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OSCILLATOR DEATH IN SYSTEMS OF COUPLED
NEURAL OSCILLATORS*

G. B. ERMENTROUT} AND N. KOPELL}

Abstract. Phase-locking in a system of oscillators that are weakly coupled can be predicted by examining
a related system in which the coupling is averaged over the oscillator cycle. This fails if the coupling is
large. It is shown that in the presence of large interactions, a pair or a chain of oscillators may develop a
new stable equilibrium state that corresponds to the cessation of oscillation. This phenomenon is robust for
neural type interactions and does not happen in systems that are weakly coupled.
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1. Introduction. Much of the analytical work on coupled oscillators deals with
interactions that depend only on the differences of the phases [1]-[7]. (Using averaging
theory [8], this includes more general work on weakly coupled oscillators.) A simple
example of two oscillators coupled in such a way is
(1.1) ' %=w1+H1(02_01), %=w2+HZ(01_02)
where 6; is the phase of the ith oscillator, w; is its uncoupled frequency, and H; is a
2ar-periodic, scalar-value function. For generic H,, H, the behavior of (1.1) is very
simple. If @, and w, are sufficiently close, the system “phase-locks,” i.e., it has a stable
periodic solution for which ¢ = 6, — 6, is independent of time. For |w, — w,| sufficiently
large, the system drifts, with the faster oscillator processing the slower one [4] (see
§ 2.2 for further discussion of this).

This paper is concerned with several related observations:

(1) Models of coupled neural oscillators, even when they are reduced to phase
models, have interactions that do not in general depend only on the differences of the
phases. (We use the word “neural” to refer to chemical synaptic coupling, as opposed
to electrotonic.)

(2) For more general coupling of oscillators (modeled by phase or by both phase
and amplitude), there is a much larger repertoire of possible behavior. In particular,
for sufficiently large interactions, the coupling can act to suppress the oscillation and
lead to a stable steady state for the coupled system. Since none of the component
oscillations need have a stable steady state, this phenomenon is inverse to the observa-
tion investigated by Turing [9], Smale [10], and Segel and Jackson [11] that nonoscillat-
ing systems, when coupled, can develop a stable oscillation.

(3) The disappearance of the stable limit cycle and its replacement by a stable
critical point is not restricted to pairs of oscillators. It also happens to chains of
oscillators coupled to nearest neighbors. Indeed, the phenomenon was discovered
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during an investigation of chains of oscillators modeling neural networks governing
undulating locomotion [6], [12].

This investigation is motivated by the study of neural oscillators [6], [12]-[15],
and the mechanism that we will discuss depends heavily on the assumption that the
coupling is not equivalent to coupling by diffusion. In this mechanism, oscillator death
turns out to come from a lack of uniformity of the local frequency along the limit
cycle of the coupled system. That is, as oscillator death is approached (when some
parameter is changed), the coupling causes the system to slow down near some point,
and the frequency goes to zero. The mechanism contrasts with others that produce a
death of the oscillator, including one that, unlike ours, requires very different frequen-
cies among the coupled oscillators [7], [16], and one in which two coupled oscillators
lock to equilibrium points in antiphase [17], [18].

The paper is organized as follows. Section 2 is concerned with oscillator death
for phase equations of the form
(1.2) %=wk+hk(ek, 0;), k=12, j#k
We give emphasis to coupling functions h.(6y, 6;) of the form P(6;)R(6,) where P is
a pulse-like function and R plays a role analogous to that of a “phase response curve,”
and we show how such equations are derived from assumptions about neural oscillators.
In the Appendix, a numerical method is given for computing approximations to the
functions P(0) and R(0) and applied to a pair of well-known models for neural
oscillators that are not reduced to phase equations.

In § 3, we consider the latter nonphase models. We show, using analytical and
numerical methods, that oscillator death also occurs in nonphase models. We also
compare our mechanism of oscillator death to those of Aronson et al. [7], [16] and
Crowley and Epstein [17].

Section 4 deals with chains of oscillators, and we show that the length of the chain
has little effect on how easily the rhythmicity can be killed; i.e., there is no scaling
effect. This result is obtained using procedures analogous to monotone methods for
parabolic partial differential equations (PDEs). Section 5 contains a short discussion,
including comments on the relevance of these models to the behavior of real chemical
synapses which may have fatigue or delays. We also discuss the relation of our
hypotheses to the notion of “synaptic coupling” used in previous papers [6], [12]-[14].

In a succeeding paper [15], we will discuss how neural networks can be designed
so that the interactions of oscillating neurons, even if strong, do not cause a stoppage
of the oscillations.

2. Phase equations for pairs of oscillators. We now show that equations of the
form (1.2) in general undergo oscillator death if the coupling is sufficiently strong. We
start by discussing some special cases that have particular significance for the coupling
of neural oscillators.

2.1. Pulse-response coupling. Assume that the oscillators are given by

du
(2.1) —=F(w), k=12

dt
where u, € R" has an asymptotically stable limit cycle U(¢). We consider oscillators
for which the attraction to the limit cycle is very strong. We can choose variables
0.€ S, and y, € R""' such that 6, parameterizes the limit cycle of (2.1) and y, are
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normal coordinates in a neighborhood (so y, =0 along the limit cycle). If J,(6, y) is
the Jacobian matrix of this transformation, then (2.1) may be written as

deo d
(2.2) ‘d—tk=wk+0(|l)’k”)> _gf:ak(ok) “yieto(|lyel)

where the right-hand sides of (2.2) are the 6, and y, coordinates, respectively, of

T3 (8k, yio) Fie( O, yic)-
Suppose now that we consider a pair of coupled oscillators

du
(2.3) d_tk=Fk(uk)+ Gi(w,w), j#k

In the coordinates described above, the set of coupled equations has the form

do,

‘E;= i+ i (6, 0,)'*‘ O(”)’k, J’j”),

(2.4)
dy.
dr ar(6x) * yi+ di (6, Bj)+ O(”J’j”)"”o(”)’k"),

J,k=1,2 and j# k. Here a, depends only on F,, and h, and d, depend on the
interaction terms Gj, Gy as well. For the product system (no coupling), there is a stable
invariant torus that is the product of the limit cycles. By [19], this torus persists after
perturbation. The amount of perturbation that can be permitted without loss of the
invariant torus grows with the degree of attractivity of the limit cycles of (2.1) [19].
If there is no small parameter in the problem, the existence of the invariant manifold
is not guaranteed, but [19] shows that an order one amount of coupling can be tolerated.
If the rate of attraction to the limit cycle is very strong compared with the amount of
coupling, the normal variables y, stay small, and the § component of solutions to (2.4)
can be approximated by solutions to (1.2). (Even if the rate of attraction is not so
strong, as long as there is an invariant torus the equations on it have the form (1.2),
where the functions & in (2.4) and (1.2) need not be identical.)

Suppose that only one component of the coupling vector G, is nonzero, and that
this component is a product of a function of u, times a function of u;. It follows from
the previous derivation that h,(6y, 6;) has the form P(6;) R(6,). This is true of Hodgkin-
Huxley-like neural models in which the coupling is only via the voltage (see § 3). Thus
we see that there is a natural derivation of the equations

do de
(2.5) d—t‘= w;+aP(6,)R(6,), 7;= w,+aP(6,)R(6,),

first proposed by Winfree [20]. We use (2.5) as a convenient subclass to illustrate more
general results. In neural models, the function P(6) comes from a conductance, and
hence is nonnegative, while R(8) can take both signs (see the Appendix).

It is instructive to understand the relationship of (2.5) to “phase response curves”
(PRCs). For a given oscillator and a given brief stimulus, such a curve is experimentally
determined by stimulating the oscillator, and waiting until the system relaxes back to
its oscillation, except for a shift in phase. The PRC is the phaseshift R(8) that depends
on the phase 6 at which the stimulus was administered. If the relaxation time is short
relative to the time between stimuli, the PRC may be used to find out for which
frequencies of perturbation by the given stimulus the oscillator can be entrained. It
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also gives information about the phase differences between the forced and forcing
oscillators at different frequencies of forcing [21].

Let 6,, be the phase just before the mth stimulus, and assume that the relaxation
time is short, as above. Then the {0,,} are related by s

(2.6) 0p=0T+6,+R(6,)

where w is the natural frequency of the forced oscillator and T is the time between
stimuli. (See [22] for work on (2.6), which is capable of very complex behavior,
especially when R is large.) The difference equation (2.6) may be rewritten as a
differential equation

de _
(2.7) E=w+8(tmod T)R(9)

where & is the Dirac delta function. If the §-function is replaced by a smooth function
P(t), as in Fig. 2.1, then (2.7) becomes the forced analogue of (2.5), with R(0) playing
the role of the PRC. Indeed, since real stimuli are not instantaneous, it is probably
more reasonable to use the distributed stimulus function P. By making P sufficiently
sharp and narrow (2.5) mimics the effects of coupling two oscillators via their PRCs.

P(O)

-7% B ™
FIG. 2.1. Periodic smooth pulse function.

Alternatively, suppose that instead of instantaneously emitting a single pulse per
cycle, the stimulus emits a sequence of pulses at times ;€ [0, T) with strength «;. In
the limit as more of these pulses are emitted, (2.7) becomes

Z—f=w+P(t)I§(6)

where P(t) is the envelope of the spikes emitted by the stimulus. If instead of a forced
oscillator we consider two coupled oscillators with the same properties, then we obtain

(2.5) where R(0) is the PRC and P(9) is the envelope of spikes emitted by the other
oscillator. Thus, (2.5) may be considered a model for two coupled bursting cells.
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2.2. Oscillator death in phase equations. Before demonstrating the existence of
oscillator death for equations (1.2), we show that for (1.1) the phenomenon does not
exist. Such equations can be reduced to a single equation for ¢ = 6, —6,:

4

—=(w;—w,y)+[H{(—¢)— Hy(¢)]

2.8 A
(28) =A+H(¢)

where A=, —w,. If A is in the range such that 0=A+I:I(¢) can be solved for ¢,
with ﬁ’(q}o) <0, then there is a stable phase-locked solution to (1.1) with 6, — 0, = ¢,;
otherwise, there is drift [2], [4]. Time-independent solutions to (1.1) exist only in the
very nongeneric case that (2.8) can be solved and the solution ¢, satisfies w,+
H,(—¢,) =0. In that case, there is a circle of critical points on the two-torus (parameter-
ized by 6, or 6,), and so none of these points are asymptotically stable.

By contrast, for (1.2) the phenomenon is very robust. This is easiest to see in the
special case w,=w,=w and h,(6,, 0,) = hy(6,, 0,)= ah(6,,0,), where >0 is a
measure of the strength of the coupling. We may then look for solutions of the form
0,(t) = 0,(t) = 6(t). These solutions satisfy

(2.9) %=w+ah(0, 9).

If w+ah(6,0)#0 for all 6, (2.9) has a periodic solution, and no time-independent
(i.e., oscillator death) solution. The following proposition gives a sufficient condition
for stability of this solution, a condition related to the stability of the time-independent
solution when the latter exists (see Remark 2.2). Let 9;4 denote the partial derivative
with respect to the ith argument of h.

ProPOSITION 2.1. Suppose that (2.9) has a periodic solution 0(t), and along this
solution [, 3,h(0(t), 6(t)) dt <0. Then 6(t) is stable as a solution to (1.2).

Proof. Since (1.2) is an autonomous equation on T2, we must show that one of
the Floquet multipliers is less than one. (The equations are invariant under time
translation, so the other Floquet multiplier is automatically equal to one.) The Jacobian
matrix is

o,h azh}
azh 81h

(2.10) J= [
(6(1),0(1))

Equation (1.2) is two-dimensional, so the nonunit multiplier is the exponential of the

average of the trace of J over one period. Since the trace of J is 29,h, the conclusion

follows immediately from the hypothesis. 0

Remark 2.1. Suppose h(6,, 6,) = P(0,)R(0,) as in § 2.1. The hypothesis is then
{ P(6(1))R'(6(t)) dt <0. This holds when P is a pulse function centered around 6 =0,
as in Fig. 2.1, and R is approximately —sin 6. For more general pulse coupling, the
stability hypothesis requires that the 3,72 <0 where the pulse is concentrated.

It is easy to see that if h(6, 0) is negative for any 0, then for sufficiently large «,
(2.9) has critical points. Furthermore, unlike (1.1), such a critical point may be stable
as a solution to the full system (1.2). The following proposition gives sufficient
conditions for stability.

ProposITION 2.2. (1) Suppose that h(6, ) takes both signs, has a negative minimum
value 0,,, and (d*/d6*)[h(6, 0)]lo=s, > 0. Then, for sufficiently large a, (2.9) has a pair
of critical points, one a sink and one a saddle.
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(2) Suppose that 6 solves
(2.11) 0=w+ah(d, 6),

and assume that 0 is a stable critical point of (2.9) (i.e., (8,h +82h)(§, 0A)£< 0). Suppose
further that (3,h —81h)(§, 5) > (. Then (é, é) is a stable solution to the full equations (1.2).

Remark 2.2. The hypothesis for the stability of the limit cycle is that, on the
average, d,h <0. Suppose this is true uniformly for the family of limit cycles as a
increases toward a bifurcation point (&, 6). Then 8,h <0 in a neighborhood of (5, 6)
in which a limit cycle near the bifurcation point spends most of its time. At the
bifurcation point, this critical point is degenerate, i.e., (3;h + 9, h)( 5, 6 ) =0; thus, 3,4 > 0.
It follows that, past the bifurcation point, but near it, the second hypothesis of the
second half of Proposition 2.2 is then automatic.

Proof of Proposition 2.2. (1) It is clear that if 0,, is the minimum of h(6, 0),
and h(#,, 6,) <0, then a bifurcation occurs at the value of a for which 0=w +
ah(6,, 0,,). This bifurcation is supercritical and nondegenerate provided that
(d*/d6*)[h(6, 6)]lo=s, #0, and that it has the opposite sign from h(6,, 6,,)=
(d/da)(w+ ah)(6, 0)|s-e, . Thus, by standard bifurcation theory, for « larger than the
critical value @, there are a pair of time-independent solutions to (2.9), a sink and a
saddle. Since h takes both signs, (2.11) can be solved for all « larger than a.

(2) The Jacobian for (1.2) around 8, = 6,=0 is (2.11), with 6(t)= 6. To ensure
stability, we must have that tr J <0 and det J > 0:

det J =[(3;h)*—(3,h)*1(6, 6)
= (3,h+8,h)(3,h —3,h)(6, 9).

By hypothesis, both factors of the right-hand side of (2.12) are negative. Together, the
two inequalities imply 3,h <O, so tr J =23,h <0. Thus, we are done. 0

Remark 2.3. Equations (1.2) do not have any critical points with 8, = 6, if h(6, 8)
is positive for all 6 (assuming, without loss of generality, that w > 0). However, if the
coupling is to be effective in producing phase-locking, it is useful for the coupling
term to be able to phase-advance or phase-delay the oscillator. If the coupling is by
means of a pulse as in the previous example, this requires that R(0) take both signs,
implying that h(6, 6) does also.

Remark 2.4. In (1.1), h(6,, 0,) is dependent only on 6, — 6,. Therefore, 3,h+9,h =
0, and so one of the hypotheses for the stability of the critical point always fails. The
hypothesis (8,h+9,h)(0)#0 is a transversality condition that will reappear in the
analysis of oscillator death in chains. ‘

Remark 2.5. It is clear that it is not necessary that h,(0,, 0,) = h,(6,, 6,) and
w, = w, in order that (1.2) have a stable critical point. Indeed, the stability proved in
the previous propositiori implies that the phenomenon is robust under changes of
parameter. In § 4 we will give a proof of the existence of death in chains of oscillators.
The proof specializes to the case of N =2 and generalizes this section to h, # h, and
w, # w,; however, it is not as transparent as the above proof.

Remark 2.6. If w, # w,, the system may go from oscillator death to phase-locking
and finally to phase drift as the strength of the coupling decreases. We illustrate this
with a simple example that has many of the qualitative properties of the more general
system (2.5), although it does not satisfy P(8) = 0. Consider the pair of product coupled
oscillators:

(2.12)

de do
(2.13) Ttl=w1—a cos (6,) sin (6,), d—:=w2—a cos (60,) sin (6,).
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(We obtain these equations through the procedure described in § 2.1 if we let Fi (1)
be given by

F(u)= ( A _wk) Uy

Wy Ak

where A, =1—|u,|*, and the coupling G, = (u,(-l), 0)"j#k) Letting p=0,—0,, £=0,+
0,, we obtain

¢ =8—asin (¢), é=o—asin (§)

where 0 = w,+ w,, § = w, —w,. Fix w; =1 and let w, decrease below one. Note that if
a <1—w,=|§| there is drift, and for 1 — w, < @ <1+ w, there is locking. For a > 1+ w,
there is death, so that the smaller w, gets the easier it is to obtain oscillator death.

3. Oscillator death in nonphase equations for coupled oscillators. Recall that if two
oscillators, each having a stable limit cycle, are coupled together weakly there is an
invariant torus in the full equations near the product of the limit cycles. As the coupling
is increased, the torus may cease to exist. In this section we discuss a pair of well-known
models for neural oscillators, how they may be coupled, and describe some analytical
and numerical results about their behavior. We show that for some ranges of the
parameters and for some types of coupling, the oscillation disappears by the mechanism
discussed in § 2, with the preservation of the invariant torus. In other ranges of
parameters, the torus disappears and a stable critical point emerges via an inverse
Hopf bifurcation.

3.1. Neural network models. The Wilson-Cowan equations [23] model the interac-
tions between an excitatory and inhibitory population of neurons; we will treat one
such network as a single oscillator even though, in fact, it represents a population of
cells. We will then describe the consequences of coupling two such networks in a
manner proposed in [23]. Let E(¢t) and I(t) represent the respective firing rates of the
excitatory and inhibitory neural populations. The equations proposed in [23] take the
form:

(3.1) d—E= —E+S(aE—a.d-v,), g= —I+S(aiE — ail —v;).
dt dt

The parameters a.., ., ., and a; are the synaptic strengths between the neurons,
and the parameters v, and »; are the thresholds for firing of the populations. The
function S(u) is a monotone increasing saturating function with values between zero
and one (see Fig. 3.1). Equations of the form (3.1), where S is a piecewise-linear
function and the synaptic strengths are allowed to slowly change, are presently of great
interest due to their connection with learning [29], [30]. In [24] it was shown that
(3.1) admits an orbitally stable periodic solution under a wide range of parameters
(indeed, a sufficient condition is that (3.1) have a unique unstable equilibrium point).

Suppose that we couple two such identical networks. The inputs are additive so
that the equations take the form:

dE; '
——dTJ= _B} + S(aeeE}' - aite +.BeeEk _BieIk - ye)a

d,
:i; =-L+ S(aeiEj —a;l; + BeiEx — Bl — i),

(3.2)
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v
F1G. 3.1. Nonlinear firing rate function S(V).

J,k=1,2, j# k. The parameters B.., Bi., B.i, and B; represent connections between
the two populations; B,. is the strength of connections between excitatory population
J and excitatory population k, B,, represents connections from inhibitory cells of j to
excitatory cells of k, and so on. If the oscillators are identical and the coupling is
symmetric, then one possible solution to (3.2) has (E,, I,) =(E,, I,) = (E, I) where E
and I satisfy:

%= —E +S((aee+ﬁee)E _(aie+ﬁie)1— Ve),
(3.3)

dl

== TS (ae+ Ba) B = (au+ Bi) I = m).

The effect of each form of coupling is to increase the appropriate synaptic weight of
the symmetric system. We will restrict our attention to cases in which only one of the
coupling parameters is nonzero. In particular, suppose that there is only excitatory-
excitatory coupling. In Fig. 3.2(a) we show the phase-plane for (3.3) when B, <B*=
5.258 (and a.. =12, a;,=14, a.; =18, a;=0, v.=1, v;=8, S(u)=.5(1+tanh (u))).
There is a stable periodic solution to (3.3) and, as B, increases, the amplitude and
period of this oscillation increase. The shape of the E-nullcline changes and becomes
larger in amplitude until at a critical value of B.. = B*, the E-nullcline is tangent to
the I-nulicline. At this point (Fig. 3.2(b)) there is an infinite period solution and the
invariant circle formed by the limit cycle has a saddle-node equilibrium point. Further
increases in B..> B* cause the nullclines to cross at three points and lead to the
appearance of two new equilibria, one a stable node and the other a saddle (Fig.
3.2(c)). The invariant circle persists and is formed by the pair of heteroclinic orbits
joining the saddle-point and the node. Thus, as the coupling of the two oscillators is
increased, the stable in-phase oscillation becomes larger in amplitude until, at some
critical value, there is no longer periodic modulation; rather, the two networks are
forced to lie in a state of tonic high frequency firing (recall that E and I are firing
rates). This mechanism is very robust for these particular equations and occurs over
a large range of reasonable parameters.

We now turn to the stability of the symmetric solutions with respect to the full
four-dimensional system (3.2). For B, small, the symmetric periodic solution can be
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dI/dt=0

dE/dt=0 I dE/dt=0

dI/dt=0

dE/dt=0

dI/dt=0 -

FiG. 3.2. Phase plane for the Wilson-Cowan equations with various strengths of excitatory-excitatory
coupling. (a) B,. =4.5. There is a symmetric limit cycle that is globally attracting. (b) B.. =5.25. At criticality,
there is a saddle node and a trajectory with infinite period. The stable manifold is also shown. (c) B,, =6.0.
Beyond criticality, there are two new equilibria and a heteroclinic cycle joining them. Also shown is the stable
manifold for the saddle point. (Parameters: v,=1, v;=8, a,=12, a;,=14, a;=0, a,, =18, S(u)=
.5(1+tanh (u)).)

shown to be stable by using an averaging technique. For larger 8.., numerical simula-
tions of (3.2) indicate that the symmetric oscillatory solution is stable as a solution to
the full equations (3.3). We will show that the symmetric equilibrium solution to (3.3)
is always stable if the coupling is excitatory-excitatory. The next proposition can be
used to analyze coupling in a large class of systems.

ProposITION 3.1. Let A and B be n X n real matrices. The eigenvalues of the matrix

i !

are identical to the eigenvalues of the two matrices A+ B and A — B.
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Proof. Let

so that

i[ I1
Pl=> .
2[—1 I]

It is easily seen that P~' MP is the diagonal matrix, diag [A+ B, A— B], whose eigen-
values are those of A+ B and A— B as required. 0

Remark 3.1. The transformation P can also be applied to the linear differential
equation dz/dt = Mz when the arrays A and B are time-dependent. Thus, to establish
the stability of the symmetric time-dependent solutions, we need only analyze two
n x n systems rather than a 2n X2n system.

COROLLARY 3.1. Consider the coupled neural network of (3.2). Let (E, I, E, I) be
a symmetric equilibrium solution that is stable as a solution to the reduced system (3.3).
Then for excitatory-excitatory coupling, this symmetric solution is an asymptotically stable
solution to the full system (3.2). :

Proof. The matrix of linearization for (3.2) has the form [§ 4], where

A — [ 1 Seaee Seaxe ] and B = [SeBee SeBle] .
Sictei -1-Sa; SiBei  —SiBii

S,=8"((ttee+ Bee) E— (e + Bic) I —v.) and S; is defined similarly. Suppose that the
coupling is only excitatory-excitatory, so that all of the entries of B are zero except
for the upper left one, which is positive since S is monotone increasing. We have
assumed that (E, T) is a stable solution for (3.3), so that A + B, the matrix of linearization
for (3.3), has all of its eigenvalues in the left half plane. This means that the trace of
A+ B is negative and the determinant is positive. We must show that the eigenvalues
of A— B all have negative real parts:

tr (A—B) =tr (A+B)_2Seﬁee<0’
det (A" B) = det (A+ B)+2SeBee(1 +Sl'ail')> 0‘

These two inequalities imply that the real parts of the eigenvalues of A—B are
negative. a

Remark 3.2. For cross-inhibitory coupling (either B,; or B;, nonzero), phase death
cannot occur in the manner described here. The effect of increasing B.; is to sharpen
the I-nullcline, so that new intersections with the E-nullcline cannot occur. Increasing
Bi. reduces the size of the height of the E-nullcline, so again these intersections cannot
take place. Furthermore, increasing either of these two weights leads to very complicated
behavior in the full system (3.2). There can be coexistent stable periodic solutions as
well as aperiodic behavior for large values of either of these coupling strengths.
Disinhibitory coupling (B;; nonzero) can result in death of the symmetric oscillation,
but numerical studies indicate that these solutions are unstable as solutions to the full
model system (3.2).

3.2. Membrane models. A typical model for membrane oscillations based on the
Hodgkin-Huxley formalism has the form:
v

(3.4) C;=Zi:gf(w—V)+1
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where V(t) is the membrane potential, C is the membrane capacitance, g; are conduc-
tances that are controlled by auxiliary variables having voltage and time-dependences,
V; are the reversal potentials of the corresponding ion channels, and I is the applied
current. Many models, including the Hodgkin-Huxley model, can be reduced to a pair
of differential equations for the voltage and some ‘“‘recovery” variable (see, e.g., Rinzel
[25] for such a reduction applied to the original Hodgkin-Huxley system). The fact
that we consider planar systems is not important; it simplifies the discussion and makes

the mechanism more transparent. We consider a membrane model proposed by Morris

~

and Lecar [26] that simulates barnacle neuron oscillations. This model has the form:

dv
CE‘—‘ gL(=VL=V)+gcamu(V)(Vea — V) + gxw(— Vi — V)+1I

dw
E=)~(V)(woo( V)—w).

Here g; is the leakage conductance, gk, gc, are the potassium and calcium conduc-
tances, respectively, and V;, Vg, Vi, are the reversal potentials for each of the three
channels. A (V) is a voltage dependent rate and m,(V) and w,( V) are positive sigmoid
gating functions (as in Fig. 3.1). When parameters are chosen as in Fig. 3.3(a), the
system admits a stable periodic oscillation. (These are the parameters that were implied
in [26] and incorrectly given in that paper. We have made (3.5) dimensionless by
introducing the variables V' and ¢ where V— V, V' and t+>(C/gc,)t'; the equations
are then identical to (3.5), but with all voltages scaled by V, and all conductances
scaled by gc,. The current I and the time constant of the recovery variable are also
rescaled. With no loss in generality, we can assume that C, V,, and g¢, are unity.)
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FIG. 3.3. Phase plane for Lecar- Morris system showing nullclines and stable oscillations or equilibrium

points. (a) No coupling. There is a stable oscillation. (b) Excitatory coupling, g.,.(V)=B.mu(V), V. =1,
B.=0.5. There is a stable critical point. (Parameters: V;=-0.01, V,=0.15, V;=0.1, V,=0.145, 1,=0.33,
2.=0.5, gg=2, V,=04, V=07, Vn,=10, I=0.125. These are dimensionless versions of the
values in [26]. Here my(V)=.5(1+tanh ((V—V})/V,)), no(V)=.5(1+tanh ((V—-V3)/V,)), A(V)=
Ao cosh ((V=V3)/ V,).)
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Suppose that we wish to couple two such membrane oscillators. The simplest
coupling is via a gap junction or electrotonic synapse. However, as we noted in § 2,
that type of coupling, which depends on the difference between the membrane poten-
tials, cannot lead to phase death. A number of recent papers have modeled chemical
synapses between two cells by a voltage dependence conductance with or without
delays (see [27]). This results in the following model:

__=f(‘/j, wj)+I+gex(Vk)(Vex— V;')+gin(vk)(_‘/in - ‘/j)

(3.6) =F(V,,w, Vi)+ L.

dw;

=gV, W),

J, k=1,2, j# k. The functions g..(V) and g;,(V) are similar in form to m.(V) and
woo( V), respectively, and V,, (respectively, V;,) can be assumed to equal V, (respec-
tively, V). The first type of synapse depolarizes the membrane while the second type
hyperpolarizes it. Thus, these can be thought of as excitatory and inhibitory synapses.
In this simple model we include no habituation, no delay, nor any synaptic fatigue.
Our point here is to illustrate some of the consequences of these simple models. See
§ 5 for further discussion.

As in § 3.1, we can look for symmetric solutions to (3.6). The resulting equation
is identical to (3.6) with all subscripts removed. Suppose that the coupling is excitatory
so that g;,(V) =0 and let g..(V) = am(V). For @ =0, we have the oscillation depicted
in Fig. 3.3(a). As « increases, the V-nullcline moves upward in such a way as to cross
the w-nullcline, leading to a stable critical point of the symmetric system (see Fig.
3.3(b)). This is a form of oscillator death that is different from that described in § 3.1,
since the notion of phase is not preserved. The invariant torus that exists for weak
coupling collapses as the symmetric oscillation undergoes an inverse Hopf bifurcation
to result in a stable nonoscillatory solution. We can use Proposition 3.1 to show that
this equilibrium is a stable solution to the full-coupled system (3.6). Numerical methods
and averaging can be used to show that, before the symmetric oscillation disappears,
it is a stable solution to the full problem. Similar methods can be used to show that
for inhibitory coupling (g.x(V) =0, gi,(V) = agx(V)) the symmetric solutions are not
stable as solutions to (3.6).

For a different parameter set, the Morris-Lecar system can undergo phase death
in the manner described in § 3.1. Furthermore, the symmetric solutions appear to be
stable solutions to the full system (3.6). (For the interested reader, the parameters are
as in Fig. 3.3(a), but V; =0.1, V,=0.05, V,=0.02, I =0.5, and « ranging between zero
and 1.6, with a saddle-node occurring on the cycle for a =1.34.)

3.3. Other mechanisms for the cessation of rhythmicity. As remarked earlier, the
essential reason for the death of the oscillations in the equations discussed in § 2 is
the lack of uniformity in the angular speed. For the equations in § 3, depending on
the parameters, the rhythmicity could disappear either by that mechanism, or by the
disappearance of the invariant torus containing the limit cycle. In both cases, the
necessary feature of the coupled system is that the coupling does not vanish identically
when the oscillators are in the same phase. In particular, for general identical diffusively
coupled systems, it is clear that the in-phase solution is always oscillatory so that
“symmetric” oscillator death will not occur. The stability of the in-phase solution
depends on the details of the diffusion matrix; if, for example, it is a positive scalar
multiple of the identity, the in-phase solution is stable [28].
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There are other examples of disappearance of rhythmicity that depend on very
different features of the coupled system. For example, Bar-Eli has shown numerically
that certain oscillators modeling chemical reactions, coupled by diffusion, can cease
to oscillate if the frequencies of the two oscillators are sufficiently different [16]. In
[7] it has been shown that, for a large class of equations, this is essentially a linear
effect; if each (uncoupled) oscillator has an unstable equilibrium point, and if the
frequencies are sufficiently different, then there is a range of intermediate coupling
strengths for which the equilibrium point of the coupled system is stabilized by the
coupling. For simple oscillator equations having some special symmetries, this can be
understood in the context of nonlinear equations, and it is seen that, if the frequencies
of the oscillators are sufficiently different, the invariant torus containing the periodic
solution of the coupled system can shrink to zero as the coupling is increased [7].
Beyond another threshold in the coupling strength, a limit cycle reemerges, but without
the invariant torus. If each of the oscillators has its local frequency dependent on the
local amplitude of the trajectory, the bifurcation structure is very complicated [7].

Still another mechanism for the cessation of oscillation is given in [17]. Crowley
and Epstein have simulated a pair of oscillators, each a model of the oscillatory
Belousov-Zhabotinskii reaction, coupled by diffusion. As in the mechanism discussed
in § 2, the oscillators are permitted to be close to identical, and death is characterized
by the existence of a new stable steady state that appears to be on or near the old limit
cycle. In [17], however, the oscillators are near antiphase at the new steady state,
rather than near synchrony, as in this paper. The relaxation nature of the oscillators
is essential for the phenomenon described in [17], but a similar behavior is found for
“sinusoidal” oscillators in [18].

4. Oscillator death in chains of oscillators. The phenomena discussed in § 2 persists
for chains of N =2 oscillators; however, this is considerably less apparent than for
N =2. As in [6], we assume that each oscillator has a stable limit cycle solution and
is coupled only to its nearest neighbors. Without assuming that the coupling is “weak,”
we assume that the coupling is in a range in which there still exists an invariant N-torus,
parameterized by the phases. (The size of the coupling for which this is correct does
not decrease to zero as N - [6].) If the oscillators have the same frequency, the
resulting equations are

de
Ttk=w+h_(0k, 0k—1)+h+(0k5 0k+1)9 k=2,' : '9N_13

4.1) J J

0 0 _
d—tl=w+h+(0,, 6,), TtN=w+h (0N, On-1)-
Here h* and h™ represent the ascending and the descending coupling. The derivation
of (4.1) follows that for the N =2 case in § 2. Without loss of generality, we may
assume that w > 0. We are looking for solutions in which 8} = 0 for all k, i.e., the 6, satisfy

0=w+h_(0ka 0k—1)+h+(0ka 0k+1), k=23' : 'aN_l,
0=w+h+(01, 02), 0=w+h_(0N, GN—I)'

As in § 2, the above hypothesis on the frequencies is far from necessary to encounter
oscillator death, but we will leave the extensions to the interested reader. (For N =2,
the extension to w; # w, is done in Remark 4.4 after the proof.) One point that we
wish to make is that the phenomenon does not scale with N; that is, death does not
occur more easily or less easily in a long chain than in a short one.

The main result of this section is Theorem 4.1.

(4.2)
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THEOREM 4.1. Assume thereare 0., 0_, and 0 such that 0 < 0., h™ (0., 0.)+w =
0 and h*(6., 8c)+h (0c, Oc)+w =0. Assume further that for all 6,  in an interval J
containing 6., 0. we have (9,h*+9,h*)(6, 0)<0, 3,h*(6, ) <0, 9,h*(6, 6)>0 and
h*(0¢, 6c) <0. Then there is a unique stable, time-independent solution to (4.1).

Remark 4.1. To better understand the hypotheses and motivation for Theorem
4.1, it is instructive to consider the isotropic product coupling model, h*(6,, 6,) =
R(6,)P(0,), where P(0) is a symmetric positive peaked function and R(6) is qualita-
tively like —sin (8). Figure 4.1(a) illustrates these two functions and Fig. 4.1(b) shows
the function h*(6, 8). P(0)R(0) is positive for —7 < 8 <0 and negative on the interval
0<@<a. Since h"=h" in this example, 6. satisfies P(6c)R(6c)=—-w/2 and
P(6.)R(6.) =—w. Let J =[0, 6.] where 6., 6.> 0. It is clear from Figs. 4.1(a) and
4.1(b) that the hypotheses are satisfied; m partlcular (3:h* +0,h™) (6, 0) =
P'(6)R(0)+P(0)R'(6)=[P(6)R(0)]'<0, azh*(o )= P(0)R(0)>0 and 8,h*(6, 6)=
P(0)R (9) <0. The hypotheses continue to be satisfied if P(8) and R(6) are perturbed
so as to lose their symmetry properties.

Remark 4.2. As in [2], the discrete system (4.2) behaves as a singularly perturbed
two-point boundary value system. This continuum plays no role, other than heuristic,

P&
-7 T
6
R(@)
POR(O)
-Tv v

W/2 ----
w J—

F1G. 4.1. (a) Pulse function, P(60) and response function R(0) for a simple “product” coupled model.
(b) The product h(6, 6) = P(8)R(0).
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in the proof to be given below. Hence, we derive it only for the case h* =h™ = h, for
which the derivation is most transparent. We rewrite (4.2) as

(4.3) 0=w+2h(0, 0,) +[h(Ok, Ocr1) —2h(0y, i) + h(6y, ok—l)J-

By multiplying and dividing the term in the square brackets by 1/ N, and considering
0.1 as close to 6, we see that (4.3) is formally similar to

(4.4) 0=w+2h(0, 0)+(1/N?)a,h(6, 6)6,,

where 0=x=1 and 6,=6(k/N), so the {6;} fortn a discretization of the function
0(x). The boundary conditions for (4.4) come from the second and third equations
of (4.2):

4.5) 0O=w+h(0,0) atx=0and x=1.

(This is equivalent to 6 =0, at x=0 and x=1.) It can be shown that the solution to
(4.4), (4.5) is essentially constant over most of [0, 1], with boundary layers at both
ends. The constant value satisfies the “‘outer equation” 0=w +2h(6, 6), i.e., 6 = 6.

Remark 4.3. The hypothesis h*(0c, 6c) <0 turns out to be automatic, providing
that |h* — h 7| is not too large; thus this hypothesis is to be interpreted as giving bounds
on the allowable amount of anisotropy. The other hypotheses are necessary for stability.

A proof of Theorem 4.1 can be made by mimicking the proof of the solution to
(4.4), (4.5); such a proof was made for the analogous discrete system in [6]. Because
we are assuming that w, = w, it is possible to construct a simpler proof using ideas
similar to monotone methods for parabolic PDEs. We will define upper and lower
solutions for (4.2), and show that the upper (respectively, lower) solutions decrease
(respectively, increase) to a time-independent solution. The proof is similar to the
proof of stability of the solution in [6].

DEeFINITION 4.1. An upper (respectively, lower) solution to (4.1) is a solution
{6, ()} such that, for all 1=k= N, df,/dt <0 (respectively, >0) at t=0.

LEMMA 4.1. Suppose that 0}, and 0% are two solutions to (4.1) such that 0;,(0) < 03(0).
Then 01(t) = 03(t) for all t>0 for which 0} lie in J.

Proof. From (4.1)

d _ _ _
(4.6) -c-i—twi—ok)=[h+(oi,oi_l)—h (0%, Okr1)]+[R™(0%, 6%_) —h (0%, 05_y)].

Suppose that 0%(7) = 0(r) for some k and some 7; without loss of generality, we may
assume that this is the smallest such 7, and the k is the smallest such integer at that
7. Using the hypothesis that 9,h*>0, we see that the right-hand side of (4.6)>0 at
that k and that . Thus, 6% cannot cross 0} for any value of k or 7. O

COROLLARY 4.1. If 0} (respectively, 0}) is an upper (respectively, lower) solution
to (4.1), then (d/dt)0: =0 for all t (respectively, (d/dt)0,=0 for all t) such that 0}
(respectively, 0%) lie in J.

Proof. Consider an upper solution 0. Since, at t =0, (d/dt)0); <0, we have that
0i(t+6)< 0y(t) for t=0 and all § sufficiently small. By Lemma 4.1, it follows that
0;(t+8)=05(¢) for all t>0, implying that (d/dt)0; =0 for all k=N and all ¢>0.
A similar argument holds for the lower solution. 0

Before giving the proof of the theorem, we need another lemma, which will be
used to show the uniqueness of a solution in the interval J. In this lemma, we treat
(4.2) as a difference equation, and use a shooting method. That is, we rewrite the first
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equation of (4.2) as follows:
h+(0k, Oi+1) — h+(0k: 0i) =h" (6, 0:) — h™(6x, Or_1)

4.7)
—[h*(6x, 6,)+h (6, 6) + @]

If 9,h™ # 0, then given 6, (4.7) can be used to define a sequence of values 6,, 65, - - -
Note that for k=1, the term involving 6,_, is missing, so 6, is defined using only 6;;
for higher k, it is necessary to know 6, and 6,_, to obtain 6;.,. We shall restrict
ourselves to trajectories { 6;} that lie in J, and hence 9,h" > 0.

LEmMA 4.2. Let {6,} be defined from 6, using (4.7). Then db,..,/d6,> d6,/d0,> 1,
for all k such that the trajectory stays in the region in which the hypotheses of Theorem
4.1 hold. Similarly, if {6} is defined from 6y using (4.7), then d6,/d6y > d6,..,/dOn > 1.

Proof. For k=1, (4.7)is 0=w +h*(6,, 6,). Differentiating this with respect to 6,,
we get 9,h* +0,h™ - (d6,/d,) =0. By hypothesis, |3,h*|>|9,h|; hence, using the fact
that 9,h" <0 and 9,h™* > 0, we have that d6,/do, > 1.

Now assume by induction that d6;/d6,>d6;_,/de,, j=2,- - -, k. Differentiating
(4.2) with index k with respect to 6,, we obtain

de do, _
0=3,h"(6k, Ox_y) - ( ok)+a2h 6k, Or—y) - ( . )

de,
de de
+0,h" (B, Orcr) - ( 0k>+32h (PN ( df;).
Again, since |9,h*|>|3,h™|, we can conclude that
de, d()k_l] [dek d0k+1]
4. 0<9,h (6, 6 +9,h* (0, 6 .
(4.8) (O, Or— 1)[d01 a6, d1h™ (Ok, Orc+1) 49, do,

By induction, d6,/d8,> d6,_,/d6,. Thus, (4.7) implies that db,.,/d6,> db,/d6,, and
we are done. 0

Proof of Theorem 4.1. We first show that 6. < 6.. From the definition of 6., we
have that h*(60., 8.) <0. From the definition of 6., we have that

(4.9) ®+h*(6c, 0c)=—h"(bc, 0c).

Since h™(6c, 6c) is <0, the left-hand side of (4.9) is >0; this, plus the definition of
6, implies that h*(6c, 0c)>h"(6,,6.,). Since 9,h* +0,h* <0, that implies 6. <4,
A similar argument shows that 6. <6_.

We may now construct upper and lower solutions to (4.1). These are easy to
construct, since we may use constant functions (independent of k). Let 6p=
max {6., 6_} and let 8} = 05+ ¢ for £ small enough so that 65+ ¢ lies in J. As shown
above, h*(8g, 05) <0. If £ =0, (4.1) implies that (0%)'(0) <0 for k#1, N and =0 for
k=1, N. For ¢ small but positive, the hypothesis 9,h*+9,h™ <0 then implies that
(6Y%)' <0 for all k. Thus, 8} is an upper solution. Let 6}, = 6. —&. For ¢ =0, (61)(0)=0
fork=2,---,N—1.Fork=1, (6))=w+h*(6c, 6c). Since - < 0., (6})'(0)>0, and
similarly for (6'%)'(0). As above, for & not too large 0} is a lower solution. By Lemma
4.1 and Corollary 4.1, 9}:> 6} for all k, t, so both upper and lower solutions lie in J
for all ¢

From the existence of an upper and lower solution we can construct an approximate
time-independent solution to (4.1). To construct an actual time-independent solution,
we need a further transversality condition which also shows the solution is locally
unique; this condition is that the Jacobian M of (4.2) is invertible. The jth row of M
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is tridiagonal, with nonzero elements 8,h (6}, 6;—1), 8:h*(6;, 0;+1)+3,h™(6;, 6;_,),
3,h*(6;, 6,4,). B

We use the Gerschgorin theorem, which states if A is an eigenvalue of M = my;,
then for each i, [\ —m;| =} |my|. By the hypotheses, 9,h™ <—3,h* <0. Hence, the
Gerschgorin theorem implies that each eigenvalue A of M is strictly contained in the
left half complex plane. Thus, A =0 can never be an eigenvalue and so M is invertible
at each point in the interval of J of the theorem. This proves local uniqueness and
completes the proof. 0

Remark 4.4. Although the above proof is motivated by large N (since the proof
is modeled on ideas from continuum equations) it is valid for any N>1, and in
particular for N =2. Thus it provides an alternative proof, but one that is much less
transparent than that in § 2. This proof has the advantage that it works for h* # h~;
furthermore, as we now show, for N =2 the proof generalizes to different frequencies
W # 0,.

The structure of the proof is the same as above, so we merely sketch the differences.
We define 03,, 05,, and 6. by

(4.10) ,+h(0p1, 05,) =0, wy+ hy(0ps, 05,) =0,

+
(4.11) O TP

+ hl(GCa Oc) + hz(ec, 0c) =0.
Instead of assuming that h;(6c, 6c) <0, we make the assumption that
(4.12) hi(6c, oc)+“"'%“’f<o, i j=1,2, i#]

This inequality should be interpreted as providing restrictions on the anisotropy and
the frequency differences; (4.12) is automatically satisfied if h, = h, and @, = w,. From
(4.11) and (4.12), we can conclude that w;+ h;(6¢c, 6c)>0 and hence, as before,
0c < 0p;, i =1,2. The constructions of the lower and upper solutions are as before.

5. Discussion. (A) The oscillator death of this paper occurs for differential
equations using models of synapses that are much simplified. In particular, the model
synapses do not exhibit fatigue. Thus, if a pair of oscillators modeling bursting neurons
go into tonic firing when they are coupled, the system may still be capable of oscillation
if fatigue and recovery of the synapses are introduced. However, the mechanism of
this network oscillation is quite different from that of the original oscillations; it is
still correct to say that the coupling turned off the original oscillators. Since this kind
of mathematical description of a synapse is common in the modeling literature, it is
important to understand the behavior of such models. For example, when the oscillator
death occurs by the creation of a saddle-node on the limit cycle, as in the phase models
and some of the full models, the frequency first almost slows down to zero. Hence,
we see that excitatory coupling can lead to a slower oscillation.

In addition to fatigue, another possible problem with the present model is that it
does not take synaptic delay into effect. That is, if two identical neural oscillators are
coupled synaptically, it is likely that there will be a delay between the firing of one
and the effect on the other. There are many sources for such delays, including axon
conductance time, transmitter release, etc. It is a priori conceivable that the delay
could destabilize the in-phase phase-death solution and thus prevent phase death. We
have numerically studied the Morris-Lecar model and cannot find any destabilization.
Indeed, we can prove an analogue of Proposition 2.2 for a pair of phase models with
a delay.
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ProrosiTION 5.1. Consider the two oscillator model:

(5.1) %=w+h(02(t—7), 0,(1)), i;t—2=w+h(61(t—fr), 0,(1)).
Assume that there is an equilibrium solution (¢, ¢) and that it is asymptotically stable
when 7=0. Then if 7> 0, it is also asymptotically stable.

Proof. Letb=0,h(¢, ¢)and a=0d,h(p, ¢), where the subscripts denote derivatives
with respect to the first or second argument. In absence of delays, the eigenvalues of
the linear problem are b + a. The assumption of asymptotic stability implies that both
are negative; hence, b<<0, b<za as in Proposition 2.2. The linearized equations
for (5.1) about the equilibrium solution have the form

(5.2) yi=bytay(t—=1),  yi=by+ay(1—1).
The eigenvalue equation for this is
(5.3) (A=b—ae™*)A—b+ae™*")=0.

We must show that the roots of the transcendental equations A +b +ae " =0 are all

in the left half complex plane. If we multiply A —b+ae ' by 7e*” and let z= A7,
p = br, and g = *ar, the equation becomes pe®+ q—ze® =0. By a theorem in [31], the
roots of this equation are in the left half plane if and only if

(i) p<1, (i) p<—q<vVp*+p’

where 0< B < and B =p tan (B). The first condition follows since p = br <0. The
second follows from the fact that [br|> |a7|. o

(B) As remarked in § 3.3, the essential feature of the coupling h(6,, 6;) needed
to obtain oscillator death is that h does not vanish identically if 6, = 6,. Thus, the
coupling Gy (uy, 4;) of (2.3) may not be mathematically equivalent to diffusion, i.e.,
given by D(u; —u), where D is a positive definite matrix. In a previous paper, we
have defined and used a related notion of ““synaptic coupling” that is also inequivalent
to diffusion.The coupling function h,(6y, 6;) is said to be “synaptic” if on the average
h does not vanish if 6, = 6;, i.e.,

2w
J‘ h.(6, 6) do #0.
0

We can now see that synaptic coupling is not necessary to obtain oscillator death.
Indeed, the example in Remark 2.6 has coupling that vanishes on the average, but not
identically, if 6, = 0,, and there is oscillator death. However, standard models of neural
coupling are also synaptic.

Appendix. In this Appendix, we derive an explicit approximation to h(6y, 6;) in
terms of the coupling and the limit cycles; this formula has greater accuracy the greater
the strength of attraction of the limit cycle. We then apply this formula to the
Lecar-Morris equations and Wilson-Cowan equations.

Consider the pair of coupled oscillators (2.3). We assume as before that du,/dt =
F,.(u,) has an asymptotically stable limit cycle solution that we will call U,(t/wy),
where w, is the frequency of the limit cycle and U, (6) is 2wr-periodic in its argument.
Let u, = Ty (6, i), y € R"™, be coordinate transformations chosen so that

(A1) w (1) = Ue(6(1)) + Mi (0, (1)) yi (1) + O(|y])
where M, (6) is an nx (n—1) matrix and
(AZ) Mk(o)TMk(o)':l(n—l)x(n—l), UL(G)TMk(O)-_*le(n—l)-
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We use ' to denote derivatives with respect to 6. The Jacobian of the transformation is
T (0, yio) = (U'(6) + M (6i) yie, Mic(6x)) + O(lyil).

For y, =0, J; is an orthogonal matrix, so its inverse is easily compute(i. Furthermore,
if B is small, to lowest order in B the inverse of (A+ B) is (I — A™'B)A™'. Hence, if
Vi is small, the inverse of J, is

(I =T My, 0D T o+ O(|yil?)

(A3) _[ A=(UD ™™ y/ p) (U pc
—(M) ™My (U™ pic+ (M)

:] +O0(y)

where we have used

(Ad) Ja= [('(J](‘}k)/f"], pu=|UP.

Next, we note that
F(Uc+ Myy,) = F(Uy) + DM,y + O(|yi]?)

(A5) , 2
= Ui+ DM,y + O(|yi|”)

where Dy is the Jacobian of F; evaluated at U,. U}, D, and M, are all periodic in
0 and independent of y, to lowest order. Finally, we observe that by differentiating
(A2) with respect to 0 and using the fact that U} = D, U, we see that

(A6) —(Ul) ™M= (Ul) " (D) ™M,

Additionally, if we differentiate the first equation in (A2) we find that
_(Mk)TM;c =(M})"™M,.

Substituting (A3), (AS5), (A6) into (2.3) gives us the equations in (6, y):

_, dé _
wi' 7 =140 (UDTI(De+ (D)) My + G,
(A7) J
-1 4y
wi' == (M) DM, + (M) M)y + (M) Gy

(Note that w;' arises from differentiation of Uy (6,/w,) with respect to time.) We will
use (A7) as the basis for the rest of the calculations in this Appendix.

In the limit of “infinite attraction” to the limit cycle, y, -0, and (A7) becomes

(2.5) with
(A8) hi(0k, 6;) = wipi (6:)(U%) (6:) G (Ui (6y), U;(6,)).

The significance of (A8a) is that it allows us to compute an approximate phase model,
which is more accurate the greater the strength of the attraction of the limit cycle.
As discussed in § 2, under some important circumstances involving coupling
through only one variable, equations (1.2) have product coupling of the form (2.5).
To use (A8) on the Wilson-Cowan equations, we need to recast the latter in “voltage”
variables so that the coupling is additive. The membrane potential of the excitatory
(respectively, inhibitory) cells is U = a,.E — a;.I (respectively, V = a E — a;I). As long
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as this change of variables is nonsingular, then we can rewrite (3.2) in terms of the

new variables (U, V)):

—dglt{j: _L/}_‘_aees([j}— e)_aies(‘/j_ Vi)+BeeS( Uk_ye)—ﬁies(vk— Vi)a
(A9) v

_d_tj == VJ + a,:S( U} —v.) — a;S( V, - Vi)+BeiS( Uc—v.) _BiiS(Vk - v;),

J, k=1, 2, k#j. (Note that, since a; =0, the transformation is never singular if an
oscillation exists, since a,a; #0.)

We are now in a position to use (A8). There are four combinations of phase
models possible corresponding to the four types of coupling. Table Al summarizes
them, and in Figs. Al(a) and A1(b), we sketch two pulse functions and two response
functions. If the interactions are composite, to obtain the function A multiply by the
appropriate synaptic weight (e.g., —B;. or B..) and add all synaptic interactions.

We now give the pulse function P(6) and the response function R(6) for the
Lecar-Morris model (whose Floquet exponent is very small) with excitatory or inhibi-
tory coupling. Let (V,(t), wo(t)) be the stable limit cycle for (3.5), and let 7 be its
period. Let P,(6) (respectively, P;(0)) and R.(0) (respectively, R;(6)) denote the pulse
and response functions for excitatory (respectively, inhibitory) coupling. Then from

(3.7) and (A8)
R.(6) = @ V(6)(Vex — Vo(0))/ p(0)

(AIO) Pe(0)=gex(V0(0))5
TABLE Al
This gives the formula for the pulse and response
Sfunctions for the Wilson-Cowan equations for the
parameters in Fig. 3.2. Here, (Uy(t), Vy(t)) is the
stable limit cycle and p(0) = UZ(0)+ ViZ(0).
Pulse Response
EE Us(6)/p(0) S(Uy(0)—v.)
El Vo(6)/p(6) S(Uy(0)—7.)
IE Uo(6)/p(6) S(Vo(8) =)
11 Vo(8)/p(0) S(Vo(0) =)
. . ’I \\\
sV 0 ,l NI 4
~=~q ]
. {8
1
\~-\\ I,

F1G. A1(a) Pulse (solid) and response (dotted) functions for excitatory-excitatory coupling of the Wilson-
Cowan equations, parameters as in Fig. 3.2. (b) The same as (a) for inhibitory-inhibitory coupling.
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where p(0) = V5(0)+ wi’(0). Similarly,
(A11) P(6)=gwn(Vs(8)), Ri(8)=wVi(0)(—Vi,— Vo(6))/p(8).

If the nonlinear conductances g., and g;, are monotone, then Re=05(respecti.vely,
R; =0) at the point at which P, (respectively, P;) is maximal. In Figs. A2(a) and A2(b)
we sketch these two curves for a typical set of parameters (corresponding to the values
in Fig. 3.3). The response functions, especially R,, are qualitatively sinusoidal; a good
approximation is —a[sin (6 + £) —sin (£)].

Fi1G. A2(a) Pulse (solid) and response (dotted) functions for excitatory coupling of the Lecar- Morris
equations, parameters as in (3.3). (b) Same as (a) for inhibitory coupling; V,,=V,, g, (V)= we(V).
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