}={1}), with x,=0 the critical point of %, = f(x,). The
next lemma gives a change of coordinates, x, = A(, £), whose inverse takes S’ on to
another circle, S;=[-m, w]/({—#}={=}), and which maps a small neighborhood of
x;=0 onto all but a small neighborhood of 6 = 7 in S,. In the limit (nonuniform) as
£ -0, equations written in these coordinates depend only on g(0, y, 0) and A(0, y, 0).

LEMMA 2. There exists a change of coordinates, x, = A(6, €) and a constant, c, such
that in coordinates 0, y, 7= ect, (3.1) and (3.2) converge pointwise as € > 0 to the equations

do
(3.3) e (1—cos 8)+(1+cos 6)g(0, ,0),
T
dy 1-
(3.4) 2 >k, ,0),
dr ¢

for all 0 # 7. The convergence is uniform except near 6 = .

Proof. First, let ¢ be defined by f(x,)—cxi=0O(x}) near x,=0. (Recall that
£(0)=£'(0) =0 by construction.) For |x;| =+, A(6, ¢) is defined by x, = & tan (6/2).
This transformation takes |x;,| <+ onto the neighborhood |6 =2 tan™" (1/«/_;). Now
2tan"! (1/ve) > m as £ > 0. Indeed 2 tan™* (1/Ve)=m= —2J&+ O(¢). (This can be seen,

for example, by the identity
J' * dt J' Voodt )
AT o P T

For |x,|>~/e, x;=A(6, ¢) is extended to a map S,~ S' such that

(i) A(6, €) is a smooth one-to-one map of S; onto S* with a smooth inverse.

(ii) For_fixed £>0 sufficinetly small, at any point in [—2tan™' (1 /\/;),
2tan"' (1/ \/;)], in the new variables, we have d0/dr = 1. (This property is needed for
Lemma 4.)

These two conditions can be satisfied. For at x, =Je or, equivalently, 6=

2tan”! (1/Ve),
A _% o2 (tan_1 (-L_)) =1y O(e)
2 2

00 «/e
., and
dx,
—L=1+0(e).
dr O(e)
Since
0A de d.
(3.5 o=

00 dr  dr
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at x, =& we have d0/dr =2+ O(e). Furthermore, for any fixed & (independent of
g), dx,/dr|.,-s= O(1/ €) where the latter estimate is over any compact neighborhood
for y. Since A has to stretch an interval of size 4/ e+ O(e) over an interval of size
2-2/e (an average stretch of 1/ We+ O(¢)), it is easy to choose A(0, €) so that

x,=A(0, e)}

Recall that N, is a precompact set in R? containing in its interior the image L of the
periodic solution to (3.4). It then follows from (3.5) that d6/dr=1 when y remains
in N,. _

We now consider (3.1) and (3.2) in the new variables. For |x;| <+ ¢, using standard
trigonometric identities, we find:

0A | {dxl
—=minj{—
80 yeN, d’T

(3.6) Z—f= (1—cos 8)+(1+cos 0)[g(0, y,0)]+ R,

where R, = O(«/;) for |e tan 6/2| =+e. For any 6 # m, | tan 6/2| =V when ¢ is small
enough, so (3.6) converges to (3.3) uniformly for all 8 outside a neighborhood of 7.
Equation (3.4) is immediate from (2.2) and |x,| <Je. O

The convergence of (3.1) and (3.2) to (3.3) and (3.4) does not automatically imply
the convergence of the solutions of the former to those of the latter, especially since,
for most of the interesting solutions, the trajectories must pass many times through
0 = ar, where our full equations do not converge to the reduced ones. This issue is
resolved in Lemma 4. We turn first to the solutions to (3.3) and (3.4). The next lemma
shows that these equations display the qualitative behavior which, reinterpreted in
terms of the original variables, corresponds to beating and parabolic bursting. This
behavior and other finer structure is detected by means of another change of coordinates
which turns (3.3) and (3.4) into Hill’s equation. The natural embedding of (3.3) and
(3.4) (and hence of (3.1) and (3.2)) into a two-parameter family comes from the two
parameters in Hill’s equation.

Before stating Lemma 3, we note that there is an attracting invariant submanifold
for (3.3) and (3.4) which is a two-dimensional torus. That is, (3.4) decouples from
(3.3) and, by hypothesis, has an attracting limit cycle we previously called L; the torus
is §;x L= §, xR% (The equations (3.1) and (3.2) with £# 0 do not necessarily have
such an invariant torus.) If y(7) is a periodic solution to (3.4) lying on L, then on the
invariant torus, (3.3) may be written as

3.7 Z—f= (1—cos 0)+(1+cos 8)[g(0, y(7), 0)],

a time-dependent system with periodic coefficients. For such a differential equation
on a torus, we can associate a rotation number [24] which gives the average number
of times a solution goes around S, in an interval of time T, where T is the minimum
period of y(7). (The rotation number is independent of initial conditions and can be
any real number.)

LEMMA 3. Equation (3.7) embeds in a two-parameter family of equations

de

(3.8) a

= a,B(oa T)
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Jor which there is a countable number of regions in parameter space, labelled P; and C,
j=0,1,2, - - - having the following properties:

(i) Fora, B € P, (3.8) is structurally stable, with one stable limit cycle that is globally
attracting except for points on an unstable limit cycle. The limit cycles wind-j times around
S, and once around L. (Thus, the periodic output is the jth superharmonic of the forcing
term.)

(ii) Onthe boundary of P, the stable and unstable limit cycles coalesce and disappear.

(iii) For a, B € C, the flow on (3.2) is equivalent to parallel flow on the torus with
a rotation number p(a, B) between j and j+1.

Proof. The assertions follow from the properties of Hill’s equation which we get
from the transformation

V.
(3.9) —V—tan (6/2).
We write
(3.10) 8(0,y(7),0)=a+BH(7)

where « is the mean of g(0, y(7), 0) over one period 7, H has a mean of zero, and
max |H(7)|=1. Then (3.8) becomes:

(3.11) V.. =—[a+BH(1)]V.

For a particular g(0, y(7),0), @ and B are fixed; the two-parameter family (3.8) is
obtained by allowing these parameters to vary.

It is well known [24], [25] that in (3.11), the (a, B)-plane may be divided into
countably many stability regimes (see Fig. 3.1). Let P; denote the jth instability regime,
for which the Floquet multipliers of (3.11) are real; C; denotes the jth stability regime,
for which the Floquet exponents are pure imaginary. To prove (i), we consider a, B € P,

F1G. 3.1. “Stability” diagram for Mathiew’s equation. Shaded regions represent parameter ranges where
solutions to (3.11) grow exponentially and correspond to n:1 phaselocking of (3.7). Numbers represent the
rotation numbers.
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and recall that the solutions to (3.11) are completely described by Floquet theory [24].
The general solution is:

(3.12) V(1) =D,e""Qy(7)+ Dye*"Qy(7)

where »;>0 and »,<0 and Q,(7), Q,(7) are periodic of period T or 2T depending
on whether j is odd or even. Furthermore, it follows from the oscillation theorem and
Sturm theory [24] that Q,(7) and Q,(7) have exactly j zeros in [0, T). If we go back
to the 0 variable, using (3.9), we see that

Dy(1,Qi+ Q)+ D, e ™ )T(V2Q2+ Qz)]
D,Q,+ D, e(Vz—V‘)TQ

(3.13) 0(7)=—2tan [

Since »,—»; <0, it is easy to see that if D, #0, 6(7) exponentially approaches the
stable periodic solution:

1 Q + Qi)
Q ’

There is also an unstable periodic solution, 6,(7) given by D, =0, D,# 0. Since Q;(7)
has exactly j zeros in [0, T), the argument of tan™' ( ) “blows up” j times in the
interval, so () passes 6 = 7 exactly j times. It is easy to check that 6.(7)>0 when
Q,=0 (i.e., 8 = 7); hence 6,(7) wraps j times around S, for 7€[0, T), i.e. one cycle
around L.

To prove (ii), we consider (3.13). As a, B approach the boundary of an instability
region, v, — v, 0. Furthermore, Q,(7) — Q,(7) - 0 (at a stability boundary there is only
one periodic solution to (3.11)). Hence 6,(7) and 6, () coalesce at the boundary. That
they disappear is a consequence of part (iii), i.e. existence of parallel flow for (o, 8)
in the stability regimes.

(iii) It is clear that for (a, B)€ P, (respectlvely P;1), the rotation number is j
(respectively j+1). Furthermore, since 6 is an increasing function of a, the rotation
number is a nondecreasing function of a. Since any point in C; lies on a line of constant
B joining points of P, to points of P;,,, it follows that, for any point in C, the rotation
number lies between j and j+1. (As « increases, it takes on all values between j and
j+1.)

Finally, if (a,B)e C, the Floquet exponents of (3.11) are imaginary so the
monodromy matrix of (3.11) is equivalent under a change of coordinates to a rotation.
The induced change of coordinates on S, (via (3.9)) takes the time T map of (3.8)
onto a rotation. This implies that for these values of (a, 8), (3.8) is equivalent under
a change of coordinates to parallel flow. 0O

Remark 1. It may be noted that the transformation x, >  and 6 > V may be done
more transparently by the sequence x;=ceu (with only terms of lowest order in ¢
retained), followed by u =—V,/ V. The first stretches x, near x =0 (corresponding to
a singular perturbation type of scaling for the “outer” equation), and results in terms
quadratic in u plus a time-dependent term (Riccati equation). The second transforma-
tion is a standard trick for Riccati equations. The difficulty with this formulation is
that the domains for both the u and V variable are unbounded. Since the orbits in
question for the x, variable traverse the entire domain S* of x,, this means that the
solution must pass, perhaps many times, through the region in which u is not small
and O(u?) terms cannot be ignored. By using the transformation x, = A(6, €), a mapping
related to the Priifer transformation [26], one takes a compact domain into another
compact domain and “localizes” the “bad” region to a neighborhood of 6 = 7. We

(3.14) 0,(7)=-2tan™! (
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are thus in a position to discuss the convergence as & > 0 of the solution of (3.1) and
(3.2) to those of (3.3) and (3.4). This is done in Lemma 4.

For (a, B) € Int (P;), there is a stronger convergence result than for (a, 8) € C;

LEMMA 4. (i) Suppose g(0, y, 0) is given by (3.9) with (a, B) € Int (P,) for some j.
Then for ¢ sufficiently small there is a periodic solution to (3.1) and (3.2) which converges
as £ >0 to the stable periodic solution of (3.3) and (3.4) (or equivalently (3.7)).

(ii) For any (a, B) and 8> 0 sufficiently small, 3¢ and 0< k <1 such that if 6(7),
y(7) is any solution to (3.6), (3.2) with y(0) within k& of the limit cycle L of (3.4) then
y(r) stays within 8 of L for all . Let 6: R'>R" be a lift of 0(r). Then Tim ((1/7)6(7))
and lim ((1/7)6(7)) converge to p(a, B) as 8, € > 0.

Proof. We first define a Poincaré map P,: S, x U~ S, x U for the flow (3.3) and
(3.4), where U is a (g —1)-dimensional cross-section transverse in R? to the periodic
orbit of (3.4). Then S, x U is a cross-section for the full system (3.3) and (3.4). As
usual, P, takes a point (0, y)e S, x U into the next intersection of the trajectory of
(3.3) and (3.4) through (6, y) with S, x U. (Note that the existence of a stable periodic
orbit of (3.4) guarantees that there is such an intersection.) By assumption, (a, 8) €
Int (P), so (3.3) and (3.4) has a stable periodic point (8,, y,) of ?,. By appropriate
choice of cross-section we may assume 6,# 7.

Next we define a Poincaré map, 2, for (3.1) and (3.2) in a similar manner, where
U is still taken to be transverse to the periodic orbit of (3.4). We show that 2, is well
defined and that it is a C° perburation of %,. Since a C° perturbation of a map with
a hyperbolic fixed point has a nearby fixed point, this will show that 2, has such a
fixed point, which in turn corresponds to the desired periodic solution to (3.1) and (3.2).

To show that 2, is a C° perturbation of %, (and at the same time that P, is well
defined), we return to the estimates derived in the proof of Lemma 2. For |tan (8/2)| =
1/\/;, equations (3.1) and (3.2) converge to (3.3) and (3.4) and hence so do their
respective trajectories. Now consider

(3.15) tangz 1/e.

We have seen that (3.15) holds only for an interval of size aVe+ O(¢). Furthermore,
for 6 satisfying (3.15) and ye N, (containing L in its interior), do/dr=1 for &
sufficiently small, by construction (see Lemma 2). Hence, the time (in 7) necessary to
pass through the region defined by (3.15) is = O(«/;). In this region, (3.2) is bounded
for all ¢ sufficiently small (though not necessarily close to (3.4)). Therefore, y changes
by = O(«/; ) as the trajectory passes once through this region. This shows that for any
fixed, finite number of times through the region (3.15), the trajectories of (3.1) and
(3.2) with initial conditions near that of the periodic solutions to (3.1) and (3.2) stay
arbitrarily close to the latter if ¢ is sufficiently small. This shows that 2, is well defined
and a C’-perturbation of @,. (It is not a C' perturbation due to the fact that large
derivatives can occur for (3.1) and (3.2) but not for (3.3) and (3.4) in passing through
(3.15).) -

We now drop the assumption that (a, 8) € Int (P;). Let 7, be the minimal time it
takes any solution to (3.8) with this (a, 8) to make one cycle in 6 from 6 =7 to 6 = 7.
(This number exists for (e, B) € C; because the flow is equivalent to parallel flow.) The
stability of the limit cycle L of (3.4) then implies that for & sufficiently small, there is
0< k<1 such that if 6(7), y(7) is any solution (in 6, y variables) to (3.1), (3.2), and
y(7) is within 8 of L, then for 7,> 7o/2 one has y(7,+ 7) is within ké of L, provided
that 6(r) # o for 7€[7,, 7, + 7,]. Now previous estimates (in the argument for (a, 8) €
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P;) imply that y changes by O(«/ €) as 0 passes through a region around 6 = 7. Thus,
for ¢ sufficiently small, trajectories with initial conditions within k6 of L cannot get
further than 6 from L as 6 goes once past 6 = m; as discussed above, the distance to
L will then decay to within k& before the next time 6 passes 8 = 7. Thus, y(7) stays
within 8 of L for all 7.

The statement about the generalized rotation numbers now follows from con-
tinuity. O

Remark 2. Lemma 4 says that solutions to the full equations (3.1), (3.2) are
perturbations of solutions to (3.3), (3.4). However, solutions to (3.1), (3.2) do not
necessarily stay on the torus defined by y = y(7) (i.e. y € L); indeed, there need be no
invariant 2-dimensional torus for the full system. In the special case that h(x, y, €) is
independent of x, there is such a torus; in that case, the parallel flow associated with
(a, B)e C; when £ =0 can be expected to perturb into phase-locked behavior corre-
sponding to a rational rotation number between j and j+ 1. In general, however, the
solutions to (3.1), (3.2) are C° perturbations of solutions to (3.3), (3.4), and a C°
perturbation of the flow of (3.3), (3.4) can be chaotic. To see how this can occur, we
refer to some ideas discovered by Aronson et al. [27] and discussed by Ostlund et al.
[28]. :

For (a, B) € P, for some j, the Poincaré map %, of (3.3), (3.4) is as in Fig. 3.2. In
this picture, there are two critical points, one sink and one saddle, corresponding to
the stable and unstable limit cycles of (3.3), (3.4) found above. For (a, B) near a
boundary of P, these critical points are arbitrarily close; this implies that one of the
eigenvalues at the sink is real and close to zero. Since the other g—1 eigenvalues
correspond to the Floquet exponents for the limit cycle L, they are by hypothesis
bounded away from zero. It follows that a g-dimensional neighborhood of the sink
has a ‘“‘strong stable foliation”, i.e. it can be written as the union of (g —1)-dimensional
“leaves” with the property that two points belong to the same leaf if and only if the
distance between their images converges to zero faster than the exponential rate
associated with the “slow” eigenvalue of the sink [29].

The saddle point of (3.1), (3.2) has one positive real eigenvalue; its “unstable
manifold” W" consists of two one-dimensional branches, both of which have the sink
in its closure; both of these branches are transverse to the strong stable foliation. (See
Fig. 3.2.) Now consider a C° perturbation of the flow (or equivalently, a C° perturbation
of ?,) which introduces into the longer branch of W* a small “hook”, or local change,
such that W* is quadratically tangent to the strong stable foliation rather than transverse

FIG. 3.2. A schematic picture of the Poincaré map P, of (3.3), (3.4) for (a, B) € P, Since (3.3), (3.4) has
a smooth invariant torus, P, has a smooth invariant circle.
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F1G. 3.3. A C° perturbation of Fig. 3.2. Note that there are still two critical points, but there need not be
a smooth invariant circle.

to it. (See Fig. 3.3.) Note that the existence of one “hook” implies the existence of
countably many, since the image of a point of tangency is also such a point.

For these parameter values (i.e. (a, B) € P;), the observed dynamics are still stably
periodic and the behavior of the unstable manifold of the saddle is not relevant to the
observed dynamics. However, when the parameter values are changed so that now
(a, B) € C;, the resulting dynamics, instead of being quasi-periodic, can be chaotic.
More precisely, suppose that (a, B) € 3P, with (a+pu, 8) € C;,. If a C° perturbation is
made as above for each u, then a result of Newhouse et al. [30] implies that there is
a sequence of u;—>0 such that the perturbed system has a horseshoe. (For a more
complete discussion, see [28].) Of course, to show that these horseshoes actually occur
in (3.3), (3.4), one would have to show that by appropriate choices of g(x, y, €) and
h(x, y, €), the resulting C° perturbation has the desired properties.

Remark 3. For (a, B) € P, the limit cycle of (3.8) corresponds to periodic bursting
(with j spikes per burst) for equations (2.1), (2.2). Each 27 change in 6 corresponds
in (x, y) coordinates to one cycle around S'; a spike occurs when 6 passes 6 = .

In (x,, y) coordinates, solutions to (3.8) with (a, B) € C; correspond to solutions
to (2.1), (2.2) having a mixture of j bursts and (j + 1) bursts. Since the flow is equivalent
to parallel flow on the torus, the sequence of j’s and (j+1)’s for (3.8) are determined
by the rotation number (and the initial condition); one cannot find a solution with a
prescribed sequence of j and (j+1) bursts. However, as discussed in the previous
remark, for (a, B) € C, a perturbation of (3.3), (3.4) may contain horseshoes. Thus, a
richer set of sequences of j and (j+1) bursts may be possible for (2.1) and (2.2)
(equivalently, (3.1), (3.2)) than for the limiting equations, (3.3), (3.4).

Remark 4. For fixed £ >0, Lemma 4 establishes only a finite sequence P,, C,, P,,
C,, - - - for which the full equations converge (nonuniformly) to (3.8); the length
depends both on the Floquet multipliers of the limit cycle L and the strength of the
attraction of the invariant circle S'. For £ >0, the behavior is not specified for (a, 8)
near the boundary of a region. That is, (a, 8) € P; implies there is a solution to (3.1),
(3.2) which converges, as € >0 to a periodic solution. However, since, for € =0, one
of the Floquet multipliers converges to 1 as (a, B) approaches a boundary point of P,
for £ >0, the corresponding equation need not have a periodic solution. In the special
case h=h(y, ¢), the flow reduces to a periodically forced system for x, with phase
space S' x L= T? Then one could define the regions P, C; for £ >0 using the rotation
number ((o, B)€ P, if p=j), and so (a, B) € P; implies the equation has a solution
with j spikes per burst.
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In the special case that h(x, y, £) is independent of x, the reduction from (2.1) to
(3.1) can be carried out, with the relevant phase space the torus S'x L, even if
g(x, y, €) = O(1/ €). By appropriate choice of g, the rotation number of the torus, and
hence the number of spikes per period, can be arbitrarily high. Thus we see that, if
h(x, y, €) is independent of x, the analysis will go through for j = «/ &, where « depends
on the strength of attraction S'. If j= O(1/¢), the average interspike interval is O(1)
in the unscaled time; for | 8|« a, this corresponds to regular rapid beating oscillations.

If h(x, y, €) is not independent of x, there is the additional problem of convergence
of (3.1), (3.2) to (3.3), (3.4). Here, the strength of attraction of L plays a role: the
closer to zero the largest Floquet multiplier, the more times 6(7) can pass through the
zone around 6 = 7 without moving y(7) appreciably from L, and hence the larger j
can be and still allow the convergence of Lemma 4 to hold.

Much of the preceding can be summarized by:

THEOREM. Equations (2.1), (2.2) embed in a 2-parameter family of equations such
that, for any j (and & = (j) sufficiently small) there are parameter values for which the
solutions are bursting solutions with j spikes per burst, or mixtures of j and (j+1) spikes
per burst. The regimes with j spikes per burst are periodic; the others may be periodic for
some parameter values, or have ‘“‘windows” of periodicity with more complex periodic
solutions.

Finally, we show why this mechanism gives rise to parabolic bursting. More
accurately, the bursting need not be parabolic under the full generality of (2.1), (2.2);
however, an extra qualitative hypothesis suffices to get the conclusion. This hypothesis
is that H(7) is “qualitatively sinusoidal”, i.e., it is periodic with one relative maximum
and one relative minimum per period, with no large changes in slope on a faster time
scale.

We recall that, under the inverse of the change of coordinates x, = A(9, ), a small
neighborhood of x, =0 gets mapped onto all of S, except a small neighborhood of
0 = . A single spike corresponds to a part of a trajectory for which x, goes once
around S’, and hence for which 6 passes 6 = 7. The interspike intervals correspond
to the time spent with x, =0 (in the original variables) or @ outside a neighborhood
of 7 (in the changed variables).

ProposITION. Ifatsome T, 8(71) <0, then 6(7) will not pass 6 =0 until a + BH(7) >
0. (Hence there is no repeated spiking for {r|a+BH(7)<0}.) In {r|a+BH(7)>0},
interspike intervals decrease with increasing a+ BH (7). Hence, if H(7) is qualitatively
sinusoidal, the spiking frequency is “parabolic”: it first increases then decreases.

Proof. The first statement is immediate from (3.7), and the other follows since 6
is an increasing function of « +BH(7). (Recall that on the 7 time scale, spikes are
instantaneous; for an («, B8) for which there are many spikes per burst, the interspike
interval is small relative to the burst period T.) 0O

Remark 5. The above argument really relates the variation in interspike intervals
to the shape of g(0,y(7),0)=a+BH(7). It also shows that if g(0,y(7r),0) is not
qualitatively sinusoidal, the interspike intervals need not be parabolic. For example,
if H(r) is as in Fig. (3.4a), the pattern of spiking might be as in Fig. (3.4b).

4. An example. In this section, we present some of the results of the previous
section through an illustrative example. In particular, we study the effects of gradually
increasing the amplitude of the slow driving oscillator when the burster is excitable.
We take as the driving oscillator the piecewise constant function

1, 2n=7<2n+1,

neZ
1, 2n+1=7<2n+2,

(4.1) H(T)={_
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(a)

TIME

(b)
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FIG. 3.4. Dependence of bursting pattern on the shape of the slow wave. (a) * Triangular” slow wave. (b)
Solutions to equation (4.9) with triangular wave input showing nonparabolic bursting.

The relevant Hill equation is

a’v
dr’
When a > 0, the uncoupled system (B =0) is oscillatory or beating and the “cell” fires
spontaneously. When a <0, the “cell” is excitable. Only sufficiently large stimuli elicit
a spike. We now study the effect of square wave periodic modulation. Numerical
experiments with other periodic functions indicate a qualitatively similar behavior.

While other forcing functions do not necessarily have the detailed structure of the
square wave forcing they share many common features. (For instance, compare Figs.

(4.2) =—[a+BH(7)]V.
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3.1 and 4.1. Note that in the Mathieu equation the modulation is sinusoidal.) Since
(4.2) has an explicit solution, we use it as an example of the forced behavior. From
(3.12), we observe that the solution to (4.2) is

(43) V(7) =D, e"7Q(7) + D; e""Qy(r)

where v, are the Floquet exponents and Q, are periodic functions of 7. We now
calculate v, as a function of (a, B8) in order to understand the phaselocking picture.
We recall some results from Floquet theory. Let (Vi(7), Vi(7)) satisfy (4.2) with
Vi(0)=1, Vi(0)=0 and let (V,(7), Vi(7)) satisfy (4.2) with V,(0)=0, V,(0)=1. The
matrix M =[(V,(2), Vi(2)), (V2(2), V4(2))] is the Floquet matrix (the period of the
above oscillation is 2). The eigenvalues of M are w, = e**. Since det (M) = 1, o, satisfy

(4.4) 0’ =(V;(2)+ V3(2))o +1=0.

From our discussion in § 3, we know that real eigenvalues, w,, w, correspond to
phaselocked solutions to (3.3) and (3.4) with j spikes per burst for some j. From (4.4),
oy are real if and only if

Vi(2)+ V5(2)=2

since the discriminant of (4.4) will be nonnegative. Note that if w, are complex, the
condition w,w,=1 demands that

(4.5) Wy = Cos k £ i sin k.

We return to this case shortly.

The parameters (e, B) fall into 3 distinct classes (in each case B >0 since 8 <0
is equivalent by a phase shift):

(i) a+pB <0 (excitable, weak forcing),

(ii) a+B>0, a —B >0 (oscillatory, weak forcing),

(iii) @« +B>0, a —B <0 (strong forcing).
For case (i), the amplitude of the forcing is never sufficient to cross “threshold” so
only subthreshold oscillations occur. The remaining two cases describe regions of
interesting behavior. By solving (4.2) it is easy to compute V;(2)+ V5(2) as a function
of @ and B. Let r*=|a —B| and S*=|a + B|. Then

(4.6a) %(V2(2) + V4(2)) =fi(r, s) =cos (r) cos (s) —%(f+;:> sin (r) sin (s),

0=B=a,

(4.6b) %( V5(2)+ V4(2)) = f5(r, s) = cosh (r) cosh (s) +%<;’—-§> sinh (r) sinh (s),
B>a>-—B.

Note that (4.6) is even in both r and s, so the signs of r and s need not be specified.
Equation (4.6a) corresponds to case (ii) and (4.6b) to case (iii). The boundaries between
the phase-locked solutions (P;) and non-phase-locked flow (C;) are described by the
critical curves

(4.7) flns)=1,  fi(r,s)=1

since these correspond to the trace being equal to 2. Since (4.6) is even in both r and
s and (4.6a) is invariant under a switch between r and s, we may place the solutions
to (4.7) on the same graph. The first quadrant in Fig. (4.1) corresponds to (r, s) for
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which f,(r, s) =1 and the second quadrant corresponds to f,(r, s) =1. We have drawn
lines which correspond to @ =0 and B =0 to orient the reader. We have also indicated
where the medium is oscillatory or excitable. The figure shows that when the medium
is excitable, once forcing is large enough to obtain any locking, then regions C; become
very thin and almost impossible to find. There is a nonzero minimal value of B below
which no locking can occur in the excitable (a <0) system. The minimum B for all
a =0 occurs when a =0 and hence from (4.6b) satisfies

cosh«/Ecos\/_B—=1, B>0.

There are “tongues” which touch the line r=s and correspond to values of a from
which phase-locked solutions bifurcate at 8 =0. When 8 =0, r= s=+a and (4.6a)
becomes

cos?Va=1

ora=a% 4797 - - - .

In what follows, we describe the behavior in regions C; between the phase-locked
domains. These regions represent parallel flow on the torus. For certain special values
of (a, B) one can attain entrainment between the two oscillators: for every m stimuli
there are n spikes. This entrainment is only structurally stable when m=1 (i.e., 1:1,
2:1,3:1, - - - entrainment). This result follows from Lemma 3 of § 3. We can use (4.6)
to find curves in (a, B) space along which there is entrainment. We then show that
the regions C; can contain regions of stable subharmonic phaselocked solutions in a
full model such as (2.1). We recall that when (V;(2)+ V4(2)) <2, w, have the form
(4.5). Since Qy(7) are 2ar-periodic, in order for (4.3) and (3.13) to be periodic we must
have :

(4.8) 2ik =2imn/m.
For k,,,» = wn/m, the equations
fi(r, s) =008 Knm,  for, s)=0COS Kpm

determine the curves for n:m entrainment. For then, w =cos k, , £isink,,, as is
required. 2k, /2 is the rotation number for the flow on the torus. Once again, we
use (4.6a,b) to find the entrainment curves and plot them as was done in Fig. (4.1).
In Fig. (4.2) we have plotted n:5 entrainment curves for various values of n.

r

FIG. 4.1. Regions of n:1 phase-locking for a square wave slow oscillation. Numbers 1-7 represent the
rotation numbers in the shaded regions. The left of the line B labeled “E” is the region where the medium is
excitable (“a <0”) and to the right, labeled “0” it is oscillatory (“a>0"). r and s are as in text.
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r

FIG. 4.2. Curves of rational rotation number of the form n/5 for square wave form slow oscillations. Shaded
region is 1:1 phaselocked. (See Fig. (4.1) and text for additional details.)

We now describe the behavior of a real model in the regions for which (4.1) has
parallel flow. This model is a nerve conduction equation for the mitral cell axons
derived by Rall and Shepherd [18] and used in a related study by Rall and Goldstein
[13]. The system described by Rall and Shepherd is third order but one variable is
faster than the others so we can reduce it to a second order equation:

dv .
== V1200V - V)= I (VD) +I(),
4.9)

dJ “

- 8.5(1200V*—-2J).
In the numerical examples below I(t)=I,+a+bH(r/T). I,=.047 is the value for
which (4.9) satisfies Hypothesis A in § 3. We put a=—.045 so that the system is
excitable and gradually raise b above 0. There is a range of values of b for which there
are periodic solutions to (4.9) with rotation numbers that are less than 1. These also
appear to be structurally stable. We have obtained 1:3,2:3 and 1:2 stable subharmonic
solutions to (4.9) for small b. Note that (4.9) is an example of a forced excitable system;
there is no feedback from the excitable system to the slow oscillation.

5. Discussion. We have described a general model for the bursting observed in
several biological and chemical systems. Our hypotheses are simple: the existence of
an excitable spiking mechanism coupled to an underlying slow oscillation. Several
qualitative aspects of bursting behavior are easily recovered from our model. The
proposition of § 3 shows how the “threshold” of threshold models (e.g. [31]) is made
explicit and how it changes with parameters. Consider for example, (a, B) € P, For
large B and small a, within P, the j spikes are bunched into a small interval of phases.
This gives a “‘burstlike” qualitative picture of the spiking. For a large and 8 small,
within P, the amplitude of the periodic modulation is small and the spikes occupy
almost all of the slow period. As B0 the spikes become uniformly distributed. So
within the region P; one can change parameters (a, 8) and go from a “bursting”
solution to a “beating” solution. This shows that the distinction between beating and
bursting is one of degree, not kind; there need be no bifurcation that separates a
beating solution from a bursting one.

Our model for the spiking mechanism and excitability, “saddle-point excitability”,
is somewhat novel. We assume the existence of a “circle in resonance”, i.e. an invariant
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circle containing a stable node and a saddle point. (For x € R?, this implies the existence
of a third critical point, a source.) This contrasts with the better known model for
excitable media in which there is but one steady state. The latter is the mechanism
underlying the Fitzhugh-Nagumo equations, the standard Hodgkin-Huxley equations,
and the Field-Noyes-Koros equations to the Belousov-Zhabotinskii reaction. “Saddle
point excitability” has been suggested by Rinzel and Ermentrout (unpublished) as the
mechanism for excitability and oscillation in class I nerve axons [22].

There are many properties which distinguish the present mechanism of excitability
from the better known model. In both cases, small perturbations of the excitable system
yield an oscillatory system; however, for saddle point excitability, the oscillations come
via a saddle-node bifurcation, while for the better known model it is via a Hopf
bifurcation. From this, one can see that resulting oscillations can have arbitrarily low
frequency for our model, but not for the other. Furthermore, beyond the bifurcation,
the oscillations in our case all have large amplitude. (They follow the “circle in
resonance”.) By contrast, the oscillations via the Hopf bifurcation are initially small.
When the two types of excitable systems are slowly forced, one sees different behavior:
In our case, the spikes in a burst are all large amplitude, while for the other, the spikes
at the beginning and end of each burst are small amplitude. Another property of our
mechanism of excitability is “infinite latency”: because of the saddle point, there are
initial conditions for which there is an arbitrarily long time before a spike is generated.
This is not true of the other mechanism. ’

Coupled to the spiking mechanism is the slow oscillation. In [7] we review evidence
for such an underlying modulation in several systems which include the bursting cell
of aplysia and the oscillations in mammalian smooth muscle. As was shown in § 3,
the shape of this oscillation determines the interspike interval during a burst. In
particular, if H(7) is sinusoidal, parabolic bursting is observed. In addition to parabolic
bursting we can account for many of the details which are experimentally observed in
bursting preparations if we specialize the equations x =f(x) of Hypothesis A to a
Hodgkin-Huxley like system [7]. To understand some experimental observations in
terms of our model, it is necessary to hypothesize that the slow oscillation be modifiable
by the variables of the excitable system (e.g. voltage), that is, that h(x, y, ) not be
wholly independent of x. We note that most of the mathematical features of (2.1),
(2.2) occur already in the simpler system in which & is independent of x. (One exception
is the possibility of chaos.) The dependence of h on x makes the results harder to
establish. We prove them in the above generality because of the evidence that, for the
applications we envision [7], the slow oscillations can be modified by external perturba-
tion of the voltage.

We note that although the model was invented to describe the interactions of a
cytoplasmic oscillation with the membrane properties in a single cell, the formalism
works equally well in describing two types of cells, one of which oscillates slowly, and
the other of which is excitable. Such a pair is thought to form the essential part of the
pacemaker in the pyloric system of the lobster stomatogastric ganglion [32], [33]. The
“AB cell” oscillates endogenously, often without spikes, with a smooth wave form
and a period of the order of a second. A “PD cell”, which is excitable, is electrically
coupled to the AB cell and undergoes parabolic bursting in the intact network (with
full sized spikes at the ends of each burst). Marder and Eisen show that these cells
respond differentially to stimulation and neurotransmitters, providing a system whose
output to other neurons can be flexibly adjusted without changing the *“hard wiring”.
They suggest that similar networks may be widespread.
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There are many other mechanisms which can lead to bursting behavior, [5], [8],
[9], [10], some of which have a “parabolic” bursting structure. Carpenter [8] has
produced parabolic bursting but her equations describe waves travelling down axons,
not the space-clamped situation. Plant et al. [9], [34] derive a model of the parabolically
bursting aplysia abdominal cells. The model is based on Hodgkin-Huxley type
equations with several additional conductances. Many of the detailed features of the
response of the cell to voltage and other perturbations are derived from the models,
but not the parabolic interspike intervals.

Several other models of bursting, not necessarily parabolic, exist and the mathe-
matical mechanisms for these are more transparent that those of Plant et al. Recently,
Rinzel and Troy [5] and Chay and Rinzel [10] have described models for bursting in
the Zhabotinskii reaction and in insulin secreting cells respectively. As in our model
and the models of Plant et al., there is a slowly varying quantity. In contrast to our
model, in [5] and [10] this quantity does not change in the absence of changes in the
variables that are part of the excitable mechanism. In particular, there is no slow limit
cycle for any fixed value of the excitable variables. The excitable mechanism of [5]
relies on the existence of a subcritical Hopf bifurcation and a large amplitude limit
cycle. The slow quantity, which is coupled to the excitable system, acts as a bifurcation
parameter; in the coupled system, the parameter oscillates between the unstable and
the stable regimes (see Fig. 5.1) in a hysteresis loop. This leads to burstlike behavior.
The interspike intervals for these models depend crucially on the amplitude-frequency
relationship of the bifurcating limit cycle. In general they are not parabolic.

¥

FIG. 5.1. Bursting mechanism proposed for the FKN equations. There is a subcritical Hopf bifurcation
and the parameter y (flow rate) is allowed to slowly vary. This results in y moving left and right through the
bifurcation diagram. When on the upper branch, the system oscillates at high frequencies and on the lower
branch it is quiescent. |-| denotes amplitude.

Finally, we mention a similarity between the phenomena discussed in the present
paper and some experimental results obtained by Turner et al. [3] on the temporal
behavior of the Belousov-Zhabotinskii (BZ) reaction when carried out in a con-
tinuously-stirred tank reactor. The similarity is not in the mechanism: there is no known
driving oscillation. Nor is it in the form of the “bursts”. Rather, it is in the existence
of a sequence of regimes analogous to the regions found in Hill’s equation. With fixed
initial chemical concentrations, one may obtain different temporal behavior by varying
the flow rate r of the tank. As r is increased, one passes through a sequence of regimes
P, Gy, P,, Gy, - - - . (Only a finite sequence has been found experimentally.) For re P,
the temporal output is a complex periodic solution; the output is periodic with one
large amplitude and j small amplitude oscillations. For r € C,, the output is a mixture
of j and (j+1) type bursts, as in the mechanism of this paper. Furthermore, for other
parameter regimes, Maselko and Swinney [35] find that a “rotation number”, defined
as the number of small oscillations divided by the total number of oscillations per
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burst, varies monotonically with the flow rate. This is again analogous to the behavior
of the class of equations in this paper.

For the Zhabotinskii reaction, spectral analysis shows that, when re C, the
behavior is chaotic [3]. This contrasts with (3.8) since flow on a torus cannot be chaotic.
It remains to find out if (nonuniform) perturbations of (3.8) in a 3-dimensional space,
as in (2.1), (2.2) could display chaos. (As stated above, unless h(x, y, £) is dependent
on x, the quasi-periodic flow can be expected to perturb for rational rotation numbers
to phase-locked solutions.) Rinzel and Schwartz [36] have numerically examined
mixing of j- and (j+1)-mode solutions for a bursting model. They use a one-variable
discrete time map to describe the behavior of these mixing solutions. Chaos was not
identified numerically or analytically in this work.
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