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STABLE PERIODIC SOLUTIONS TO
DISCRETE AND CONTINUUM ARRAYS OF
WEAKLY COUPLED NONLINEAR OSCILLATORS*

G. BARD ERMENTROUTT

This paper is dedicated to the memory of Charles Amick.

Abstract. The existence and stability of periodic solutions to spatially distributed arrays of
neural oscillators is analyzed. Conditions are found that guarantee that phase-locked patterns are
orbitally stable. These conditions allow the solutions to be extended as some parameter varies. For
continuum arrays with some differentiability conditions, it is shown that locking is lost when certain
phase gradients become unbounded. Numerical methods are used to show that the results apply to
realistic synaptically coupled oscillating neural networks. In particular, it is shown that synchronized
solutions cannot generally be expected even if the neurons are identical.
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1. Introduction. Coupled oscillators arise in many areas of biology, particularly
in neural modelling. Oscillatory activity is seen in most cortical tissue; for example, as
epileptic activity in the hippocampus [TM] and as coherent high-frequency oscillations
in the cat’s visual cortex during cognitive tasks [GS]. Spatial patterns of oscillator
activity control the motor patterns of many species, such as the swimming central
pattern generator of the lamprey [CHR]. All of these oscillatory patterns are generated
by neurons that communicate via synapses that can be chemical or electrical. There
have been numerous recent efforts aimed at modelling the behavior of these systems
of coupled oscillators. These models can be quite abstract [SGK] or based on detailed
anatomy [TM].

Very general equations involving large numbers of coupled nonlinear oscillators
present an intractable problem for mathematical analysis. However, if the interactions
between the separate oscillating units are “weak,” then we can apply the method of
averaging to reduce the model to a system of phase equations [EK1], [EK3]. “Weak”
coupling, while sufficient, is not necessary for averaging to be a valid approach (see
[EK3]). In the phase equation approach, each oscillator is represented by a single
variable lying on S1. The interactions between two connected oscillators depend only
on the difference between the two phases of the oscillators. The dependence on the
difference is a consequence of the averaging and is not dependent on the particular
form of the coupling. This property is fundamental in obtaining any kind of analytic
insight into the properties of the coupled system. The most general form the equations
take is

do; .
(1.1) —Jt—ZHj(01~9j,...,9N—0j), ]Zl,...,N,
where Hj is a periodic function of each of its N arguments. A phase-locked solution
to (1.1) is one for which df;/dt = Q, where € is a constant, called the ensemble
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frequency. In neural network applications of this theory, H; has a more specific and
simple form,

N
(1.2) Hj(61~8;,...,0n —0;) =w; + Y Hx(0k — 6;).
k=1

Here H;x(¢) is a periodic function. The parameter w; represents inhomogeneities
in the network from external inputs or local differences between cells. The coupling
functions Hjj vanish if there is no synapse from neuron k to neuron j.

Equations (1.1), (1.2) are discrete, but, for large numbers of oscillators, it is often
desirable to proceed to some continuum limit. The obvious continuum limit for densely
connected networks of the form (1.1), (1.2) is

1
(19 % =@+ [ H@ w000 - 6,0 dy

This paper is devoted to finding conditions that guarantee the existence of phase-
locked solutions to (1.1), (1.2) and the continuum analogue (1.3). A solution to (1.1),
(1.2), or (1.3) is phase-locked if there exists a solution of the form 6;(t) = Qt + 6; for
(1.1), (1.2) and of the form 6(z,t) = Qt + 6(z) for (1.3). Q is a constant, and the
barred variables are independent of time. We use a continuation argument from a
known phase-locked solution based on the implicit function theorem. The conditions
that enable continuation of a branch of solutions via the implicit function theorem
also allow us to prove asymptotic stability. Our principal requirement for continu-
ation and stability is that the derivative of H with respect to its third argument is
positive for all interactions in the continuum model. For the discrete case, we only
require nonnegativity and some connectedness requirements of an associated graph.
Under conditions in which we cannot show that the implicit function theorem holds,
we use a result of Rabinowitz to prove the existence of a global branch of solutions to
(1.3). This theorem allows us to characterize the behavior as phase locking is lost.

Many mathematical papers have addressed the question of phase locking in arrays
of coupled nonlinear oscillators, but none to the present degree of generality. Most
of the results concern either local coupling (nearest neighbor) [EK1], [KE], [CHR] or
“all-to-all” coupling [E1], [Ku], [SM]. There have been a few results on “multiple”
(beyond nearest neighbor) coupling, but these have been restricted to either discrete
models with restricted coupling [KEZ] or models in a very simple geometry such as
the circle [E2]. The following describes some of these prior results. Our methods and
results can be applied to most of these situations. Additionally, where our methods
apply, they also imply the stability of the locked solutions. What is lost is the precise
quantitative description of solutions that comes with decreased generality.

Kiemel [Ki] has studied locking in the case of multiple coupling for systems in
which w; = w, a constant, and

(1.4) : Hjx(¢) = ajkh(¢ +2m(j — k)/N),

where h(¢) is a fixed periodic function with ~(0) = 0 and h/(0) > 0. He calls this
form of coupling “tuning” since one set of solutions to (1.1)-(1.3) is the travelling
wave 0; = w + 27j/N. Thus the system is tuned to have a travelling wave solution.
Kiemel uses the implicit function theorem for some examples of (1.4) to show how the
travelling wave is altered by perturbations away from perfect tuning. One of his most
striking results is the sensitivity of nearest neighbor coupling (ajx = 0 for k # j +1).
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In [KEZ], the following example of (1.1), (1.2) is considered:

do; -
(1.5) Etl =wj+ > ckH(0;4k — 05),

k=—m

for all j such that 1 < j = m < N. For the remaining values of j, terms such that
j+k ¢ [1,N] are deleted from the sum. It is shown that, for m fized and N — oo,
phase-locked solutions to (1.5) satisfy

(1.6) Q= x(z) + f(6:) + O(1/N),

where 0 < z < 1, ©(j/N) = 0;, and x(j/N) = wj. The function f(¢) is given by

m

@)=Y cuH(kg).

k=—m

The solutions to (1.6) are proved to be good approximations to those of (1.5) as long as
j isnot near 1 or N. The key point to note is that, in proceeding to the continuum limit,
the number of neighbors to which an oscillator is connected remain fixed at m. Thus
the limiting model is equivalent to nearest neighbor coupling, since interactions remain
infinitesimally localized (m/N — 0 as N — oo.) However, suppose that the number
of connections between oscillators scales as N, that is, m = oN, where 0 < o < 1.
Suppose that, in addition, ¢ = C(k/N) for some continuous function C(z). Then, in
the limit as N — oo, (1.6) tends to the continuum equation

o

(L.7) Q=x(@)+ [ Cluz+y)H(0(z+y)—0(z))dy,

-0

where p(z) =1 if 0 < 2 < 1 and is zero otherwise. More generally, suppose that the
coupling functions Hjy, in (1.2) tend to a function, H(z,y,$) as N — oo. Then, (1.1),
(1.2) tend to the continuum limit (1.3). A more direct derivation of (1.3), (1.7) from
continuum models of neural networks is provided in the Appendix.

There are few results on continuum phase equations. In [E1] we consider the
“all-to-all” case

99 !
18) 5 = w@+ [ sin0.0)~ 8(z,0) +€) du
0
Special properties of the sine function along with the symmetry of “all-to-all” coupling
enable us to obtain closed-form phase-locked solutions. Some continuum rings are
analyzed in [E2]. Amick [Am] studied a problem with distance dependent coupling,

(1.9) 0= /0 exp(—|z — y|) sin(8(y, t) — 8(z,t) + £) dy.

He showed that there is a branch of phase-locked solutions, (6(z),,£) containing
(0,0,0) for all £ in some interval around £ = 0. Furthermore, as the endpoints of
this interval are approached, |0’(z)| — oo as z — 0%. His techniques make special
use of the properties of the sine functions and the fact that the exponential kernel
exp(—|z — y|) allows him to convert (1.9) to a differential equation. Phase locking in
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a continuous space reaction-diffusion equation is considered in [ET] for a special form
of kinetics.

Section 2 contains the bulk of the mathematical results for the continuum equa-
tions; we prove the existence and stability of phase-locked solutions to (1.3). We allow
there to be a parameter in these equations and show how phase locking can be lost for
(1.3) as the parameter passes a critical value. The ideas are reminiscent of maximum
principle arguments. We apply a theorem of Rabinowitz in situations where we are
unable to use the implicit function theorem.

The existence and stability of solutions to the discrete problems (1.1), (1.2) are
contained in §3, where some extensions of the results in §2 are proved. In particular,
we weaken the connectivity requirements of the oscillators and obtain asymptotic
stability of the locked solutions.

Section 4 consists of several numerical experiments showing the forms of solutions
to a simple problem of the form derived in the Introduction and in the Appendix.
We also numerically demonstrate the theory in §3 that shows how locking is lost.
Comparisons are made to unaveraged neural networks that show that the averaging
assumptions do not drastically alter the qualitative behavior of the phases.

We directly derive continuum equations from continuum neural networks using
formal perturbation theory in the Appendix.

2. Existence theory for continuum models. In this section, we prove the
main result on continuum models for coupled nonlinear oscillators. OQur approach is
to use a homotopy argument to move off a solvable example of (1.3). We initially
use the implicit function theorem, which gives both uniqueness and, as a by-product,
some stability results. Once we can no longer use the implicit function theorem,
we transform the problem to one for which a global bifurcation result of Rabinowitz
applies. This allows us to see how phase-locked solutions can break down.

Since we are interested in phase-locked solutions, we consider

(2.1) Q=w(z,N) +/0 H(\ z,y,0(y) — 0(z)) dy.

Thus we seek phase-locked solutions to (1.3) that are dependent on a parameter A\. We
assume that when A = 0 there is a solution and we wish to continue this solution by
a homotopy off the “trivial” problem. We can consider ) to be a parameter defining,
e.g., connectivity, frequency differences, or the shape of the coupling function.

As an example, we continue off the “all-to-all” case

(2.2a) Q= dw(z) + /0 (I =X+ Xk(z,y))H(6(y) — 0(z)) dy.

When A\ = 0, a particular solution is
0(z) =C, Q = H(0),

where C is any.constant. Thus a possible solution is the synchronous one (no phase
differences) when all oscillators are coupled to all others and there are no inhomo-
geneities in the medium. The constant solution is not the only solution; there can be
many others (e.g., wavelike solutions of the form 6(z) = 2nkz for k an integer).

As another example, consider system (1.9) solved by Amick [Am]

(2.2b) Q= /0 e~1z=¥lsin(0(y) — 0(z) + \) dy.
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When A =0, 6(z) = C, Q = 0 solves (2.2b).
The continuous analogue of tuning provides yet another solvable problem,

(2.20) Q=w() )+ /0 k(z, 1) H(O(y) — 6(z) + 2n(z — y)(1 — \)) dy,

where H(0) = 0 and w(0,z) = wo. When X\ = 0, the “trivial” solution is 0(z) = 27z
and Q = wo.

Our final example, below, is another perturbation of “all-to-all” coupling that we
discuss in detail in §4:

(2.2d) Q=w\z)+ /0 H(\(z —y),0(y) — 0(z)) dy.

Clearly, when A = 0, (2.2d) has a solution 6(z) = C and Q = H(0,0).

Our main task is to find easily computable conditions that guarantee that the
implicit function theorem is applicable so that the given branch of solutions can be
extended.

The first theorem of this section follows.

THEOREM 2.1. Let 6p(z) denote the solution when A\ = 0. Suppose that H is
a continuous function of x and y, continuously differentiable with respect to 6 and
. Suppose that w(\, ) is continuous and differentiable with respect to . Define a
functional G(u, \) by

G(6,\) = inf Ho(\,,,60(2) — Bo(»))

Suppose that G(0,0) > 0. Then there is an interval (0, \) for which there is a locally
unique branch of solutions to (2.1), (Ox(z), Q). Furthermore, if X is the supremum
of ), then

liin iilf G, <0.

If G(6,)) > 0, then 0(x) is asymptotically stable.

To prove Theorem 2.1, we recast (2.1) as a map on a Banach space. We can
dispense with the parameter Q by noting that if (2.1) is to hold for all z it must hold
for £ = 0; thus we replace Q2 by

wumy+A.Hupwﬁ@y—mmyw

Any equation for the phases that depends only on the difference of phases has an
infinite family of solutions obtained by adding a C to each 6(z). This corresponds to
the time translation invariance of solutions to an autonomous differential equation.
Thus we can redefine the variables 6(z) by subtracting 6(0), and so we assume that
6(0) = 0. Consider the space B = {f(z) € C°[0,1], 6(0) = 0} and define the map F'
on B as follows:

F(\0(z)) =A(w(), ) — w(),0))

2.3 1
(23) + /0 H(\2,9,0(5) — 0(z)) — H(),0,5,0(y)) dy.
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It is clear that F' maps B into itself and that, if we can solve F'(\,6(x)) = 0, we have
solved (2.1). By definition, F(0,80(x)) = 0.

The proof of Theorem 2.1 uses the implicit function theorem to contlnue the
branch. To apply this, we must show that the Frechet derivative of F'; DF()\o, 6o(z)),
is injective and surjective on B. We first need a technical lemma.

LEMMA 2.1. Suppose that a(z,y) > 0 for all (z,y) € [0,1] and that

1

(2.4) (£O) () E/O a(z,y)(6(y) - B(w))dy—/o a(0,y)0(y)dy = 0.

If 6(0) = 0, then 6(z) = 0.

Proof. Let ¢ = fol a(0, y)0(y) dy where 0(z) is a solution to £ = 0. We first prove
that ¢ = 0. Let z* be a value of z, where 0(z) takes a maximum value 6*. From (2.4),
we find that

1 1
c =/0 a(z*,y)6(y) dy — 6* /0 a(z*,y) dy
1 1
<@+ / a(z*,y)dy — 0* / a(z*,y)dy =0
0 0

since a(z,y) > 0. The same argument can be applied to the value z., where 6(z) takes
a minimum value 6. to show that ¢ > 0. Thus ¢ = 0. Note that this proof depends
only on the nonnegativity of a(z,y), and strict positivity is not necessary.

Since any solution must have ¢ = 0, then we must have that

/0 a(z,4)(6(y) - 8(z)) dy = .

Again letting z* be a value at which 0(z) takes a maximum, we see that

/0 a(z*,y)(6(y) — 6%) dy = O,

but 6(y) — 6* < 0 and a(z*,y) > 0, so that the integral can vanish if and only if
6(y) — 6* = 0. Since 6(0) = 0, however, this implies that 6* = 0 = 6(z), and we are
done.
The next lemma uses the implicit function theorem to obtain local existence and
uniqueness around a value of the parameter Ao for which a solution is known.
LEMMA 2.2. Suppose that there is a solution, F'(Ao,60(z)) = 0 and that

Hg(Xo,z,y,00(y) — 6o(z)) >0 for all z,y.

Then there is an open interval of values of A containing Ao for which there is a unique
solution to F(A,0(z)) nearby to 6o(z).
Proof. The Frechet derivative of F at Ao, 6o(z) is

1

(Lob)() = /o ao(z, ) (0() — 8(z)) dy — /0 a0(0,1)0(y) dy,

where
a()(-’va y) = Ho(AO,iL’, Y, Oo(y) - 00(‘,1"))



STABLE SOLUTIONS TO COUPLED OSCILLATOR ARRAYS 1671

The implicit function theorem can be used if we show that this operator is injective
and surjective. It suffices to do the same for I — K, where

(K6)(z) = ( / " a0(a,) dy)_l / a0z, ) — a0(0,9)}(v) dy.

K is compact, so it suffices to show that the only solution to 8(z) = (K0)(z) is
6(x) = 0. However, this is assured by Lemma 2.1.

Remark. To show the operator is surjective, it is necessary to rewrite it as a
compact perturbation of the identity. Thus we have transformed it from the form of
Lemma 2.1.

To study the discrete spectrum of the linearized equation, we will show that all
eigenvalues v must lie in the plane Rv < 0.

LEMMA 2.3. Let v be such that

(2.5) vu(z) = / a(z, y)(u(y) - u(z)) dy,

where a(z,y) > 0. Then Rv < 0, and, if Rv =0, then v = 0. Furthermore, v =0 is a
simple eigenvalue corresponding to the constant solution u(z) = C.
Proof. We can rewrite the eigenvalue equation as

1 1
o+ [ el aue = [ a@uut) dy
Taking absolute values, we obtain the following inequality:

1 1
v+ /0 a(z,y) dy| |u(z)| < u* /O la(z, v)| dy,

where u*is the maximum value of |u(z)|. Setting = = z*, the value at which u takes
its maximum, we obtain

1 1
V+/O a(w*,y)dy‘S/o |la(z*,y)| dy.

Because a(z,y) > 0, this inequality implies that v < 0. Now, letting v(z) = u(z) —
u(0), the eigenvalue problem becomes

1

vu(z) = / alz,9) (v(y) — v(z)) dy - / a(0,3)v(y) dy,

with v(0) = 0. The eigenvalues are the same as those of (2.5) except that zero is
no longer an eigenvalue from Lemma 2.1. Thus the zero eigenvalue is simple and
corresponds to the constant phase-shift solution u(z) = C.

The continuous spectrum is generally more difficult to find, but, for the present
problem, we can prove the following lemma.

LEMMA 2.4. Consider the linear operator

Lu = —b(z)u +/0 K(z,y)u(y)dy.
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Suppose that b(z) > 0 and K(z,y) is continuous and bounded. Then, if v is in the
continuous spectrum, Rv < 0.

Proof. The continuous spectrum is the set of values of v for which (L— u)u =Lyu
is not invertible. Suppose that v is not an eigenvalue, so that L,, is one-to-one. Suppose
that v is chosen so that b(z) 4+ v # 0 for all z € [0, 1]. Then, we can divide by b(z) + v
and obtain a new operator

LUEU_U.H, / K(z,y)u(y)dy.

Since v is not an eigenvalue of this operator, L is one-to-one. Since it is a compact
perturbation of the identity and is injective, it is also surjective. Now suppose that
Rv > 0 and v is in the continuous spectrum and is not an eigenvalue. Since it is in the
continuous spectrum, L, is not invertible, which implies that L is also not invertible.
However, this implies that either v + b(z) = 0 for some z or v is an eigenvalue. Since
v is not an eigenvalue, we must conclude that v + b(z) = 0 for some value of z. Since
Rv > 0 and b(z) > 0, we obtain the required contradiction.

Proof of Theorem 2.1. Lemma 2.2 allows us to continue the the branch of solutions
as long as Hyp(\, z,y,0(y) — 6(z)) > 0. Suppose that we can continue the solution up
to, but no further than, A = X and suppose that

inf H'(6(y) - (<)) > 0

Then, from Lemma 2.2, we can continue beyond )\ which contradicts our assertion
that A is the endpoint. Thus as A — X we must have the phase difference between
the two oscillators approach a point such that the derivative of H with respect to
is nonpositive. The discrete spectral results follow from Lemma 2.3. The continuous
spectral results follow from Lemma 2.4 after identifying b(z) with fol ao(z, y)dy, which
is, by hypothesis, positive. By Theorems 11.20 and 11.22 in Smoller [Sm], the fact
that the spectrum lies in the left half plane implies that the solution is asymptotically
stable.

Remark. There is nothing in the proof of the theorem or the lemmas that requires
us to restrict our attention to one-dimensional domains. Any bounded connected
region in R™ is permissible. The crucial part of the theory is the invertibility of the
Frechet derivative at a solution. Thus we obtain the following trivial extension of
Theorem 2.1.

THEOREM 2.3. Let D be a bounded simply connected region in R™. Suppose that
H(\ z,y,0(y)—0(z)) is a continuous scalar function on RxDxDxB and differentiable
with respect to 6 and A. Suppose that w(\, ) is continuous in  and X\ and differentiable
with respect to \. Define G(u,\) by

G(e’ A) = Lng Ho(Aa Y, 00(13) - oo(y))
Suppose that G(0,0) > 0 Then there is an interval (0,)) for which there is a locally
unique branch of phase-locked solutions to (1.3), (0x(z), ). Furthermore,

liminf G(6, }) < 0
A—A

If G(6,)) > 0, then the solution 0(z) is asymptotically stable.
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Remark. In the Appendix, we show that local diffusion adds terms to (2.1) that
have the form (A.12). The presence of these terms does not affect the results of Lemma
2.1 if @ > 0. Thus it may be that we can also continue the more general equations
described by the addition of (A.12). The stability results present a problem unless
B = 0, which is a very nongeneric case. A

Suppose that we wish to continue beyond A\. We cannot necessarily continue the
solution by the implicit function theorem since we cannot prove invertibility (although
it may in fact occur). However, with some additional restrictions, we can apply a
more general result for which the spectral results and local uniqueness may possibly
be violated. Our proof of Theorem 2.1 requires that G > 0, but numerical results
indicate that this is not a necessary condition. Indeed, in some of the examples in §4,
we construct phase-locked solutions for which G < 0. This possibility motivates our
next result, where we require differentiability of H with respect to z.

We use a global continuation theorem of Rabinowitz. Let £ = R x B, where
B is a Banach space. Let £# = R+t x B, where u = {+,—}. A continuum C is a
closed connected set in a subset of £. We say a continuum C meets infinity if C is not
bounded.

THEOREM (Rabinowitz [Ra, Thm. 2.2). Let T : £ — B be a continuous compact
operator and suppose that T(0,u) =0 for all u € B. Let S denote the solution set to

u=T(\u).
Then S contains a pair of continua I+, I— lying in Et, E—, respectively, and meeting
(0,0) and oco.

To apply this to our problem, differentiate the map F'(), 8) defined by (2.3) with
respect to x and rearrange to obtain

(/01 Hp(\, z,9,0(y) — 0(x)) dy) 0.(z) = /01 Ho(\z,y,0(y) — 6(z)) dy

(2.6)

+ wz(\ ).
Define
27) n(\z) = /0 Ho(\2,9,0() — 6(z)) dy.

As long as > 0,we can divide and integrate once with respect to x to obtain

(2.8) 6(z) = ’ [ws(A\,8) + | Hs(X,8,9,0(y) — 0(s)) dy] /n(X, 8) ds = T(), 6()).
0 0

T(),6(z)) is a continuous, compact operator as long as n(A,z) > 0. We need one
additional assumption, namely,

(2.9) " T(0,6) =0 forall § € B.

Examples (2.2a) and (2.2d) satisfy (2.9). Rabinowitz’s theorem implies that a global
branch of solutions exists for A positive and negative. Either the trivial branch can
be continued for all X or 6(A, z) becomes unbounded in some way.

To see what might happen to this branch, return to (2.6). For \ sufficiently small,
n(\, z) > 0, since the integrand is strictly positive. However, as A increases, there may
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come a point for which Hy goes through zero and becomes negative. As A\ continues
to increase, the phases split farther and farther apart until, for some value of x, say
Z, there is a value of ), say )\, such that

lim n(}, z) — 0.
r—T

If the right-hand side of (2.6) does not vanish, then the derivative of 6(z) must become
unbounded as z — & at A = A. Thus we have the following extension of Theorem 2.1.

THEOREM 2.3. Suppose that H(\, z,y, ¢) and w(\, ) are continuously differen-
tiable with respect to ¢ and ¢. Suppose that wz(0,z) =0 and H;(0,z,y,$) = 0. Then
a solution branch ezists for all A in a possibly infinite interval, [0, Amax) as long as

(A, z) > 0. If Amax < 00 and

1
/ Hw()\ma,x, T, Y, e(y) - 0('7:)) dy + wm()‘maxy .’II) = R(07 T, >‘)
0

has a fixed sign for all x, then there is a value of T, say Tmax such that

lim |0z(Amax,z)| — oo.
T—Tmax

Remark. The class of problems for which we can guarantee that R is of fixed sign
include the all-to-all coupling case with a strictly monotone variation in frequency.
Amick shows that 6;(), z) tends to co as x — 0 at a critical value of A for problem
(2.2b). We have no proof that these solutions are stable, although the numerical
results in the next section seem to show that stability exists for all values of A\ for
which existence holds.

3. Existence and asymptotic stability for discrete models. In this section,
we prove the existence and stability of locked solutions to equations of the form (1.1),
(1.2). The methods parallel those of §2, but, due to the discrete nature of the problem,
we cannot use the Rabinowitz theorem. However, we can broaden the hypotheses for
which the implicit function theorem holds and also obtain asymptotic stability.
Consider the following discrete analogue of (2.1):

N
(3.1) Q=w\j)+ > HN\GkO—0), j=1,...,N.
k=1

Suppose that for A = Mg we have a solution to (3.1), 0?. Define a;x by
(32) Qi = H9()‘07j7k702 _0_(7))

The analogue of Theorem 2.1 holds for the discrete equations (3.1) as long as ajx > 0.
However, this is much too strong an assumption; it is violated, for example, by a chain
of nearest neighbor oscillators. Thus we would like to let ajx = 0 for some pairs j, k.
This arises in cases for which two oscillators are not directly connected but rather are
coupled indirectly through other units.

We will generalize Lemma 2.1 to extend to this case, and the analogue of Theorem
2.1 will be proved. Rather than requiring direct connections between oscillators, we
allow oscillators to connect to only a few other ones. We must first make precise the
meaning of indirect interactions. Since the proof of the crucial lemma depends on the



STABLE SOLUTIONS TO COUPLED OSCILLATOR ARRAYS 1675

positivity of all connections impinging on an oscillator, we generalize this concept.
Suppose that oscillator 7 influences oscillator j, which in turn influences oscillator k.
Then we say that oscillator i indirectly influences k. This says that a;ja;x # 0. More
generally, we define the notion of indirect influence as follows.

DEFINITION. Oscillator k indirectly influences oscillator j if there exists a finite
sequence i1, ..., i, such that a;,xai,i, - - - aji, # 0.

This definition has a nice graph theoretic interpretation. Assign each oscillator
a node and directed connections between the nodes j and k if oscillator j receives a
connection from k. The direction of the connection is from j to k. If it is possible
to get from any one node to every other node (i.e., each oscillator is indirectly influ-
enced by every other oscillator), then we say that the network is completely indirectly
connected.

The main result of this section is the following theorem.

THEOREM 3.1. Suppose that (3.1) has a solution 0? for A = 0 and suppose that
ajr = Ho(\ j, k, 09 — 0;-)) > 0. Suppose that the matriz a;i is completely indirectly
connected. Then, there is a unique branch of solutions containing 9? for all X € (0, 5\)
If ajx, > 0, then this solution is orbitally asymptotically stable.

Remark. We have relaxed the strict positivity assumptions of Theorem 2.1 and
also obtained asymptotic stability. Otherwise, the theorem is identical to its contin-
uum analogue.

The proof of this theorem parallels that of the continuum case, but, for complete-
ness and ease of reading, we will independently present most of the proof. As in §2,
the crucial result is a lemma proving the linearized equations are invertible. Thus we
must prove the following lemma.

LEMMA 3.1. Consider the following linear equation:

N N
(3.3) 0= Zajk(ek —-0;) — Zalkok,
k=1 k=1

with 61 = 0. Suppose that the aji, > 0 and suppose that the graph of (ajx) is completely
indirectly connected. Then the only solution is O, = 0 for all k.
Proof. As in Lemma 3.1, we first prove that

N
Sl = Zalka =0.
k=1

The proof is completely analogous. Let j* denote the value of j for which 6; is
maximal. Then, (3.3) implies that

N
S1=Y a0k —0;+) <0
k:l

since a;~, > 0. Letting j. denote the value of j for which 6; is minimal implies that
S1 > 0. Thus S; = 0.
We must now prove that

N
(3.4) 0= ax(6k — 65)

k=1
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and
0,=0

imply that 6, = 0. Let j* Le an index corresponding to a maximum of the solution
(01,...,0n), say 0+ = u*. If aj=, > 0 for all k, we are done, since this implies that
all of the 8 must be equal, otherwise the sum in (3.4) would be positive. For at least
one value of k, we must have aj«; > 0, otherwise the node j* would be disconnected
from the rest of the network. For each k that satisfies aj«x > 0, we must have ), = 6*,
otherwise the sum in (3.4) would be positive. Let | be some arbitrary index and let
i1,...,%n be a sequence of indices such that a;,1ai,i, - - - @j+;, > 0. Then 0;, = 6*, since
0;,, is directly connected to 6;~. Continuing in this manner, we have 6;,_, = 6;, = u*,
and so on. Thus §; = 6*. However, 6; = 0 by definition, so this implies that all 5 = 0.

LEMMA 3.2. Consider the following eigenvalue equation:

N
(35) v; =Y ajk(6k — 05)-

k=1

Suppose that ajr > 0 and that the matriz (ajx) is completely indirectly connected.
Then Rv < 0 and if Rv = 0, then v = 0. Furthermore, v = 0 is a simple eigenvalue
corresponding to the constant solution 6, = C

Proof. Let y1 = 61 and y; = 6; — 01. Then (3.5) becomes

N
(3.6a) vy = Zalkyk
k=2
and
N
(3.6b) vy; = —any; + D agk(yk — vj),
k=2
for 5 = 2,...,N. Thus the eigenvalues are the simple zero from (3.6a) and the

eigenvalues of the (N — 1) x (N — 1) matrix defined by (3.6b). An application of the
Gersgorin circle theorem to (3.6b) shows that the eigenvalues are contained in the
union of the disks defined by

N N
(3.7) v+ Y ap| <Y lagkl
k=1 k=2
for j =1,...,N. Since aj; > 0, we can remove the absolute value signs in the right-

hand sum. All of these lie in the left half plane and intersect at » = 0. Thus there is
a possible zero eigenvalue. However, writing (3.6b) as

N
vyi = Y ak(yr — ¥5)
k=1

and setting y; = 0, we see from Lemma 3.1 that this implies all y; = 0. Thus the only
zero eigenvalue is the simple one corresponding to 0 = C.
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Proof of Theorem 3.1. As we did in §2, we rewrite (3.1) as

N

(38)  0=w(\j)—w\1)+ Y H(A\Gk,60k—6;) — HQ\ 1,k, 0 — 61)
k=1
for j = 1,...,N. We seek solutions in the finite-dimensional subspace defined by

setting 61 = 0. The linearization of (3.8) is precisely the equation in Lemma 3.1. The
assumptions on the connectivity and nonnegativity of the coefficients a;; guarantee
that the linearized equations have no nontrivial solutions, so that the implicit function
theorem implies that there is a unique branch of solutions in some open interval
containing A = 0. In particular, there is a X > 0 such that there is a unique branch of
solutions for A € (0, ). The asymptotic stability follows from Lemma 3.2.

Typically, if ajx = 0, then it vanishes identically for all phase-shifts and values
of the parameter A, since this means that there is no physical connection between
the two oscillators. If ajj is positive and then tends to zero as the A changes, loss of
stability or existence of solutions can follow. For the case of nearest neighbor coupling
in a one-dimensional chain, if a; j+1 vanishes for some index j, then locking is lost.

4. Numerical and analytic examples.

4.1. Discrete systems. Consider a chain of length N + 1 of the following form:

db;
—2 =Aj + h1(6j+1 — 65) + ha(6-1 — 65)

4.1) dt
+ h2(0j+2 — 6;) + ha2(8;—2 — 6;),

where the appropriate terms are deleted at j = 0,1, N — 1, N, and h;(¢) = ¢;jsinjg.
If c; > 0 or c2 > 0, then, when A = 0 the synchronous solution, 6; = 0 is a stable
solution. As A increases, the phases spread out until a critical value of A is reached
and locking is lost. When c2 = 0, we can explicitly calculate the value of the phaselags
between nearest neighbors (see [EK1]), as follows:

(4.2) sin(8;41 — 0;) = Mj(N +1— 5)/2.

It is clear that locking is lost when the right-hand side exceeds 1 for some value of j.
The stability results in §3 imply that solutions to (4.2) for which cos(6;4+1 —6;) > 0
are stable. At the critical value of A = N(N + 1)/8, the local phase-difference of the
center oscillators (j = j*) is /2, which implies that a;» j»4+1 = ¢1 cos(0j+4+1—0;+) = 0.
The two halves of the chain are disconnected, so that the matrix from §3, a;k, is no
longer indirectly connected. For any A greater than the critical value, no phase-locked
solutions exist. Stable phase-locked solutions exist up to that value of A and cease to
exist for larger values. Thus, for nearest neighbor coupling, our existence theory is as
strong as possible.

For nonnearest neighbor coupling, c > 0. We must solve (4.1) numerically in
this case. We find that, as A increases, locking is lost when linearized system obtains
a zero eigenvalue. This occurs for a value of A exceeding that for which one of the
ajx becomes negative. In particular, when N = 10,c; = ¢z = 1, and A =~ .1835, the
linearized system has a zero eigenvalue. However, the phaseshift between the fourth
and the sixth oscillators exceeds /2, and so ass = ass < 0. In other words, our
method and theorems do not allow us to continue beyond the point where some value
of aji becomes negative, but, in fact, the solutions do exist beyond this point. (For
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the present problem, the value of A for which ass vanishes is A & .18, so that we have
not missed a large interval of \.) '

Another discrete chain problem that has recently been analyzed in detail (Ermen-
trout and Kopell [EK4]) has the form

db;
(4.3) 7;— = sin(0j+1 - 0_7') + sin(0j_1 - 0]'), i=14L....2m, j#m,m+1.

For j = m, a term of the form —Asin(f2m — 6,,) is added, and, for j = m + 1,
—Asin(f1 — Om+1) is added. This represents a chain of nearest neighbor coupled
oscillators with connections bewteen the ends and the middle. Consider the existence
of the trivial solution §; = 0. For A\ = 0, ajx > 0, so that the results of §3 imply
that there is a small interval [0, \) for which this is a locally unique solution. When
A =0, it also a stable solution. However, for any A > 0, the terms @m+1,1 and Gm,2m
are both negative, so that neither stability nor local uniqueness is guaranteed. For
(4.3) it is easy to show that a bifurcation occurs at A = O(1/m), and a new small
amplitude branch arises from the synchronized solution. Since our present results are
independent of the length of the chain, it is clear that, for arbitrarily small A > 0, we
can find a chain length N = 2m such that the synchronized state is unstable and such
that there are other small phase-locked solutions nearby. Our stability results are as
good as possible given their generality.

The reader should note that the results in §3 imply only local uniqueness and
stability; global uniqueness and stability of phase-locked solutions is very difficult
to prove. For example, consider a ring of oscillators coupled with nearest neighbor
coupling

Q:w+h(0j+1—0j)+h(0j—1-'0]’), 3=0,...,N -1,

where A’(0) > 0 and j % 1 is taken modulo N. The synchronized state §; = 0, Q =
2h(0) 4+ w is stable and locally unique. However, if N is large enough, the solution
0 =2mj/N, Q = w+ h(2r/N) + h(—27/N) is also stable.

We have recently (Ermentrout and Paulett [EP]) proved the existence of nonzero
phase-locked solutions to the two-dimensional array of diffusively coupled oscillators

G;k =w+ ZSln(onm — Ujk + ¢) - Sin(¢)7

n,m

when ¢ = 0,n = j £1, and m = k £ 1. Our proof also shows that the lags between
neighbors are always less than /2. Thus Theorem 3.1 enables us to conclude that these
are asymptotically stable solutions and that there is a branch of solutions containing

é=0.

4.2. Continuum chains. We will show some examples of the behavior of con-
tinuous chains of oscillators as existence is lost. The first problem we consider is
exactly solvable, so that we can compare the results to those of the theorems in §2.
Consider the following;:

(4.4) %g = dw(z) +/0 sin(f(y, t) — 0(z,t)) dy.

We suppose that the mean value of w(z) is zero. Then, it is easy to show that

(4.5) sin(0(z)) = dw(z)/I = u(z),
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where
= /0 cos(0(z)) dz = /0 V1= Ow(@)/1)? da.

This latter equation is just an implicitly defined nonlinear scalar equation for the
quantity I. Note that I plays the role of (), z) defined by (3.7). Let Z be the value
of z at which |w(z)| is maximal. Since I < 1, this means that there is a value of
A such that |u(Z)| = 1. Since 6'(z) = 1/4/(1 — u(z)?2), we see immediately that the
derivative of @ becomes unbounded as z — Z at the critical value of A. If we numerically
solve (4.4) for A beyond criticality, then phase-locked solutions are not found; rather,
the medium splits into regimes that drift apart in phase and have different average
frequencies. The reader should note that the continuum model (4.4) is not like the
large N limit of discrete oscillators with random frequencies analyzed by Kuramoto
and others [Ku], [E1], [SM]. Here, we implicitly assume a one-dimensional geometry
along which the frequency varies in a continuous manner.

Next, we show that it is impossible to obtain phase locking in a unidirectional
all-to-all synaptically coupled system

(4.6) %t‘f _ /0 " R0y, 1) — 8(z, 1)) d.

Here, F is any continuously differentiable periodic function, with F(0) # 0. This model
is like the “all-to-all” case, but oscillators receive inputs only from those below them.
Phase-locked solutions must satisfy

7) a- | “F(0(y) - 6()) dy.

Setting £ = 0 shows that Q = 0. Differentiate (4.7) with respect to z, to obtain

0=F(0)+ /0 " F(0(y) - 0(=)) dy.

Finally, set = 0, which implies that F(0) = 0, a contradiction. This is not surprising,
for the points that are close to = 1 receive inputs from many more oscillators than
do those near £ = 0. Since synaptic inputs effectively raise or lower the local frequency,
the oscillators have drastically different levels of excitation.

A perturbation from the “all-to-all” provides another example where the phase
gradient tends to infinity as the homotopy parameter increases. Consider the following
model:

00

1
(4.8) == /0 exp(—Alz — y|) sin(8(y, £) — 6(z, £) + ¢) dy.

When A = 0, this system has all-to-all coupling, and, as long as |¢| < 7/2, the
synchronized solution 8(z,t) = sin(¢)t is asymptotically stable. Amick [Am] considers
the existence of solutions for this problem when A = 1 and ¢ is allowed to vary. Here,
we are interested in the behavior as A increases away from zero. For small A\, we can
use the implicit function theorem to obtain the following perturbed solution:

6(z,t) = —A(tsin(¢)/3 + tan(¢)(z2 — z)).
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theta (x)

theta (x)

Fic. 1. The numerical solution to (4.8) for ¢ = .5 and various values of A\. The steady
solution was found by integrating a discretized version of the evolution equation until a steady state
was reached.

h vs x
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0.000

Fi1G. 2. The function n(\, x) for various values of A corresponding to the parameters used in Fig. 1.

Although this is only an approximate solution, it has many of the properties seen in
the numerically computed solution (see Fig. 1). The derivative of § is maximal at
z = 0,1. This derivative increases with ¢ and X increasing. Indeed, as ¢ — /2, the
solution is not defined as could be guessed, since the implicit function theorem no
longer can be applied. In Fig. 1, we show the behavior of the solution to (4.8) on a
numerical grid of 200 points for ¢ = .5 and various values of A. Clearly, the phases are
parabolic, and, as X increases, the derivative at z = 0,1 becomes increasingly sharp.
In Fig. 2, we show the behavior of n(), z)

n(\z) = /0 exp(=Alz — y[) cos(8(y, £) — 6(z, 1) + 6) dy.

Recall that, to apply the Rabinowitz theorem, we require that n(\,z) > 0 for all
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z. It is clear from Fig. 2 that 7 is decreasing in magnitude as X increases. We find
that, for A > 60, no locked solutions exist and the oscillators behave independently,
slowly drifting apart in phase. We also note that, for A = 40, the lag between the
middle oscillators and the end oscillators is much greater than 7/2 — ¢, which is
the value of the turning point of the periodic function sin(z + ¢). Thus we have
obtained solutions well beyond where we could use the implicit function theorem.
As X increases, the coupling strength between oscillators decreases. Although there
are no intrinsic inhomogeneities in the medium (i.e., the frequency w(z) = 0), the
boundary effects play an important role. Oscillators at the ends receive inputs from
half as many oscillators as are received by the middle oscillators. The result of an
input is to increases the effective local frequency, since ¢ > 0. Thus, even though
this effect becomes increasingly weaker as A increases, it is sufficient to overcome the
weakened coupling, and so locking is lost. If ¢ = 0, then the synchronous solution is
always a stable solution for any value of A > 0. The loss of locking is a consequence
of coupling that does not vanish when the oscillators are in identical states (called
synaptic coupling) and the intrinsic inhomogeneity due to boundary effects.

4.3. Morris—-Lecar model. The results we described in this paper relate to the
behavior of systems of “phase” equations that arise from the weak coupling of “real”
models. In particular, the behavior of the phase-lags varies in space in a “parabolic”
fashion and depends on the space constant of the coupling. We consider the numerical
solution to the Morris-Lecar equations (described in reduced form in [RE]), which
represent a typical membrane model, below:

O ~hpen(@) + gxu(Vic ~ V(@) + 91(Ve ~ V(z)

+ [90ameo(V(2)) + /0 (2, 4)moo (V () dy] (Vea — V (),

ou _

5 = (eo(V(2) —w(2)))/7(V(2)),

where ¢(z,y) = aexp(—Alz — y|) and Ipert = Io + yz. The functions me(V), neo (V),
and 7(V) are given in the legend of Fig. 3. We will study the phase-locked solutions
of this model as a function of A, the space constant for coupling, and +, the current
gradient. To make the comparison to our above numerical results, we define the phase
in the following manner. We consider the time ¢(z) at which the voltage V(z,t) crosses
a fixed value V. This time is subtracted from t(0), divided by a period, and multiplied
by 27 to obtain a relative phase of firing. Thus tg(z) = 27 (¢t(z)—¢(0))/T. If tg(z) > ,
then 27 is subtracted, indicating that the cell at = precedes that at 0. In Fig. 3, we
depict the relative firing times for three values of A. Note that the cells closest to
the edge fire the slowest, as they receive the smallest amount of excitatory synaptic
input, which has the effect (in this particular case) of increasing the frequency. In
other parameter regimes, excitatory input slows the oscillators, and we would expect
the parabolas to be inverted. For example, the model in Fig. 1 has the property that
excitatory input slows it, and so the parabola is concave down. In Fig. 4, the space
constant A is fixed, and there is a gradient in the current. Higher currents result in
faster oscillation, so that the oscillators near z = 1 lead those near = = 0.

It is not surprising that the firing times and phases are similar for a = .25, for
then averaging may be valid. Indeed, o = .25 means that the total synaptic volley
is only a quarter of the local conductance strength gc, = 1.0. The next numerical
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Firing times relative to x=0

0.00

-0.15

-0.30

Fi1G. 3. The relative firing times in the Morris-Lecar model on the interval (0,1). moo (V) =
.5(1 4+ tanh((V — V1)/V2)), noo (V) = .5(1 + tanh((V — V2)/V3)), and 1/7(V) = ¢cosh((V — V3)/V4).
For the figure, the spatial grid is 50 points and an ezplicit Euler method is used to solve the dynamic

equations. Parameters are a = .25,Ip = .2,y = 0,9cqa = 1,95 = 2,91 = 5, Vg = —.7,Vga =
1,V = —.5,¢ = .25,v; = —.01,v2 = .15,v3 = 0.0,v4 = .08. The values for A are shown with each
curve.

Firing times with parameter gradient
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Fi1G. 4. Relative firing times with a linear gradient of inhomogeneities. All parameters are the
same as in Fig. 3, with A = 1.0. The current gradient is linear with mazima and minima given
in parentheses. For larger parameter gradients, locking is lost and phase-drift or frequency plateaus
occur.

experiment shows that, as a increases, the behavior is very similar to the case in
which averaging might apply. In Fig. 5, we show the firing times for three different
coupling strengths. When a = 1, the conductance is of the same order of magnitude
as the local conductance gc,. The increase in coupling strength appears to lead the
cells toward greater synchrony, and the relative firing times are compressed. If the
coupling strength is increased too much, then it is possible to completely destroy any
oscillations, and the phenomenon of phase-death occurs [EK2)].
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Relative firing times

0.00

-0.15

-0.30

F1G. 5 Relative firing times as a function of coupling strength, o for fized current, In = .2 and
space constant X\ = 10. Values of o appear next to each curve. All other parameters as in Fig. 3.

Appendix. Direct derivation of the model equations. In this appendix,
we will consider two types of neural networks: one is based on synaptic coupling of
ionic models, and the other is based on coupling Wilson-Cowan-type two-layer neural
networks.

A. Tonic models. Let (V, &) denote the membrane potential V' and the vector
of recovery variables @ for a membrane oscillator. For example, in the Hodgkin—Huxley
equations, w is three-dimensional and consists of m,n, and h. We assume that each
“cell” in our network is identical to all other cells up to perturbations of size €, where
€ is a small parameter related to the strength of coupling between oscillators. In the
absence of coupling, the neural oscillators obey the following differential equations:

(Al) C% + Iionic(‘/a 117) = IO,
daw o
(A2) P m(V, ).

Here, Lionic(V,w) is the nonlinear function that contains all of the gating and ionic
currents for the membrane, C is the membrane capacitance, and Iy is a constant
biasing current applied so that (A1), (A2) spontaneously oscillate. For models of this
type, external synaptic and input currents are added to the biasing current to couple
the neurons. The [th component of the vector function & is generally dependent only
on the membrane potential and the component itself; typically, we have

% = (Wieo (V) — wy) /T(V).

We will assume that (A1), (A2) have as a solution an orbitally stable periodic solution
(A3) (Vo(t +T), do(t + T')) = (Vo(t), wo(t))

with period T. Before continuing with the formal analysis, we need some additional
definitions and notation. Let L£(t) denote the linear operator obtained from (Al),
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(A2) by linearizing about the solution (A3). This is a differential operator with a one-
dimensional nullspace spanned by the derivative (V{(t),wh(t)). The adjoint operator
L*(t) (obtained by transposing and changing the sign of the Jacobian matrix of (Al),
(A2)) also has a one-dimensional nullspace spanned by (V*(t),w*(t)) This adjoint
eigenfunction can be be normalized so that

1 T
(A4) 7| oV +a- o o) -1

We now suppose that the membrane oscillators are distributed in a one-dimensional
layer in a spatial domain denoted by ¥. Let  parametrize the spatial position of each
point. Without loss of generality, we can assume that ¥ is the interval [0,1]. Thus
(A1), (A2) will become integral equations once the summed inputs from all other cells
are added. We add a space-dependent term I[V,z] to (A1), which is itself composed
of the sum of two components

(A5) IV, 2] = €(Isyn[V (), V(y), 7] + Ipert (V (), W(z), T)).

Here, Ipery depends only on the local environment, Isyn depends on the local potential
as well as interactions from all other cells in the layer, and € is a small parameter. The
effect of Ipert is to induce local differences in the intrinsic frequency of the membrane
oscillations, while the role of Isyn is to coupled these oscillators together. We need not
be specific about the definition of Isyn, but we will derive the forthcoming equations
with a specific form in mind, namely,

(A6) Lya[V(2),V (y), 2] = /O c(@,9)9(V(y)) (Veyn — V(@) dy.

Here ¢(z, y) is the strength of coupling from a cell at y to that at z, Vsyn is the reversal
potential of the synapse, and g(V) is a nonlinear positive monotone conductance
function that depends on the presynaptic membrane potential. We suppose € be small
and perform a formal perturbation analysis on (A1), (A2), (A5), and (A6). To lowest
order in ¢, the solution to (A1), (A2), (A5), and (A6) is

(A7) (V(:L‘, t)a 'li;(:l), t)) = (Vb(t + 0(1:7 T))a ’lB()(t + 0(:1), 7-)))’

where 6(z,7) is a phase-shift that depends on z and the slow time 7 = €t. The next
term in the perturbation has the following form:

(A8) L(t)z(t) = f(?),

where z(t) is the deviation from the periodic solution and f(t) contains all of the
coupling and inhomogeneities. Since L£(t) has a one-dimensional nullspace in the
space of T-periodic functions, (A8) will not have a T-periodic solution unless f(t) is
orthogonal to the nullspace of the adjoint L*(t). Formal application of this solvability
requirement yields an equation for the phases 6(z, 7). They must satisfy

(A9) 5 = w(@)+ [ @ n)h(o ) 0z, n)dy,

where

T
(A10) w(z) = %/0 V*(t) Ipert (Vo (t), Wo(t), =) dt
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and

(A1) Wo) =7 [ VO~ Vo®)a(Volt + 8) .

Note that the coupling coefficients ¢(z,y) remain unchanged by this perturbation
because the interactions between the individual cells only involve the membrane po-
tentials. If there are other interactions that are spatially distributed, (A9) is more
complicated.

Remark on local interactions. In membrane models such as (A1), (A2), (A5), and
(A6), there are often local environmental effects as well as gap junctional coupling be-
tween cells (see, for example, Rinzel, Sherman, and Stokes [RSS]). In discrete models,
gap junctions are modeled by the addition of discrete diffusion terms to the synaptic
currents. For continuum models in a homogeneous medium, local interactions appear
as continuous diffusion. Thus a term such as

must be added to (A5). Here, D is the strength of the gap junctions. The natural
boundary conditions are Neumann. For equations of the form (A1), (A2), without
long-distance interactions, Neu [Ne] has shown that we can formally derive phase
models. The terms due to the continuous diffusion are added to (A9) and have the
form

(A12) a020/0x2 + 3(06/0x)2,
where
(A13) a=r /O Ry
and

1 (T
(A14) B = T./o V*(@)V"(t) dt.

The boundary conditions are
(A15) 06/0zx|z=0,1 = 0.

The sign of « is crucial and can sometimes be negative [RSS]. For stability of the syn-
chronized solution with no long-distance coupling and no local frequency differences,
a > 0 is required. A discussion of the consequences of a < 0 appears in [Ku].

B. Wilson—Cowan models. Consider a two-layer neural network model with
weak excitatory connections and a small imposed spatial pattern on the population
of excitatory cells. (This is not unreasonable if we assume that the inhibition is due
solely to interneurons, for then the inhibition will be strictly local and no ascending
inputs impinge on the cells.) The simplest equations (see, e.g., [EC]) are

OE(z,t)
5 = E(z,t)

(B1) + S (aeeE(m, t) — aiel(z,t) + ¢ (/0 c(z,y)E(y,t) dy + §(x))) ,
OI(z,t) _

ot — I(.’I:, t) +S; (aeiE(:c, t) — aiif(:l,‘, t))
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Here, E(z,t) and I(z,t) are the activities of the excitatory and inhibitory layers, S,
and S; are saturating nonlinearities, and the a’s are the local synaptic weights and
are nonnegative. As before, € is a small parameter, c¢(z,y) are connection strengths
between excitatory cells in different spatial locations, and £(z) is a spatial pattern of
inputs. We again assume that when e is zero, (B1) has a stable T-periodic solution
(Eo(t), Io(t)) and that the analogous linearized problem has a normalized periodic
adjoint solution (E*(t),I*(t)). Applying the formal perturbation analysis to (A16),
we obtain (A9) with the following definitions for w(z) and h(¢):

(B2) wfe) = (7 [ BW)SHacBolt)  awlo(t) dt ) €(o)
and

1 T
(83) ho) = 7 [ VA OVan — VoDa(Vole + 8) .

Remark. There are no biophysically meaningful analogues of the local diffusional
coupling for the Wilson—Cowan model.
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