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MODELS FOR BRANCHING NETWORKS IN TWO DIMENSIONS*

LEAH EDELSTEIN-KESHET AND BARD ERMENTROUT}

Abstract. In this paper mathematical models for branching networks growing in one and two dimensions
are described. Continuum equations are formulated to represent evolving spatial distributions of density
given a variety of assumptions about branching and crosslinking kinetics. In accommodating the influence
of angular branch distributions, a set of integropartial differential equations are obtained.

It is found that crosslinking (which eliminates apical growth) acts as a density-regulating mechanism.
If the branching angle ¢ is small, this mechanism further leads to a phenomenon of orientation selection:
It is shown analytically that for small ¢ a spatially homogeneous network with an initial uniform distribution
of branch orientations will align along a single axis as a result of instability of the uniform steady state to
small perturbations that are nonuniform in the angular variable. Because instability first occurs to a mode
" for which /=2, such networks eventually contain only parallel branches.

Similar phenomena lead to a transition in properties of spatially propagating networks, whose angular
distributions are diffuse for ¢ >0.29 and sharply defined for ¢ <0.24. Other properties of propagating
networks, including traveling wave behavior, are described analytically and illustrated by numerical simula-
tions.

Key words. branching networks, growth by branching, crosslinking branch orientations, pattern
formation

AMS(MOS) subject classifications. primary 92; secondary 35, 34, 70

1. Introduction. Motivation for studying branching networks arises from their
prevalence in biological, chemical, and physical systems. Network structures occur in
plant architecture, long chain polymers, drainage channels, fracture lines in solids,
and other systems [23], [16], [10]. All of these are dynamic structures that change and
evolve as they grow in space, whether in one or several dimensions. How such changes
occur, and what inherent properties of the network lead to its eventual shape is a
question we will explore in this paper.

Networks in which crosslinks occur between neighboring branches form a special
subclass of branching systems. (In biological situations this process is called anas-
tomosis.) Typical examples of networks that have crosslinks are the vascular systems,
neural networks [20], as well as organisms such as hydroids and fungi [18], [15].
Connections between branches or filaments have several physiological purposes. For
example, neural synapses transmit signals, the close proximity of capillary tips allows
for the circulation of the blood, whereas fusions between hyphae (in mycelial fungi)
or stolons (in hydroids) permit the exchange and transport of internal substances,
nuclei, and organelles. Thus, in biological networks, it has been the accepted dogma
that the significance of crosslinking is chiefly a mechanism for communication between
adjoining parts of the network. Aside from such physiological roles, crosslinking can
play an important role as a mechanism that regulates growth and development of form
in a network [6]-[9].

To summarize key ideas, consider the events underlying the formation of a network.
If growth is apical (i.e., confined to tips of branches), the number of growing apices
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determine how much growth takes place. Further, the location of apices determines
where density is accumulating and thus influences the spatial distribution of the
network. Crosslinking can play a regulatory role in the formation of a network because
it leads to selective elimination of apices that will then cease to contribute to further
growth.

Previous work (cited above) has been restricted to models of one-dimensional
networks in which the direction of growth was along a single axis. In this paper our
main aim is to extend the models and their analysis to higher dimensions where the
phenomena are geometrically more complex. For example, as will emerge in the results,
in two and three dimensions the orientations of branches can influence pattern forma-
tion because neighboring branches that are mutually transverse are more likely to come
into contact and form crosslinks rather than branches that are parallel.

The organization of this paper is as follows. In § 2 we briefly review terminology
and describe the phenomena. For a basic framework, the simplest one-dimensional
models are then summarized in § 3. We then discuss the factors that enter into
consideration in higher dimensions (for example, branch orientation) and derive the
relevant equations in § 4. Analytical and numerical results on several simplified versions
of such models are described in §§ 5 and 6.

2. Terminology and description of the phenomena. We restrict attention to branch-
ing structures that grow apically, i.e., in which filaments elongate only at their terminal
ends (tips, or apices). The elongation of a branch is equivalent to spatial translation
of its tip. We further assume that branches themselves are nonmotile, i.e., are attached
to a substratum (in one and two dimensions), and that apices move in straight lines
at a constant rate.

Branching is the process by which new apices are formed. There are several ways
in which this can happen: lateral branching means that the new branch issues from
some point along the length of the pre-existing branch. In dichotomous branching, an
apex bifurcates, and is then replaced by two (or more) new tips. To avoid lengthy
notation we refer to these two branching types by the letters F and Y, respectively,
which are geometrically similar to the event they portray (see Fig. 1).

Crosslinking or anastomosis results in the fusion of an apex with a filament
(tip-to-branch anastomosis) or with another apex (tip-to-tip anastomosis). Since,
thereafter the fused apex can no longer grow, crosslinking is an event that eliminates
apices. The letters H and W will be used to describe the above two types of crosslinking.

3. Branching and growth in one dimension. In this section we consider networks
that grow in a single direction. An example of this type is a structure called a strand
that is found in some filamentous fungi. This ropelike network consists of numerous
filaments growing side by side, and held together by a gluey substance. The strand can
thus grow for considerable distances as a one-dimensional structure. Both anastomosis
and branching occurs between the adjacent filaments.

The following continuum model approximates the growth of densely branched
networks assuming apical growth. For a simplified situation, consider only networks
that are homogeneous along the y and z directions and grow in the x direction with
all branches parallel to the x axis. We define the following:

p(x, t) =total length of branches within some unit volume at (x, ¢),

n(x, t) =number of growing apices in a unit volume at (x, t),

v(x, t) =rate of extension of an apex at (x, t) in length per unit time.

When a single apex extends at the rate v it “deposits” a total branch length of
vAt in its trail during the time At Similarly, n apices traveling as a group with velocity
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F1G. 1. Branching can take place in two different ways. (a) In dichotomous (type Y) branching, a single
tip produces two new tips. (b) In lateral (type F) branching, a new tip is produced somewhere along the length
of the pre-existing branch. In the model that incorporates branch orientations, 0 denotes the angle of orientation
and ¢ is the branching angle. :

v deposit a total of nvAt units of length. Assuming a mortality of branches v, this
leads to the equation

ap
1 —=nv—yp,
(1) P! vp.

for the density of branches.
An equation for apex density must take into account net motion of tips into and
out of each location, as well as creation and elimination of tips. Defining

o,(n, p) =branching rate (creation of apices per unit time per unit volume),
o5(n, p) = crosslinking rate (elimination of apices per unit time per unit volume),
we obtain an equation of continuity

on_ a(nv)
at ax

(2) +o0,—0,.

In (2), the term (nv), which is analogous to a convective flux, represents the rate
of translation of apices in the x direction (extension of branches). In this paper we
assume that v is constant. Equations (1) and (2), derived in [9], form a skeletal
framework for one-dimensional continuum models of branching networks. These are
semilinear hyperbolic partial differential equations. (Nonlinearity enters only via o; as
described below.)
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The appropriate mathematical forms for o= o;— 0, follow from mass action
assumptions based on the kinetics of the underlying events. Since there are two pairs
of possible events, as described in § 2, here we consider the four possible combinations
of branching with crosslinking: YH, FH, YW, FW. The appropriate forms for o, and
0, in each case are given in Tables 1 and 2. For example, YH corresponds to

3) o(YH)=0,—0,=an—Bnp

because Y-branching occurs only at apices (an) and H-fusion is a second-order event,
involving a “collision” between tips and branches (Bnp).

The equations representing a YH network in one dimension are then

ap on on

4 —=nv-— —=—v—+tn(a—
(4) o1 w,o o (@ Bp),
with spatially homogeneous steady states (p,n)=[0,0] and [a/B, ay/Bv]. As
described previously in [7], traveling wave solutions to this set of equations satisfy

(5a) [o(x, 1), n(x, t)]=[p(£), n(é)],
where
(5b) E=x—ct,

for ¢ the velocity of the waves. This reduces the system to two ordinary differential
equations:

(6a) p'=(yp—wvn)/c,
(6b) n'=n(Bp—a)/[c—v].

It is an elementary calculation to show that for ¢> v, [a/B, ay/Bv] is an unstable
node or spiral, [0, 0] is a saddle point, and there is a trajectory in the pn plane joining
[0,0] to [a/B, ay/Bv]. We remark that for ¢ < v, such connections do not occur. This

TABLE 1
A summary of branching kinetics.

Branching Rate in 1D Rate in 2D
type (o) (ov)
Dichotomous (Y) an a(n_—n+ny,)
Lateral (F) ap alp_+p,)
TABLE 2

A summary of crosslinking kinetics.

Crosslinking Rate in 1D Rate in 2D
type (a2) (02)
Tip to branch (H) B np Bn(x, 6, t) I p(x, 0',t)K(6—0") do’

Tip to tip (W) B n? Bn(x, 0, t) I n(x, 0',t)K(60—6') do’
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bounded heteroclinic trajectory represents the densities of p and n in the reference
frame of the wave. Since the points [0, 0] and [a/B, ay/Bv] are attained only in the
limits as &> 0, ¢ > —00, respectively, such waves represent networks in which there is
material throughout the domain, not those whose densities have compact support. The
wavespeed is larger than the extension rate of the tips because the phenomenon is a
wave of branching, not a wave of particle motion. From the hyperbolic nature of
equations (4) it is clear that if the initial density has compact support, the rate of
outwards translation of the margin is v.

From analysis of such one-dimensional models it emerges that for y=0 only a
YH -network is self-regulating, in the sense that its density is bounded everywhere.
(Other types have unbounded traveling wave solutions for ¥ =0.) This means that in
a YH network the intractions of branches suffices to control the local accumulation
of density. Networks of the three other types tend to grow explosively and are only
brought under control by branch mortality. See [7] for details and discussion of these
results, [8] for an empirical test of the model in the context of filamentous fungi, [9]
for a more detailed model incorporating transport of growth-essential substances, and
[2] for a recent application to a model of tumor-induced capillary growth.

4. A model for oriented growth in two dimensions. For networks that grow and
spread over two dimensions, the situation is more complicated. As previously mentioned
in the Introduction, the geometry of the network then plays a significant role. For
example, the likelihood that fusion will take place depends not only on the density,
but also on the relative directions in which the branches are growing. Thus a model
for networks in two or more dimensions must account for orientations as well as
densities of branches.

In previous work by Edelstein-Keshet together with Segel (unpublished), an
attempt was made to generalize the previous models by formulating vector equations
for densities and apical growth rates. It was found that this approach was not suitable
because the density of oriented branches cannot be added vectorially (parallel branches
of opposite orientations do not “cancel”). In this paper we consider a more promising
approach in which we redefine variables as distributions over an additional variable
that represents orientation 6 (see, for example, [1], [12] for similar ideas).

Consider the following new definitions of the variables for a two-dimensional
network (note that these now depict orientation fields):

p(x, 6, t) =total length (per unit area) of filaments oriented at angle 6 at (x, t),
n(x, 0, t) =total number (per unit area) of apices whose motion is oriented
at angle 8 at (x, t).

In the above it is to be understood that 6 is an angle measured with respect to

some fixed direction, for example, the x axis.
These definitions are made more technically precise in the following integral form:

0+A06
J' n(x, 0', t) df’ = the total number of tips moving in a direction subtend-
o ing an angle 6 = 6'= 0 + A6 with the x axis at location
x and time .

A similar statement holds for p(x, 6, ).
Now to derive an equation for p, note that filaments of orientation 6 accrue as a
result of the extension of apices whose direction of motion is 6. Thus

9
(7 a_?(x, 6, 1) =n(x, 6, )v—yp(x, 6, 1),
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where v is a (scalar) rate of extension and vy is mortality of branches. Note that by
the above definitions, the (vector) velocity of apices n(x, 0, t) is

(8) v(6) = (v cos 0, v sin 6).
This in turn implies that the flux of apices is

9) J(x, 6, t)=n(x, 6, t)v(0).
An equation of conservation for n will have the form

on
(10) —=-V-J+o,-0,,

at
for V=(3/9dx, 3/dy), where now the terms o, and o, depend on orientation and on the
orientation fields. In the following discussions we make assumptions about branching
and crosslinking in two dimensions to derive the appropriate mathematical terms for

o, and o,.

4.1. How branching changes the orientation field: (deriving o).

4.1.1. Dichotomous (Y) branching. Assume a fixed branching angle ¢ and a
constant probability a, of branching. As an apex whose current direction of growth is
0 bifurcates it produces two new tips whose orientations are 6 = ¢. The parent tip is
eliminated in the process (see Fig. 1(a)). Observe that every time a Y-branching event
occurs, there is a tendency to increase the spectrum of orientations of the apices. The
net accumulation of apices in the direction 6 is then

(11) An(x, 6, t)=a[n(x, 0 —¢, t)—n(x, 6, t)+n(x, 0+ ¢, t)]At,

where « is the branching rate. The first and last terms originate from the branching
of parents oriented at 8+ ¢ and the middle term accounts for disappearance of a
parent tip of orientation @ when it branches. Denoting these terms by n_, n, n., we
note that

An
(12) (TypeY) 01=Zt-=a(n_-—n+n+).
In the case of small branching angle ¢, this leads to an approximation derived by
truncating a Taylor series expansion for n:
(13) 82n+

o, =pu—=+tan,

1= M YR

for u = @@’ and a, ¢ as defined above.

4.1.2. Lateral (F) branching. Assume that branching is lateral, takes place at rate
a, and that the branching angle is ¢ (see Fig. 1(b)). Then the density of apices oriented
in a direction # increases when filaments with orientations 6 £ ¢ branch. Then by a
similar reasoning we arrive at the expression

(14) (Type F) An(x,0,t)=al[p(x,0—¢, t)+p(x, 0+, t)]AL

For small branching angles, a truncated Taylor series expansion for the above terms
leads to the continuum approximation
azp
15 o, =u—=+2ap,
(15) 1= M 302 p.

where, as before, u = ap’.
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4.2. How the orientation field affects crosslinking: (deriving o).

4.2.1. Tip to branch anastomosis. Consider the situation shown in Fig. 2(a), (b).
The configuration shown in (a) is unlikely to lead to contact and fusion between the
apex and the neighboring branch, since their orientations are mutually parallel. In the
configuration shown in Fig. 2(b), an obliquely oriented apex is moving toward the
filament and will come into contact after a time 7= L/(v sin §) where L is the distance
of separation, § = § — @' is the angle between the two branches, and v is the speed of
motion (assumed fixed). The rate of fusion of apices of orientation 6, n(x, 6, t), with
filaments of orientation ', p(x, 6, t) is thus proportional to sin (6 — 6"). In summing
the contributions of branches oriented at all angles to fusions of tips with orientation
0, we obtain an integral of the form

T

(16) likelihood of fusion of tip of orientation 6 = I p(x, 6, t)K(6—6") do’,

—ar

where B is the probability of crosslinking given that contact is established, and where
the kernel K is typically

(17) K(6—0)=Clsin(6-6) —-m=6

IA

.

For the purposes of normalization take C =3. Then

(18) J'W K(0)do=1.

—ar

Tip to branch

(a) <

parallel transverse
branches branches

Tip to tip

b
© @ 7"
0 0 / \ )

FIG. 2. Crosslinking, or anastomosis, can occur in one of two ways. Top: a tip fuses with a branch (type
H). Bottom: two tips fuse (type W). In both cases the probability of fusion is highest if the orientations of the
elements are transverse (0 # 0') as shown in (b)and (d) rather than parallel as in (a), (c).
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Thus o, would be given by

A aw
(19) 02=A—:l=—Bn(x, 6, t)J p(x, 0", )K(0—6") db". -

4.2.2. Tip-to-tip anastomosis. Similar arguments based on Fig. 2(c), (d) lead to
the conclusion that fusion of two tips can also be described by an integral term of the
sort derived above. Since now the densities of apices only enter into consideration,
we find that the term for o, is

(20) 0-2=M— Bn(x, 6,t) J

A n(x, 6, t)K(0—6") do’,

kd
—ar

with K as before.

A summary of kinetic terms representing branching and crosslinking in two
dimensions are given in Tables 1 and 2. These terms are used below in the two-
dimensional branching equations.

4.3. Two-dimensional branching equations. Putting together the terms derived in
the previous sections we obtain four possible sets of equations for the four combinations
of branching and crosslinking: YH, FH, YW, FW. A typical set that will be investigated
in some detail is the YH-branching equations:

ad
(21a) (%, 6,0)=n(x, 6, )v=7p(x, 0,1),

a ks
a—;l=—V-J+a(n_—n+n+)—Bn J p(x, 0, t)K(6—6") do'.

—ar

(21b)

with J given by (9) and n.=n(x, 0+ ¢, t). While the equation for branch-density p is
analogous to its one-dimensional counterpart, the above equation for the density of
apices is an integropartial differential equation involving the new independent variable
0. This increases the complexity of the model but also yields certain insights as follows.

(1) Dichotomous branching has two effects: (a) it increases the density of apices;
(b) it causes a dispersal in orientations. (In other words, the distribution n(-, 6, -) tends
to spread in 6 as if by diffusion: see the small angle approximation of the branching
operator, given by (13).)

(2) Crosslinking selectively eliminates those apices moving ‘“against the grain”
(i.e., transverse to the orientation field).

These observations suggest the possibility of pattern formation in two-dimensional
branching continua. The interplay between diffusion in 6, local autocatalysis (by
branching), and inhibition by crosslinking would appear to predict that patterns could
arise from angular instabilities of a homogeneous state. In the next section we describe
a simplified space-independent set of equations, and demonstrate this property that
results in the effect of orientation selection in a YH network.

5. Spatially homogeneous networks and @ instabilities. As a first step, consider a
collection of filaments that are homogeneous in space and isotropic in orientation. For
example, consider a broth made up of short lengths of filaments, where orientations
are purely random, not the result of coherent growth. (See Fig. 3(a).) Since there is
no front or spatial gradient of density, the spatial uniformity of this “network” will
be unchanged by growth. However, since interconnections and branching events as
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(a)

(b)

FiG. 3. A spatially homogeneous ‘‘filament soup™ in which orientations are initially random as shown in
(a) will, as a result of interactions described in the model given by equations (22a), (22b) evolve into a collection
of parallel branches shown in (b).

well as death of filaments will take place, the initially uniform distribution of orienta-
tions will be affected by growth. To examine the consequences we explore the following
model in which spatial dependence of the variables is omitted and equations are written
in terms of p(0, t) and n(0, t).

For purposes of illustration we consider the case of YH branching networks. (The
stability analysis is similar for the other cases.) Spatially homogeneous YH networks
satisfy the equations

(222) 2= on—,
on .
(22b) 3;=a(n_—n+n+)—ﬁj K(6—0)p(8) do'.

These equations have isotropic (i.e., 6-independent) equilibrium solutions ( p,, ny) =
(0,0) and (p, i) =(a/B, ya/vB). Below we show that if the ratio u/« is sufficiently
small, then the homogeneous solution, (g, ) is unstable. The linearized equations for
(22a), (22b) are:

ap
23 —=vn—9yp,
(23a) Py vn —yp

(23b) %= a(n_—2n+n,)—(ya/v) J” K(6—-6")p(06") do'.

i
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The solutions to (23) are

(24) [p(6,1),n(6,1)]" = [p'} e"e,

m
where [ is any integer, and {A,[,!]}, is an eigenvalue-eigenvector pair for the 2x2
matrix:

_, ,
(25) [-m/vn&u) 2a(cos(lqo)—1)jl'

In (25) the function K (1) is the Fourier transform of the function K (6),

(26)' K= fﬂ e K () do.

Since K is even, I%(l) is real. For K(8)=4sin (0)],

0, 1=1,3,5,- -,

27) K(1)2{1/(1—12), 1=0,2,4, .

The eigenvalues of (25) will have negative real parts (and thus the equilibrium point
will be stable) if the determinant is positive and the trace is negative. Clearly the latter
condition will always hold since the trace [2a(cos (lp) — 1) — y] is always negative. If
the determinant becomes negative, we can expect to see a loss of stability of the rest
state as a real eigenvalue changes from negative to positive. Generically, we then expect
bifurcation of small amplitude solutions that are proportional to cos (16). The deter-
minant of (25) is

(28) A(l) = ay[2(1—cos lp)+ K ()]

For K(0) as above, A(l) is positive for 1=0,1,3,5, - -, but can be negative for
1=2,4,6,- - - provided (1—cos lp) is sufficiently small. In particular, for stability we
require

1
(29) 2(1—cos l¢)>(lz—_1)‘5f(l), 1=2,4,6,---.
The function f(I) is maximal when I =2, (with f(2) =3.) Summarizing, we have found
that for K(6)=4|sin ()|, the homogeneous solution is stable provided that

(30) cos 2¢ <3.

If the above inequality is not satisfied, we expect to see inhomogeneous solutions
bifurcating from the homogeneous state. The solutions will bifurcate stably only from
the lowest (I =2) mode, since as A(l) decreases, the I =2 mode bifurcates first. We can
restate the stability criterion in terms of ¢ only. The result is that (30) is equivalent to

@ <iarccos?, or ¢<0.29radians~16.8°.

It follows that any branching network of the YH type will exhibit this type of orientation
instability when the branching angle is smaller than 16.8°, regardless of all other
parameter values, including the branching rate «, the rate of linking B, the rate of
extension v, and the death rate y.
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In Fig. 4 we show the result of a numerical solution of (22a), (22b) for cos 2¢ > 2.
Starting from small perturbations of the homogeneous steady state, we observe that
the initially random assortment of filament orientations gives rise to a pair of pre-
dominant directions, (5, and 0 + . Thus, starting from an unoriented mixture, instability
gives rise to a network in which all filaments are aligned parallel to one another. The
final network will have an appearance shown in Fig. 3(b).

The above results are not highly sensitive to the form of the kernel K(6) chosen
above. Key properties of this kernel necessary for a physically reasonable model for
crosslinking are the following:

(i) K(7—0)=K(0);

(ii) K(—-8)=K(0);

(iii) K(0) is monotone increasing on (0, 7/2).

That is, K(6) is maximal at +7/2 and symmetric about +7/2. These are physically
reasonable requirements since the anastomosis should have its maximal effect when
the branches are perpendicular but should not be sensitive to the absolute orientations
of the branches.

Remark. We conjecture that for any K(6) that has the above properties, the
behavior will be qualitatively the same, that is, bifurcation will always occur first at [ = 2.

6. Spatially distributed networks. In the previous sections, we studied the behavior
of networks without spatial structure. For spatially distributed networks growing in
two dimensions, p and n, which are both functions of x, y, 6, and ¢, are described by
(21).

Since these equations are rather complex, analytical results for the general case
are difficult to obtain. Some general remarks, however, can be made on the basis of
the equations themselves. We observe that (21b) is hyperbolic in the spatial variables
x and y. Thus, the model is consistent with such spatial phenomena as propagating
fronts and waves. It appears that no mechanism exists in these equations for generating
instability of the uniform steady state to spatially nonuniform perturbations. This
means that spatially periodic networks cannot be generated by the simple growth laws
described in this paper. By implication, other mechanisms such as nonconstant
extension rates, attraction to or repulsion from pre-existing density, or dependence on

1.5 2.0 2.5 3.0 3.54.0

BRANCH DENSITY

1.0

0.00.5

90 120 150 180 210 240 270 300 330360
ORIENTATION

o
w
o
(=]
o

FIG. 4. A spatially uniform network exhibits instability to random perturbations in the branch orientations.
Starting close to a state in which all directions (0 < 8 <360°) are equally represented, two predominant directions
that differ by 180° are formed. Equations (22a), (22b) were integrated with a =1.2, B =5.0, y=0.2, ¢ =.09,
v =1.0. Shown are the distributions p(6, t) at t =8, 24, and 40 units.
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other external influences must be responsible for spatial oscillations seen in some
networks (for example, in fungi).
Next we turn to numerical solutions of several special cases in which the initial
distribution has properties that reduce the dimensionality of the phenomenon.
6.1. Discrete equations. In carrying out numerical computations, we must return
to a discrete formulation of the equations. The connection between the original discrete
branching process and the discretized model is of some interest. In certain cases, chiefly
when the branching angle is a rational divisor of 27, ¢ =27/ m, and when the initial
distribution contains only branches oriented along directions (27/m)i, i=1,2,- - -, km,
a finite set of discrete orientations are possible in the network. More generally, if ¢ is
an irrational divisor of 247, the orientation spectrum is continuous since in principle
all orientations can be generated as a result of branching. In the latter case, discretization
in angle is artificial, for the purposes of numerical analysis only.
In the following we define discrete variables as follows:
¢ =the branching angle,
N =number of orientations in the discretized model,
AO=27/N,
6; = jA6 =the jth orientation,
p;i(x, y, t) =density of filaments oriented at angle 6; counterclockwise from
the x-axis at position (x, y) and time ¢,

n;(x, y, t) = density of tips whose direction of motion has orientation 6; at
position (x, y) and time t.

A discretized version of (21) is then

(31a) —=on;—yp;,

an; N-1
(31b) —6?1=—V,1-vjnj+@(njﬁ1—2nj+nj+1)+nj<a—B Y K(O,-—-Gj)p,-),
i=0

where v;=(cos 6;,sin 6;), D = ap?/(A0)%, T, K(6,)=1, V, is a discrete spatial
divergence operator, and h =Ax = Ay is the spatial grid dimension.

6.2. Numerical simulations.

Case (i). Initial growth along a single axis. Consider the casein whichan/dy|,—¢=0
and all branches are initially oriented along the x axis. An example of a network with
this property would be an infinite array of equally spaced branches initially growing
in parallel. (A second example would be that of equally spaced branches growing on
the surface of a cylinder, parallel to the axial direction.) It is easy to verify that if the
initial densities of p and n are uniform in the y direction, they will remain uniform
under the dynamics. Therefore, we may set 9n/dy =0 in (31b) and the equations need
only be integrated in the variables 6, x, and .

Numerical integration of (31b) is carried out in two steps, each of increment 3At¢:
In the first step the diffusion operator in the theta direction is treated explicitly. In the
second step, translation in the x-direction is carried out in the “upwind” direction.
Since the velocity is proportional to cos 6, movement is forward for 6] < 7/2 and in
the reverse direction for |6]|> 7r/2; this must be considered when integrating with
respect to the spatial variable, since the direction of integration in the numerical
simulation must match the direction of motion for stability.

Equations such as (21) will develop traveling wave solutions whose velocity
exceeds v if the initial data is not of compact support (as discussed briefly in § 3).
However, there are circumstances in which we are interested in studying the growth
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of a network into a previously uncolonized region. To do so, it is necessary to place
safeguards in the numerical code to ensure that numerical dissipation does not introduce
finite densities at locations ahead of the margin of the network. Since the margin is
predetermined to move at a constant rate v by virtue of the hyperbolic nature of (21),
this can be done artificially by setting p = n =0 at sites beyond the margin.

Equations (31) were integrated for Ax =At=0.1, A6 =2/ N, N =30 on a domain
of length L = 50Ax with parameter values @ =0.5, 8 =0.5, y =0.5, and v = 0.12. Initially,
branches and tips occupy only the two sites adjacent to x =0 and are oriented parallel
to the x-axis.

The domain is periodic in the 6 direction. Because of the directions of motion
along the x-axis, boundary conditions on the x variable are as follows:

RNy, 0=O,

n(0,6,1) z{o, 6] < m/2,

(32)
n(L, 6,t)=0, |6|>m/2.

This means that there are always some apices growing from the origin, and that there
are no tips growing in a reverse direction at the far boundary of the domain. Integration
is halted when the growth margin first arrives at x = L.

Time behavior of the solutions was studied for a variety of branching angles,
ranging from ¢ =0.1 to ¢ =0.6. Most of the interesting behavior was found in the
range 0.2 < ¢ <0.3 and occurred during the time span 0 <t <25. By t =25, characteristic
patterns of growth were well established and continued to advance along the single
space dimension (the x axis) without changing structure.

To present solutions graphically, we use a grey scale (with 20 grey levels) on an
x60 coordinate system. The x axis is vertical (directed downwards) and the 0 axis is
subdivided into the regions [—m, —7/2], [—#/2, 0], [0, 7/2], [7/2, w].) The densities
of branches p(x, 6) are shown in a time sequence with ¢t =5, 10, 15, 20, and 25, starting
at the top of the figure and continuing downwards. Shown in Figs. 5 and 6 are solutions
for ¢ =0.2 and ¢ =0.325.

From these results, the following observations can be made. In the initial stages
of growth, the patterns produced are circular or ellipsoidal in x6, since new orientations
are introduced by branching. Branches growing parallel to the x axis, however, move
fastest in the x direction. This tends to elongate the structure and gives rise to a leading
margin.

In comparing Figs. 5 and 6 we observe that in both cases some retrograde motion
occurs in the networks. However, for ¢ =0.2 in Fig. 5 this is apparent only in the
rearmost section of the network, while for ¢ =0.325 in Fig. 6 it occurs at locations
close to the leading edge. A second remark is that orientations tend to be sharply
defined throughout most of the network in Fig. 5 and diffuse in Fig. 6. This pattern
continues when integration is carried out for longer times.

Third, the angular profile is constant over the middle half of the network by ¢ =25
in Fig. 5, whereas, in Fig. 6, the angular profile gradually broadens toward the rear of
the structure. This phenomenon can be explained as a spatially-propagating version
of the orientation selection effect described in § 5. That is, in networks with crosslinkage
and small branching angles, there is a tendency for alignment along some predominant
direction. Since initially the networks in these simulations were directed along the x
axis, this direction is a preferred one, and thus forms the chief orientation axis in Fig. 5.

When ¢ =0.2, orientations that are at angles close to /2 are rapidly eliminated
in the front of the network and are thus not present in Fig. 5. The “tails’ at the rear
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- —7/2 /2 T

t=20

t=25

FIG. 5. A sequence of five shapes formed in development of a network that initially consists of a collection
of branches parallel to the x axis. Shown is the density of branches at intervals of 5 time units starting at t =35.
The branching angle is ¢ =0.2; other parameters used are o = 3 =y =0.5, v =0.12. See the text for details.

of the structure are vestiges, stemming from the fact that initially the network is not
sufficiently dense for crosslinking to eliminate large angles. Some branches also continue
to “escape” to the rear later in parts of the network where the alignment is not yet
established.

Figure 7 demonstrates the effect of varying ¢ on the shape of the networks at
t =35. Itis apparent that the transition from sharp to diffuse orientations occurs roughly
between ¢ =0.24 and ¢ = 0.28 (close to the bifurcation value found in § 5). The angular
profiles of such networks at several locations are shown below their respective grey-scale
plots. Figure 8, in which the profiles at the margin are directly compared, gives evidence
of the widening that occurs when ¢ is increased.

Case (ii). Symmetric networks and rational branching angles. We now consider
the special case that the branching angle ¢ =24/ N. If initially the only orientations
in the network are 6;,=27j/ N =¢j, j=1,2, - -, N, then only these orientations will
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-7 —m/2 0 /2 T

=20

t=25

FIG. 6. Five shapes in the development of the same network but with ¢ =0.325. In Figs. 5 and 6 the apex
originally at (0, 0) remains at (0, 0).

be present in the network. Then equations corresponding to (21) are:

9p;

(33a) 5t = Un; = Ypj,
on; N1
(33b) Ez =V (om)+a(n_,—n+ nj+1) — Bn; ‘go K(6:—6,)pi,
where
(33¢) v; =v(cos 6;,sin 6;).

These equations may be numerically integrated but the computations are quite
lengthy since the problem is effectively 2N-dimensional. We can eliminate all but one
of the N pairs of equations by exploiting certain symmetries in (33).

Suppose that we start with initial data for (33) having the following radial
symmetry:

(34) ZO(xa Y, O) = Zj(gij{xa y}a O)a
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Density

Orientation (—w<6<m)

FIG. 7. A comparison of the final densities of networks (at t=35.) obtained as the branching angle is
varied. Shown are four cases, for ¢ =0.2, 0.24, 0.28, and 0.325. The plots shown below the corresponding grey
scales represent the density of branches of a given orientation, 6, —180< 6 <180 at x=L/4, L/2, and 3L/4,
where L is the length of the network. In each case, the lowest curve represents density closest to the origin. In
(a) the highest curve is density at x =L/2. In (b) the curves for x=L/2 and x=3L/4 are identical. In (c)
and (d) the roles are reversed, with highest density at x =3L/4.

nrofilez at increasing phi values
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FIG. 8. The density of branches as a function of orientation at x =3L/4 (where L is the length of network)
for ¢ =0.2 (tallest peak), 0.24, 0.26, 0.28, 0.3, and 0.325 (lowest peak). Increasing the branching angle tends
to broaden the distribution of branch orientations.
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where z is either p or n and %, is the rotation matrix

(35) ;= [:fns gJ o 0?’].
Let
(%, 7) = Ri{x, y}.
Then
(36) (%, 9;) = (x cos 6;—y sin 6;, x sin 6; +y cos 6;)

is a position obtained by rotating the axes by an amount ;. Equation (34) means that
at t=0, the density of j-oriented elements at position (X;, y;) is identical with the
density of elements of zero orientation at a position (x, y). Initial conditions that satisfy
this symmetry include those for which there is a homogeneous distribution of branching
angles at each spatial point (constant initial conditions), those whose contours resemble
N-sided snowflake patterns, and those concentrated at the origin (x, y) = (0, 0). In the
Appendix it is shown that (33) preserves this symmetry. If we restrict our attention to
symmetric solutions, we need only solve for ny(x, y, t) and po(x, y, t). The resulting
symmetric two-dimensional (instead of 2N-dimensional) hyperbolic system is

0
(37a) ﬁ= V1o — Yo,
on, on
S o= aln( @ {x 1)+ no( Rl yH) = molx, )]

(37b) Nt
~Bno(x,y) L K (6:)po(Zi{x, y}),

where we take
(37¢) K (8)=Clsin ()],
with C chosen so that

N-1
(37d) C Y lsing]=1.
i=0

Because of the symmetry properties discussed above, average densities can be defined
by summing over the N corresponding positions (obtained by rotation through angles
6,,j=1,-+-,N), a process equivalent to summing over all discrete orientations at a
given spatial position. Thus, average densities are defined by

(382) PO 0= T Az 1))
(380) 353 0= T A {x ), 0.

The solution to (37) yields values for [ po(x, y, t), no(x, y, t)]; the densities of the other
orientations can then be found by applying the transformation (34). Equations (37)
are analyzed numerically on a square domain Q=[-3,3]x[-3,3] with Dirichlet
boundary conditions. The domain ( is discretized into a grid of 61 x61 points and
the spatial derivative dno/dx is approximated by an upwind differencing scheme for
numerical stability. We use an angle discretization of N =18. Integration of the
equations is halted as soon as the growth reaches the boundaries of the domain.
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To compare the wavelike behavior of networks with and without compact support,
we examined two cases. In the first, initial data had small but nonzero densities
throughout the domain, with a peak at the origin, and with a uniform initial angular
distribution. The parameters had values Ax=At=0.1, a =1.0, =10, v=0.05, y=
0.05. This situation is representative of a network in which exploratory branches have
already been established, and in which a wave of branching then takes place. Below
we describe properties of the numerical solutions by displaying graphs of densities
averaged over all orientations, as well as proportions of filaments aligned in a given
direction (at angle 6 =0). Figure 19 depicts the time evolution of solutions to (37).

A

F1G. 9. Time evolution of the discrete angular symmetric model given by equations (37). The density of
filaments averaged over all orientations p is shown as a function of position (x, y) on the left-hand side. The
proportion of filaments parallel to the x axis p, at a given position (x, y) is shown on the right. (A) t =8, (B)
t=16, (C) t =24. See the text for details of initial conditions and parameter values.
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On the left, the average filament density p(x, y, t) is displayed. On the right, the intensity
of shading represents the proportion of filaments at a given position whose orientation
angle is 6,=0 (i.e., filaments directed toward the positive x axis po(x, y, t)). The
sequence of three frames from top to bottom depicts the densities at three consecutive
times, t =8, 16, 24. Observe that close to the positive x axis, a very high proportion of
filaments are oriented at 0°, since this corresponds to motion radially outward. Along
the negative x axis, a small fraction of filaments are oriented at § =0, corresponding
to those branches moving in the reverse direction (toward the origin). The same figure

may be used for viewing the proportion of density oriented at any angle 6,=
2mj/18 radians = j - 20°. To do so, rotate the figure by 6;. The density of shading along
the new x axis then represents the proportion of branches oriented at angle —6; along
the old x axis. (For example, the shading density along a radius of the figure at 40°
to the x axis represents the fraction of branches oriented at angle —40° along the x axis.)
Further properties of these solutions are displayed in Figs. 10-12. In Fig. 10, we
depict the spatial profiles of the average densities, p, 7 along the x axis at several
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F1G. 10. Profiles of the average densities as functions of distance along the positive x axis: p(x, 0, t) (solid
curves), and 7i(x, 0, t) (dashed curves) at t =16, 20, 24.
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F1G 11. Time evolution of the average densities at the origin: 5(0, 0, t) (solid curve) and 71(0, 0, t) (dotted
curve).
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FIG. 12. Comparison of the predictions of equations (37) with predictions of the ordinary differential
equations (6) shown in a pn phase plane diagram. The solid line depicts a positive heteroclinic trajectory of (39)
that represents a bounded traveling wave solution of equations (6). The *’s represent pairs of values
[p(x,0, 1), A(x,0, t)] for t =16 and positive values of x.

different times. There is clearly a well-defined traveling wave moving outward from
the center. From the numerical simulations we observe an approximate wave velocity
of 0.15 for t>10. This velocity depends on the form of the initial conditions but is
always larger than the absolute velocity of the apices, v (here, equal to 0.05), for
reasons that were previously discussed, and that are detailed further below. Figure 11
shows the time evolution of the average filament density and tip number at the center
of the field as functions of time. We observe an oscillatory approach to the equilibrium
values.

To understand the traveling wave behavior of the average densities in this setting
we examine a further simplification of (37). If we apply the transformation (34) to
(37) and average over all orientations, the averages (p, 71) satisfy

on on Nt

0p _ _ _
2P i — o —=an-— K (¢; ; .
(39) =vieys  Srv—=ai-pi T K(e)eo@ilx y)

If we approximate the sum in (39) by the average, 5(x, y), (39) becomes

ap _ _ on on  _
40 —=uvn- —+tov—=n(a—Bp).
(40) 5 v, v o=nla=pp)
If we look for y-independent solutions to (40) we observe that this averaged problem
reduces to the one space-dimensional model of equations (1)-(3) that has been analyzed
in § 3. Thus, for initial conditions with noncompact support, traveling wave solutions
are to be expected. This observation explains several aspects of the simulation of (37).
For the parameters used, [a/ B3, ay/Bv]is a spiral. This explains the oscillatory behavior
in Fig. 11. Furthermore, the required connections do not occur if ¢ < v, which explains
why the velocity of the front in these simulations is greater than the branch extension
rate.

In Fig. 12, we compare the solutions to the shooting problem (6) with the solutions
to the problem (37) with all parameters as above and ¢ =0.15. The two are remarkably
close given the crudeness of our approximation (the approximation of the weighted
sum in (39) by the average), thus reinforcing the conclusion that the basic wavelike



1156 L. EDELSTEIN-KESHET AND B. ERMENTROUT

behavior of solutions to the one-dimensional network model appear in higher
dimensions as well.

7. Discussion. The main emphasis of this paper is on properties of two-
dimensional networks that stem from an interplay of branching, which results in an
enhanced potential for growth, and crosslinking, which has the opposite effect. While
many real networks are spatially discrete, the continuum models derived here give us
tools for analyzing and understanding the way that simple networks develop. Using
such models, we have addressed questions about the shapes and internal structure
(distribution of orientations) of such networks, and the rates with which networks
grow and expand in one and two dimensions.

To place this theory in the context of other work on branching structures, it is
worth commenting on several previous investigations. In many of these, branching
patterns have been explored with an emphasis primarily on classification, numbering
of the structures (e.g., [21], [14], [22], [11], [17]) and topological analysis [4]. Few
studies, if any, have dealt with the mechanisms responsible for the patterns. Discrete
simulations were pioneered by Cohen [5] and later applied to model systems such as
tree canopies, [13], plant architecture [3], [19], and fungal colonies [15]. Reviews can
be found in [23] and [18]. Most studies have been based on computer simulations
without accompanying mathematical analysis. Furthermore, the effects of crosslinking
have not been thoroughly investigated in these studies.

Several directions can be identified for extension of these models. First, it is of
interest to address changes in orientations of branch tips that result from attraction
(chemotaxis) toward high concentrations of diffusible substances, or from avoidance
of crowding. Second, the effects of nonconstant rates of branching and crosslinking
should be considered. Third, distributions of branching angles and branching types
should be explored.

While networks arise from many distinct processes and have diverse functions in
nature, their predominance in biological, physical, and chemical systems is striking.
It may be reasonable to believe that many of the regulation and pattern formation
phenomena in these various examples are related, and would therefore be amenable
to a theoretical treatment related to the one outlined in this paper.

Appendix. Preservation of symmetry under the dynamics. Consider initial densities
having the symmetry properties given in (34). Since spatial derivatives interact with
the rotation operator, the flux term, (v;- Vn;) must be considered. Suppose that

nO(xs y, t) = nj(ij j;j’ t);

then
3Lno(x, 3, t)]=(a_£,->a[n( 5 1 (ay‘j)a[n,»(f,-,y‘,-)]
ax dx 9%; x ay;
_ a[n( y,)] a[n( (%, $)1
9% aP;

=(cos 6;,sin §;) - Vn;

= (l)V - (o).
v

Thus, the equations preserve symmetry at each time step.
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