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INHIBITION-PRODUCED PATTERNING
IN CHAINS OF COUPLED NONLINEAR OSCILLATORS*

G. B. ERMENTROUT" anp N. KOPELL?

Abstract. This paper describes the behavior of chains of oscillators in which there is both local
coupling and coupling between points on the chain that are roughly a distance of a half-chain apart. The
local coupling is designed to produce synchrony, while the long-distance coupling is an abstraction of
inhibitory coupling: alone it would produce antiphase behavior between the oscillators directly coupled.
The investigation is motivated by data concerning traveling waves of electrical activity in the nervous system
of animals that swim in an undulatory manner and also by observations concerning the motor behavior of
more general vertebrates in early development. The aim of the work is to show that this connectmty can
give rise to waves with wavelength equal to the length of the chain, as observed in swimming animals, as
well as the more complicated patterns seen in early development. The latter include “S-waves,” in which
the two halves of the chain are each in synchrony but are oscillating in antiphase with one another. It is
shown that there are families of stable solutions, including traveling waves with several wavelengths within
the chain, and “antiwaves” with a leading or lagging oscillator near the center of the chain. Several
qualitatively different solutions can be stable for the same parameter values. Changing the connectivity of
the long-range coupling can alter the repertoire of possible behaviors.

Key words. nonlinear oscillator, pattern formation, inhibition, central pattern generator, development

AMS subject classifications. 92C15, 92C20

1. Introduction. This paper was inspired by questions arising from central pat-
tern generators (CPGs), which are networks of neurons that govern rhythmic motor
output. One such CPG that has been intensively studied is the network that produces
and regulates undulatory locomotion in fish-like animals, notably the lamprey [1]-[3].
The isolated spinal cord of a lamprey, which contains the CPG, is capable of
spontaneously self-organizing into spatio-temporal patterns of electrical activity that
are essentially the same as in an intact, behaving animal [4]. These patterns are
roughly constant-speed traveling waves. The waves retain their wavelength under
change of swimming speed, a wavelength that is approximately the body length of the
animal. Furthermore, there is a consensus that the CPG may be described as a linear
array of oscillators [5], [6]. In previous papers [7], [8] it was shown that such
constant-speed traveling waves are possible, even generic, for a linear array of limit
cycle oscillators coupled locally by nearest-neighbor or multiple-neighbor connections.
(See [71-[9] for the technical hypotheses, including the validity of the use of the
averaging method.) This work suggested mechanisms for the regulation of wavelength
with changing swimming speed, but did not suggest any reason why the wavelength is
related to body length. Indeed, for nearest-neighbor or other types of local coupling,
there is no intrinsic wavelength; the coupling specifies the phase lag between succes-
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sive oscillators in the chain, rather than the lag between the two ends, which grows
with the length of the chain.

The main purpose of the paper is to explore possibilities for the origin of the
experimentally observed wavelength. Although many observations on the behavior of
the lamprey cord have been explained using only local coupling [1], [10], [11], it is
known that there are direct connections between cells at a distance apart that is a
significant fraction of the total length of the cord [12], [13]. In this paper, we continue
to consider the network as a chain of limit cycle oscillators; we now consider the
effects of adding to the local coupling between oscillators long-range connections that
extend to or slightly beyond half the length of the chain. As in previous papers [5], [7],
[8], [14], [15], we work with phase oscillators whose interactions are via the differences
of the phases. (See [16] for a discussion of when more general oscillators and
interactions can be so described without loss of generality.)

The long-range connections that we use have different properties than the local
connections. The local connections are chosen so that, in the absence of the
long-range connections, the oscillators in the chain are in synchrony. By contrast,
the long-range coupling is chosen so that there is a stable phase difference of 7 for
the oscillators directly coupled. As discussed in [17], models of neural oscillators
coupled using models of fast (relative to the period of the oscillator) inhibitory
synapses have such stable antiphase solutions. In this sense, the long-range coupling
provides an abstract version of inhibition. The choice of local coupling that is
synchronizing comes from the second main biological motivation, involving early
development in vertebrates, to be discussed below.

We wish to show how the presence of such long-range inhibition can induce
patterning in a chain of oscillators whose local connections alone would induce
synchrony. The ideas are related to notions of lateral inhibition, which is believed to
be important in many patterned phenomena (e.g., animal coat makings, hallucination
patterns, occular dominance stripes [18]). Those patterns have been the subject of
intense mathematical effort (see references in [18] and [19]). In that body of work,
pioneered by Turing [20], the equations describing the local dynamics have a stable
critical point, and the inhibition acts to destabilize the spatially homogeneous solu-
tion. This work does not give direct information about the behavior of oscillators in
the presence of long-range inhibition. An early investigation into the effects of
long-range coupling in a chain of oscillators was done by Kiemel [14], who found
unexpected patterns when long-range coupling in one direction was added to local
coupling that is not symmetric in the two directions. In [21] Ermentrout described the
effects of long-range coupling on the stability of the synchronized state in a ring of
oscillators. Such a circular geometry lacks edge effects that produce patterning in a
linear geometry [7].

The choice of connectivity for the long-range coupling was influenced by observa-
tions about early development in vertebrates [22]. In many observed vertebrate
species, there is a sequence of behavioral changes that happens in the very early
stages of development, during which the gross morphology of the animal is tadpole-like
[22], [23]. An early set of motions involves bending of the head, without regular
motion of the rest of the body. This is followed by a stage of movements known as
“C-coils,” in which the muscles along one side of the body contract simultaneously,
creating a C-shaped flexion. These C-coils can be rhythmic, with the flexion occurring
alternately to the two sides. In a somewhat later stage of development, in animals that
ultimately locomote in an undulatory manner, the C-coils are replaced by traveling
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waves of flexion that are reminiscent of the traveling waves associated with adult
locomotion. In animals such as salamanders, we see instead an alternating gate of
limbs in which the movements of the spine appear to be what is known as an
“S-wave”’: The front section of the body exhibits simultaneous contractions, producing
a flexion to one side, while the back section of the body contracts in unison to
produce a flexion to the other side; thus the front and back halves produce rhythmic
movements in antiphase with each other. The shape produced in the animal is that of
an S, with a node between the two halves. Between the rhythmic C-coils and the more
advanced behavior, there is sometimes observed motion that has been described as
S-waves and traveling waves, with waves superimposed on a pattern that seems to
have a node [23].

In this paper, we show how long-range connections between oscillators at the
ends of the chain and oscillators near the middle of the chain can produce patterns
similar to those observed in early development and can produce stable traveling waves
with the observed wavelength. We also show that several qualitatively different
solutions may be stable for the same parameter values and that changing some details
of the connectivity can change the possible repertoire of qualitative behavior. In
addition, we show that, in some circumstances, patterns that exist stably for short
chains cannot exist stably for much longer ones and we give numerical evidence to
show that chains with multiple neighbor local connections behave like chains contain-
ing many fewer oscillators.

The equations we investigate have the general form

N
1.1 0 =w+ ) h(6,—6).
k=1
By local coupling, we mean k =j + 1. This coupling satisfies 4, ,(0) = 0 and 4 (0) > 0.
As we show in §2, with this coupling alone and ®; =w, the synchronous solution
6; = 6, exists and is stable (see also [5]). The long-range coupling functions #,; satisfy
hy(m) =0, K () > 0; in the absence of other coupling, it would produce a stable
antiphase solution between the jth and kth oscillators.

We are interested in the existence and stability of solutions that are qualitatively
like those described above, i.e., traveling waves and S-waves. In addition, we introduce
a type of solution we call “antiwaves” (corresponding to a pair of approximate
traveling waves going toward or away from the center of the chain). Even with simple
choices for the functions 4,; and sparse connectivity for the long-range connections,
we have not found it possible to obtain complete results. We present here analyses of
the behavior in various asymptotic limits. In particular, for each of several cases with
fixed connectivity among the oscillators, we vary the strengths of the long-range
interactions (i.e., the amplitudes of the functions 4, ;, k#j+ 1). The long-range
interactions are divided into “inward,” from the edges of the chain to oscillators near
the middle of the chain, and “outward,” in which oscillators near the middle affect the
ones at the ends. Most of the analytic results are for asymptotic regimes in which one
or both kinds of long-range coupling are strong relative to the local coupling, or the
chain is very long. We have supplemented these analytical results by numerical
simulations to arrive at our conjectured picture of the possible types of behavior with
time-independent phase differences. We also include parameter regimes in which
there is more complicated time-dependent behavior.

The main results of the paper are in §2, which discusses chains with long, isolated
connections that extend slightly beyond half the length of the chain (see Fig. 1(a)). We
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FI1G. 1. Chains of oscillators with half-length inhibitory fibers (a) overlap topology (b) one-point inhibition.

find that inward and outward long coupling result in different sets of stable solutions.
With inward coupling alone, we find (for various coupling sizes) synchrony, S-waves,
antiwaves, or combinations of them. Stable traveling waves require some outward
coupling. In contrast, S-waves are stabilized by large values of inward coupling and
destabilized by large values of outward coupling. Antiwaves can coexist stably with
traveling waves or S-waves. Long chains can produce a large number of qualitatively
different patterns, among them traveling waves of many different wavelengths, includ-
ing the one whose wavelength is the length of the chain, and the bifurcation diagram
is very complicated. In such long chains, synchrony is destabilized by small amounts of
inward or outward coupling. The stability analyses are made possible by a result [24]
that yields stability whenever certain simple inequalities hold on the phase lags. We
also consider “half-chains,” with inhibition directly between the two ends of the chain
instead of between two ends and the middle; a special case of this was analyzed in [5].
The analysis follows from that of one-half of the chain coupled using long connections
to slightly beyond half the length of the chain.

The results of §2 are achieved by exploiting special (and nongeneric) symmetry
properties in the choice of the functions {4, ;} and the connectivity. For finite chains,
the stability results imply robustness under perturbation, which shows that the
symmetry properties are not necessary for the results we describe. However,
the allowable perturbations could go to zero as the chain grows. In §3 we investigate
the effect on the solutions of variations in the equations that retain the connectivity
used in the previous section. One result from asymptotic analysis is that, if the local
coupling is not symmetric in the two directions, antiwave solutions are not possible for
long enough chains. We also describe numerical simulations used to explore the effect
of other changes.
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In §4 we consider the behavior of chains in which the long connections are
between the end oscillators and a single oscillator at the center of the chain (Fig.
1(b)). We find a behavioral repertoire for such chains that is a subset of that discussed
in §2 with the S-waves absent. The analysis is much simpler and yields results similar
to those of §2, at least for large outward coupling. In §5 we use numerics to look at
the effects of translation-invariant connections between distant points, allowing the
strengths in the two directions to be different.

In §6 we discuss aspects of the relationship between the motivating data de-
scribed above and the mathematical results. We also discuss a further mathematical
issue concerning scaling effects of chain size in the presence of multiple-neighbor
coupling.

2. Chains with half-length fibers and overlap. To obtain sharp analytical results,
we use possible symmetries and choose N = 2m. The connections we investigate then
extend between oscillator 1 and oscillator m + 1 and between oscillator m and
oscillator 2m, as in Fig. 1(a). (As we argue and show numerically, the qualitative
behavior persists when the symmetries are removed.) The equations are then special
cases of (1.1), with hy;=0if k+j+1 or j—1, unless j=1,m,m + 1,2m. Thus, for
J#1, m, m +1, or 2m, the equations have the form

a,_ . _
(2.1); E:w—{_h (0j+1_0j)+h (01-,1—0]-),

where A7 () = h~(-) = sin(-) = A(-). The remaining equations are

de
2.1 El=w+h*(02—01)+f+(9m+l—01),
(2.D2m g7 =w+h (8,,_,—0,,)+f(6,—6,,),

de,
@QDn —E =0t h (G = 6,) +h(6,_, = 6,) +" (6;,— 6,),

(2-1)m+ 1
de

m+1

dt

:w+h+(0m+2_ 0m+1)+h7(0m - 0m+1) +g_(01 - 0m+1)'

The functions f* and f~ specify the outward coupling from the center oscillators to
the ends; the functions g* and g~ describe the inward coupling. For all our analytic
results, we use f*(-) =f"(-)= —ysin(-) = f(-). Similarly, g*(-) =g (-) = —Bsin(-) =
g(*). Note that these functions have the abstract property of “inhibition” described in
§1. The parameters y and B then represent the strengths of the inhibition of the
outward and inward coupling. It is convenient to write (2.1) in terms of the phase
differences ¢; = 6, ; — 6,. Equations (2.1) are then

: a9,
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for j#1, m—1, m, m + 1, and 2m — 1. The other equations are

d m
Q2 —d(%zh(%)—h(tz.’)l)%rh(—(l)l)—f( ) ¢,~),
j=1
(2.2)m—1
d ) 2m—1
d); L= n(,) ~h(d, ) +h(=d, ) —h(~d, ) +g| T 4’1)’
j=m
d
2.2)m %=h(¢m+1)_h(¢m)+h(_¢’")_h(_¢'"1)
m 2m—1
+g| - Z¢j)—g( r 4’;):
j=1 j=m
(2.2)m+1
de, . -
¢d”; ! :h(¢m+2)_h(¢m+l)+h(_¢m+l)_h(_¢m)_g(_ Z ¢f)’
j=1
(2.2)2m-1
d ) 2m—1
d);'t" 1=_h(¢2m_1)+h(—¢2m_1)—h(—¢2m_z)+f - _Z ¢’f)'
j=m

In phase-difference variables {¢,}, a phase-locked solution is one in which de,/dt
vanishes identically. For such solutions, there is a common time-independent fre-
quency () =d6,/dt.

We are interested in the solutions that behave like the traveling waves and
S-waves described in the Introduction. We have also found another class of solutions,
the antiwaves, which are candidates for the intermediate behavior described above.
For (2.2), we can look for such solutions by introducing an ansatz for each type. Such
an ansatz defines more precisely what we mean by each class of solution.

By an S-wave, we mean a solution in which

(2.3) b, =, ¢; =0 forj+#m.

For solutions (2.3), the oscillators are in synchrony in each half, with the halves in
antiphase. By a traveling wave, we mean a solution of the form

2.4) ¢, =&, @EE#O,W for j #m,

where ¢ and ¢ are constants. Note that this is slightly more general than the usual
notion of traveling wave, for which the phase lags are all equal (ie., ¢=¢&).
Antiwaves are solutions of the form

2.5) | 6= —bimjp by 0.

For solutions satisfying (2.5), the phase differences are antisymmetric across the
middle, and the actual phases 6, prove to have a local extremum at j = m.

To explore the stability of these solutions, it is useful to have a general stability
result. The following is a special case of a theorem in [24]. It states that a solution is
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stable, provided that the pattern of phase lags is such that all the coupling functions
have nonnegative derivatives at the appropriate values of their arguments, and that
the local coupling is stabilizing.

THEOREM 2.1 (see [24]). Let {5j} be a phase-locked solution to (2.1) for some Q).
Suppose that the following conditions hold:

@ (h*)(6;.,— 6)=a* >0,

(D) (f7) (0, —0)=7">0,

(GiD) (f)(8, — By) =y >0,

(iv) (g*)'(6y — 6,)=B*>0,

W) (g7)(0,-6,,.)=B">0.

Then the periodic solution is stable; i.e., there is a simple zero eigenvalue for the
linearized equations corresponding to (2.1), with all the other eigenvalues in the left-hand
plane. Equivalently, the associated time-independent solution to (2.2) is asymptotically
stable. O

Remark. The conditions of Theorem 2.1 are not necessary. Indeed, since those
conditions imply that the eigenvalues in question have negative real part, conditions
(i) through (v) may be weakened by allowing the derivatives of f and g to be slightly
negative.

The following corollary is later applied to understand stability of the traveling
waves and antiwaves.

COROLLARY 2.1. Let {EJ»} be a traveling wave or antiwave solution to (2.2), with
h(¢) =sin ¢ and f =g = —sin ¢. A sufficient condition for stability is that (i) |l < 7/2
and (i) cos(L}", ¢,) < 0.

Proof. Condition (i) of the hypothesis implies condition (i) of Theorem 2.1, and
condition (ii) of the hypothesis, plus the symmetry condition of (2.4) or (2.5), implies
all the other hypotheses of the theorem. O

For (2.2), the synchronous solution exists for all values of 8 and v, as does the
S-wave solution. Less apparent are the circumstances under which these are stable, or
the nature of the stable solutions that emerge when these lose stability. The traveling
wave and antiwave solutions do not exist for all 8 and y and are among the solutions
that replace the synchronous and S-wave solutions when the latter become unstable.
We use different methods to analyze the existence and stability of the different types
of solutions, so we discuss each class separately. Then we give a bifurcation diagram
(Fig. 2) that combines many of these results, along with numerical results, to provide
much of our conjectured picture of the position in B,y space of stable patterned
solutions to (2.2).

Some of the bifurcation results use the coupling strengths 8 and vy as bifurcation
parameters. Hence we start with the case of B=0 =1y, i.e.,, a chain with only local
coupling. It is easy to see that there are then 2V~ ! solutions to (2.2), which are
obtained by allowing ¢, to be either 0 or 7 for each j =1, N — 1. However, as shown
in Proposition 2.1, only the synchronous solution is stable.

PROPOSITION 2.1. Suppose that B=y =0 in (2.2), with h = sin ¢. Then only the
solution ¢; =0 is stable.

Proof. Consider (2.2) linearized around some solution. Suppose that there is a
value of j for which ¢; = 7. Then the jth diagonal entry —2h'(sr) = 2 is positive and
equal in magnitude to twice the off-diagonal entries |4'(0)| =|A'(7)| = 1. From the
Gershgorin theorem, it follows that one eigenvalue satisfies |A — 2| < 2. Thus, A must
have a nonnegative real part. It was shown in [16, Prop. A1] that matrices of this form
have no zero eigenvalues. Thus there is an eigenvalue with positive real part. ]
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= 1 B

FIG. 2. Partial bifurcation diagram for chains of oscillators with overlap in long-range connections. The
stable antiwave A, S-wave S, traveling wave T, and wobble solutions W are marked along with regions of stable
synchrony O. The numbers in the diagram correspond to the bifurcations described below. Saddle-node
bifurcation curves are given in Fig. 3. (1) Traveling waves bifurcate from synchronous solutions ( pitchfork
bifurcation). (2) S-waves lose stability at zero eigenvalue and become T-waves. (3) Unstable traveling waves
become stable via secondary bifurcation (numerical). (4) Unstable antiwaves become stable via secondary
bifurcation (numerical). (5) Antiwaves bifurcate from synchrony (pitchfork bifurcation). (6) As B decreases,
S-waves go through Hopf bifurcation to become stable “wobbles” (numerical). (7) As B decreases further, the
wobbles die on an infinite period solution.

Some of the unstable solutions are of interest, since they give rise to stable
solutions of the form (2.3), (2.4), or (2.5) as B and/or vy is increased.

Bifurcation, existence, and stability of traveling waves. The traveling wave solutions,
described by (2.4), are easier to analyze than the antiwaves because they involve only
two unknowns ¢ and ¢, independent of the length of the chain. From (2.2) and (2.4),
these must satisfy

(2.6) —sing+ ysin[(m—1)¢p+£1=0,

—sin ¢ +sin é— Bsin[(m — 1)+ £]1=0.
At y =0, there are no solutions to (2.6) other than the ones in which sin ¢ = 0. Thus
v> 0 (i.e., inhibition from the middle to the ends) is a necessary condition for the
existence of nontrivial traveling waves of the form (2.4). In the next theorem, we show
that there are (pitchfork) bifurcations of such solutions off both the synchronous and
the S-wave solutions as 7y increases; the necessary values of y goes to zero as the
chain grows in size.

In addition to the primary branch of solutions that bifurcate off the ¢ =0 and
S-wave solutions (and which appear numerically to tend to waves with wavelength
equal to the length of the chains as y or m increases), there are multiple branches
that emerge through saddle-node bifurcations. These curves are known only numeri-
cally, except in certain asymptotic regimes, e.g., B8 <1 or B,y> 1 with B/y= 0(1).
In those regimes it is possible to obtain not only existence but more qualitative
information. In particular, it is possible to see that the latter branches correspond to
waves with a larger integral number of wavelengths within the chain, while the former
(with B < 1) have a half-integer number of wavelengths. Only those with 8 <1 have
&=~ ¢, approximating the usual notion of traveling waves in which all phase differ-
ences are equal. The bifurcation diagrams of these saddle-node curves, supplemented
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by numerics, prove to be very complicated and dependent on whether m is odd or
even. Furthermore, the stability of the resulting solutions is not established analyti-
cally. The reader interested mainly in the broad picture is advised to omit parts (b)
and (c) of Theorem 2.2.

The interpretation of the solutions as waves with higher wavenumber is strength-
ened by asymptotic analysis of the solutions to (2.6) in the regimes B fixed and m or y
growing without bound. For these solutions, £ — ¢ — 0 in the limit, and the solutions
have an integral number of wavelengths within the chain in the limit. Neither family
of the previous paragraph has both of those properties. Though the proof does not
show that these solutions are connected to the bifurcations in the previous paragraph,
numerical results suggest that they are, and we comment on our numerical observa-
tions. There are roughly m /2 such families of traveling waves (plus their mirror
images); the general stability result, Theorem 2.1, is used to show that half of these
are stable. By contrast, if B is sufficiently large and y and m are fixed, there are no
traveling waves. Comments on further results derived numerically are made after the
proof of the theorem.

THEOREM 2.2. (@) For m>2,0< B <1, and y a parameter, traveling waves can
bifurcate from the synchronous solution at y=0— 8)/m. For m>=3 and B> 1,
traveling waves can bifurcate off the S-wave solution at y= (B —1)/(m — 2). See Fig. 2
for curves 1 and 2. (Due to the symmetry of the equation and ansatz with respect to the
midpoint of the chain, both of these solutions arise from pitchfork bifurcations; i.e., waves
can travel in either direction.) The bifurcations are supercritical; i.e., solutions exist for y
larger than the bifurcation value.

(b) For B <1, there are m — 3 curves of saddle nodes from which solutions to (2.6)
bifurcate. When m is odd, these appear in pairs having the same image in the ( B, y) plane
but corresponding to different values of ¢, &. When m is even, the curves are distinct in the
(B,y) plane. (See Figs. 3(a) and 3(b).)

(c) For (B,vy) large but B/y= O(1), there are curves of saddle nodes. Along each
of these curves, the end-to-middle phase lag ¢,,, is approximately an integer multiple of .
For m odd, there are (m —3)/2 distinct asymptotes, each corresponding to a pair of
end-to-middle lags whose sum is approximately mr. Each such asymptote has a different
slope. For m even, there are m/2— 1 asymptotes with different slopes. They each
correspond to a pair of end-to-middle phase lags that are approximately multiples of
and whose sum is approximately mr. The curve with end-to-middle phase lag about
mar/2 is asymptotic to the vy axis. (See Figs. 3(a) and 3(b).)

(d) For y— © or m — o, there are solutions to (2.6) with ¢ tending to a limit and
(¢ — £€)—> 0. Any such solution has ¢ — kw/m for some integer k. If k is odd and
k <m /2, the solution is stable.

(e) If y and m are fixed, for B sufficiently large, the only solutions to (2.6) satisfying
the hypotheses of Theorem 2.1 are the trivial ones (¢ = 0; £ =0, ). (In particular, there
are no traveling waves. See Fig. 2.)

Proof. (a) Let B be fixed and y be the bifurcation parameter. (A similar
argument applies to y fixed.) A necessary condition for bifurcation off a given
solution is that the linearization of the left-hand side of (2.6) around that solution for
some (B,y) be noninvertible. For the synchronous solution, the matrix of the
linearization is

3 —1+(m—1)y v
\-1-m-DB 1-8])

M™* fails to be invertible when det M= 0. This occurs when my+ B=1. To show
that the bifurcation actually occurs, we must consider higher-order terms. Let e

M+
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(b)

FIG. 3. Schematic drawing of saddle-node curves, from analysis and numerics. (a) m = 8. Note that there
are five points on the vy axis, as described in Theorem 2.2(b). The points are labeled by the end-to-middle phase
lag ¢,,, = (m — 1)+ &. Note that there are pairs of points with ¢,,, approximately 9mw/2 and 57/2, and a
single solution with &,,, = 137/2. Within a pair, there is a difference in the relationship between ¢ and &. For
example, for ,,, = 9m/2, the top solution has &= ¢ and the lower one has ¢ =m— ¢ The five curves of
saddle nodes for B < 1 are connected to five curves of saddle nodes for B,y large, as described in Theorem
2.2(c). Each above pair with an end-to-middle phase lag of approximately (k + ) comes near to a pair with
end-to-middle lags of km and (k + 1), with 0 < £ < 7. (Numerical evidence suggests that the curves that come
close do not actually touch one another, but they are closer than in the diagram, which was drawn for clarity.
The numerics also indicate that all points on a given curve have lags between its 3 =0 value and the associated
asymptotic value.) The unpaired curve is connected to one with ¢,,, = 6mw. The curve with mm/2=4m is
asymptotic to the vy axis. For B,y large, the curves exchange pairings with each new pair sharing a common
asymptotic slope as y, 8 — ©, and such that the sum of the ¢,,, is 8. For general m even, the picture is
similar, with the saddle-node curve having @,,, =mm/2 asymptotic to the vy axis. An increase of m by two
creates another pair of curves at B=0 having a common ¢,,, at that point. The highest ,, always
corresponds to the lowest asymptotic slope. (b) m = 7. Each curve corresponds to two sets of saddle nodes. For
the top pair on the y axis, ¢ = &; for the bottom pair, £ = 7 — $. The values on the graph are again approximate
values for ¢,,,.

(2m,5m)
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denote the eigenvector of the zero eigenvalue of M* at a parameter point (3,7y)
satisfying y=(1 — 8)/m, and let [ be the left eigenvector. The quadratic terms of
(2.6) vanish, so the leading-order nonlinear terms are cubic. Let n denote the cubic
terms (which are homogeneous of order three) evaluated by setting each of the three
inputs of a cubic term to e. Let A4 be the linear term multiplying y. Then a sufficient
condition for supercritical bifurcation is that

[-Ae+0, (I-n)/(l-Ae) <0.

(This condition is valid when the quadratic terms are absent.) From the computation
of M*, wesee that e=(1—8,1+(m—1)B) and [=(1—B,(B—1)/m)". A is the
2 X 2 matrix with first row (m — 1,1) and second row zero. The cubic terms of (2.6)
are

1| & —ylm-Dg+eT

61— &3+ Blm—-1D+¢1 ]

from which 7 is derived by substituting the components of e for ¢ and ¢. It is easily
checked that [-Ae = m(1 — B), which is positive, provided that 0 < 8 < 1. The numer-
ator of the second condition for supercritical bifurcation is found (with the aid of
MAPLE symbolic calculation software) to be

I'n=—1/6)(B—1)°(m—-Dl(m—-2)B*+(m+1)(B+1)],

which is strictly negative for m > 2.
For the S-wave solution, the corresponding matrix of the linearization is

[ -1-(m-Dy  —v
|\ -1+m-1DB -1+8]

M~ fails to be invertible when y(m —2)= 8 — 1. The left and right eigenvectors
associated with M~ at a parameter point satisfying y=(B8—1)/(m —2) are e =
(=1+8,1-B(m—1)" and I=(—1+ B,(B—1)/(m — 2)). Calculations similar to
those above show that, in this case, [-de=(B—1)(m—2)>0 and [-n=—(1/6)
(m —1D(B—1D*mpB?+ (m —3)B+ (m — 3)], which is negative for m > 3.

(b) We look for solutions to (2.6) other than the trivial solutions. To obtain
explicit formulas, we first set B=0. From (2.6), we then have that ¢=¢ or
b=m—£& We perform our calculations separately for m odd and m even. First,
assume that m is even. In the case where ¢ = &, the first equation of (2.6) states that

Q.7 sin ¢ = y sin(ma).

This equation has precisely m /2 — 1 saddle nodes. The number of such saddle nodes
is easily counted by looking for tangencies between the graphs of ¢ — sin ¢ and
¢ — ysin(m¢) with y>0; see Fig. 4(a). In the case where ¢ =7 — &, the first
equation is

(2.8) sin ¢ = —y sin[(m — 2)¢].

This equation has (m —2)/2 — 1 saddle nodes. (See Fig. 4(b).) Thus, for m even, the
sum of the saddle-node solutions is m — 3. For B = 0, these points lie close to maxima
of the curve ¢ — sin(me¢) and ¢ — —sin[(m — 2)¢]; this shows that the points are
distinct.
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FIG. 4. If ¢ = ¢, the saddle-node points occur for those values of y for which there is a tangency between
the graphs of ¢ —sin ¢ and ¢ — sin(m¢). These tangencies occur for values of ¢ near the maxima of
¢ — sin(m o), excluding the first maxima if m is even and the first and last if m is odd. See (a), (c), and ().
Similarly, for ¢ = w— ¢, (b), (d), and (f), the saddle-node points occur for tangencies between ¢ — sin ¢ and
¢ — —vysinl(m — 2)¢]. These tangencies occur near the minima of ¢ — sinl(m —2)¢] excluding the last
minima if m is even. (a) m =8, ¢ = £. Tangencies are near 5w/16, 97/16, 137/16. (b) m =8, = m—£.
Tangencies are near 3m/12, 7m/12.(c) m =9, ¢ = &. Tangencies are near 5w/18, 9m/18, 137/18. (d) m=9,
¢ = m— ¢. Tangencies are near 3m/14, Tm /14, 117/14. (e) m =1, ¢ = ¢. Tangencies are near 5m/14, 97 /14.
(H) m=17, ¢ = = — &. Tangencies are near 3w/10, 77 /10.

For m odd, the counting of saddle-node solutions to (2.7) and (2.8) depends on
whether m = 1 + 4k for some integer k or m = 3 + 4k for an integer k. In the former
case, there are (k — 1) values of y for each of which there is a pair of saddle-node
solutions satisfying ¢ = &; there is also an unpaired solution at y= 1. If b=m—§&,
there are again (k — 1) such values of y plus an unpaired solution for y = 1. (See Figs.
4(c) and 4(d).) The total number of solutions is 4(k — 1) +2 =4k —2=m — 3. In the
case where m =3 + 4k, there are k pairs of solutions for ¢ = ¢ and another k pairs
for ¢ = 7 — &, for a total of 4k =m — 3. (See Figs. 4(e) and 4(f).)

To show that the bifurcations are nondegenerate at 3 = 0, we indicate the results
of the standard bifurcation calculation. Let M denote the linearization of (2.6)
around one of the above saddle-node points, with ¢ = £. Tt can be checked that the
right and left eigenvectors e and [ are given by (1,1)” and (m, —1)". Since the
bifurcations do not occur off ¢ = 0, the leading-order nonlinear terms in the Taylor
expansion are now quadratic, shown below:

| sin($) p2 — v, sin(m@)[(m -1+ 5]2
—sin($)p? + sin(p) £2
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Here vy, denotes one of the bifurcation values of y and é, £ are deviations from
¢, . Let A, and A4, denote the vectors of partial derivatives of the left-hand-side of
(2.6) with respect to y and B, respectively, evaluated at the point in question. The
conditions for nondegeneracy are /-4, #0+#[-A, and [-Q(e,e) # 0. Since /-4,
msin(m¢) and [-A, = sin(m¢), the ﬁrst two conditions are satisfied. (At the saddle
nodes, ¢ satisfies m tan ¢ = tan m¢. Thus sin(m¢) # 0 for 0 < ¢ < 7.) Also, using
v+ sin(m¢) = sin ¢, we have I-Q(e, e) = [m(1 —m?)/2]sin ¢ # 0. These calculations
show that the saddle-node curves extend beyond B = 0 and that the saddle nodes exist
for points in the plane satisfying y> vy,(B), where the latter denotes one of the
m —3 curves of saddle nodes produced above. The argument is the same for
¢ = m— £ For m odd, the solutions that are paired at 8= 0 continue to overlap in
the B,y plane. The reason is that, for m odd, (2.6) is invariant under (¢, &) — (7 —
¢, m— £); this gives rise to pairs of solutions along each bifurcation curve.

(c) Suppose now that B,y> 1. Let y=79y/€ and B= B/ €. Dividing the first
equation of (2.6) by y and the second by B, we obtain

(2.9) —(e/%)sin ¢ +sin[(m —1)p+ &)=
' —(e/ﬁ)[—sin$+sin§]—sin[(m—1)$+§]=0

Using the first equation of (2.9), or (2.6), we can rewrite the second as

(2.10) 1+ E sin ¢ = sin &.

For B,y large, € is < 1. At € =0, the first equation of (2.9) implies that
(2.11) (m—-1¢+é=ml

for some integer /. We may rewrite (2.10) and (2.11) as

(2.12) sin = p(—=1)'""sin[(m — 1)),

where p=1vy/(y+ B). The number of double roots of (2.12), for all choices of
p € (0, 1] and both choices of sign, is computed as in part (b), above. Following clues
from numerics, we seek solutions with 0 < £ < 7r; this, plus the value of ¢, determines
the end-to-middle lag and hence the value of /.

To understand the structure of the set of these bifurcation curves, we again
distinguish between m odd and m even. Starting with the latter, the analysis in part
(b) shows that there are m — 3 tangent solutions, using both / odd and / even. (For
m =8, see Figs. 4(d) and (e) for the 5 tangent solutions.) These occur in pairs
symmetric around 7/2; this means that there are pairs of curves having the same
asymptotic value for B/vy. There is an unpaired one at p=1, ¢ = 7/2; note that
p =1 corresponds to B =0, so that the asymptote for this curve, e.g., the one labeled
477 in Fig. 4(a) is the vy axis. Also, with 0 < £< 7, the end-to-middle phase lag
(m —1)¢ + £ of that solution is mm/2, so I =m /2 for that solution. For the paired
solutions, the values of ¢ within a pair sum to 7; with both values of ¢ chosen near
/2, this implies that the values of the end-to-middle lags in a pair sum to
approximately mar.

For m odd, we distinguish between m =4k + 1 for some k and m =4k + 3.
Assume that m =4k + 1 and consider solutions with ¢ = £. Then the saddle nodes,
which are tangencies between the graphs of sin ¢ and vy sin(m¢), occur at ¢ = 7/2
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for y =1 plus pairs of ¢ values symmetric around ¢ = 7/2 for some values of y < 1.
Saddle-node solutions with ¢ = 7 — ¢ correspond to tangencies between the graphs of
—sin ¢ and vy sin[(m — 2)¢]. Again, there is a single solution for y=1 and pairs for
appropriate values of y < 1. The total number is m — 3, and, for each value of y
(including y = 1) for which there is a saddle-node bifurcation, there is a pair of values
of ¢. For m = 4k + 3, the analysis is similar, but y=1 is not a bifurcation value. A
major difference between m odd and m even is that, for m odd, pairs of saddle-node
curves overlap in the B,y plane; for m even, the paired curves have only the same
asymptotic value of B/7y. For m odd, the overlaps are forced by the symmetry
considerations previously noted.

(d) First, let y — o, keeping m and B fixed. From (2.10), we have that ¢ — & — 0
or ¢ — (m— &) — 0. We will discuss only the former solutions, since the latter appear
(numerically) to be unstable. Dividing the first equation of (2.6) by y and letting
y = %, we obtain sin(m¢) — 0 or, equivalently, ¢ — k7/m for some integer k. To
show that there are such solutions, we must consider y large, but finite. We now let
€=1/v. The first equation of (2.6) is

(2.13) —esin g +sin[(m— 1D+ £]=0.

The limiting solutions as y — o correspond to solutions for € =0 to (2.13) and the
second equation of (2.6). These can be considered as two equations in the three
variables ¢, £, and e. It follows from a standard use of the implicit function theorem
that solutions ¢(€), £(¢) exist for small €, with ¢(0) = 0. The hypotheses of Theorem
2.1 are satisfied if k is odd and <m/2; the oddness of k is needed to ensure that
—cos[(m —1)¢+ £1>0, and k <m/2 keeps ¢ < m/2, s0 cos ¢ > 0.

We now fix B and y with y> 0 and let m — . Recycling notation, we now let
e=1/(m—1). Let z=(m — 1)¢. Equations (2.6) are then

—sin(ez) + ysin(z+ £) =0,
—sin(ez) +sin € — Bsin(z+ £¢) =0.

(2.14)

At €=0, we have sin(z + £) =0, sin ¢=0. Thus as m — o, (m — 1)¢ + £ — km for
some integer k. To apply the implicit function theorem, we must calculate the
linearization of (2.14) at e = 0; at this point, z + ¢ = kr, so cos(z + £) = +1, depend-
ing on whether k is even or odd. Thus the matrix of the linearization is

ty Tty
—(£B) cosé—(+B)]°

The determinant of this matrix is nonzero, provided that cos £ # 0. Stability for k£ odd
and k <m /2 again follows from Theorem 2.1.

(e) B—  implies that (m —1)¢ + £ kar for some integer k. It also then
follows from the first equation of (2.6) that sin $ — 0. Rescaling as above, we obtain a
singular problem corresponding to 8 = ; since sin ¢ = 0 for solutions to this singular
problem, the only solutions satisfying the hypothesis of Theorem 2.1 (i.e., satisfy-
ing |¢| < mr/2) are the trivial solution with ¢ =0, £=0 or 7. For m finite, it follows
from the implicit function theorem argument that there is a unique solution with B
large near each such singular solution; since ¢ =0 is such a solution, there are no
others. O
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Remark 2.1. The waves that bifurcate in Theorem 2.2(a) from a stable trivial
branch appear numerically to inherit the stability; those bifurcating from an unstable
branch inherit the instability. However, as the parameter y increases, these waves
stabilize. (See Fig. 2, curve 4 and Remark 2.7 following Theorem 2.3.) As mentioned
previously, numerical evidence suggests that these traveling waves (the primary
branch) tend for large y or m to solutions with wavelength equal to the length of the
chain.

Remark 2.2. Parts (b) and (c) of Theorem 2.2 describe the origin of families of
traveling waves through saddle nodes. Part (d) describes stable families of traveling
waves in parameter regimes different from those of parts (b) or (c). We do not fully
understand how the different families are related as the parameters cross from one
regime to another. We do, however, have partial information, particularly for g < 1,
as in part (b). For B = 0, the solutions to (2.6) have £= ¢ or £= 7 — ¢, of which only
the former are stable. The solutions satisfy (2.7). As y increases, saddle nodes are
formed. For y > 1, each saddle node gives rise to a pair of solutions; the one with
end-to-middle lag of k7, k odd, is stable. Numerical evidence suggests this account is
also true for g+ 0.

Remark 2.3. By symmetry, for every traveling wave with ¢ > 0, there is another
wave (with ¢ < 0) traveling in the opposite direction.

Remark 2.4. We can numerically follow solutions to (2.6) as 8 increases. We find
that the primary branch (I = 1) of the traveling wave solutions (stabilizing along curve
1 or curve 4, of Fig. 2, depending on the size of y) meets a branch the bifurcates from
the S-waves (at curve 2 or curve 7), with ¢ going from 0 to = and ¢ —0 as B
increases. The secondary waves, which appear through saddle-node bifurcations,
disappear through saddle nodes as B increases and v is fixed.

Bifurcation, existence, and stability of antiwaves. Antiwave solutions, described by
(2.5), have m — 1 variables. This makes the analysis considerably harder than for the
traveling waves, in which the ansatz has only two variables, independent of m. As for
the traveling waves, there are two types of results: the bifurcation results that describe
the origin of the solutions as the variables B8 and vy cross bifurcation curves in
parameter space, and asymptotic results for 8, y and/or m large. The bifurcation
results here are weaker than those for antiwaves: We produce curves along which
necessary conditions for bifurcation are satisfied, but we do not prove that the
conditions are sufficient. Numerical calculations suggest that the necessary conditions
are indeed sufficient. As in the traveling-wave case, the bifurcation results are more
technical than the analysis for B, y, or m large.

For large values of B or vy, we prove existence and stability of a family of
antiwaves; in the limit, each of these has an end-to-middle phase lag of an integer
multiple of 7. The number of such families that we find increases linearly with m.
The proof of these assertions (Theorem 2.3(c)) uses a continuum limit and scaled
variables to show that there are solutions for finite (but large) 8 or y. For m large, we
use similar methods to analyze the behavior if solutions exist, but we do not provide
constructions of solutions.

Substitution of (2.5) into (2.2) yields implicitly defined equations for the un-
knowns ¢,..., ¢,,_,;. These equations are

-2 1 0 0 - 0 anil 2
— sin 0
@i | 1 7210 w0 o snd |

0 00 0 - 1 —2flga _Bs
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where

m—1
(2.16) S = sin( Y ¢>j) = sin
Note that § is the sine of the total phase lag ¢,,, from the end to the middle. The
matrix in (2.15) is that of a discrete diffusion matrix with Dirichlet conditions. We can
solve (2.15) to obtain the antiwave equation

LB+ y(m=P]
m

217 sin ¢; =

THEOREM 2.3. (a) For fixed B> 0, a necessary condition for bifurcation of anti-
waves from synchrony is that y+ B=2/(m —1). (See Fig. 2, curve 5.) By symmeltry,
such a bifurcation must be a pitchfork, so, for any solution with waves traveling inward
toward the center, there is a solution with the waves traveling outward.

(b) Along the line B="y, a necessary condition for bifurcation is satisfied by a
sequence of points at which the graph of ¢ — sin ¢ is tangent to that of ¢ — vy sin
[(m — Dol

(c) As B — o or y— o, there are solutions for which the end-to-middle phase lag
approaches a limit; for any of these, that limit is k for some k. These solutions exist and
are stable for {(k, m)} such that k is odd, m is sufficiently large, and k < Cm, for some
constant C < 1 independent of m.

(d) Suppose that B and y remain finite and m — . Then limiting values of solutions
must have an end-middle phase lag of kw for some integer k. The limiting form of such
solutions satisfies an integral equation.

Proof. (a) Linearize (2.16) and (2.17) around the synchronous solutions (¢, = 0).
For m fixed and solutions near enough, we have S also small. For x small, the
linearization of (2.17) is

_ [,Bj+y(m—j)]S
m

Summing the series yields, for the linearized equations,
S = (YZB)(m—l)S

to which a nonzero solution S exists if and only if v+ 8=2/(m — 1).

(b) At B =1, it follows from (2.17) that sin ¢, = yS for every j, so that ¢, = ¢ for
some ¢. From (2.16), S = sin[(m — 1)¢], and so from (2.17) we obtain sin ¢ = vy sin[(m
—1¢]. As in the proof of Theorem 2.2, a necessary condition for saddle-node
bifurcation is satisfied at the sequence of points where the graph of ¢ — sin ¢ is
tangent to that of ¢ — v sin[(m — 1)¢].

(c) We first show that, if a solution has a limiting end-to-middle phase lag, that
limit must be k7 for some integer k and that the pair (m, k) must satisfy certain
restrictions. We then show that, if those restrictions are met, there is indeed such a
solution for B sufficiently large. For k even, the end-to-middle lag is far outside the
region satisfying the hypotheses of the stability Theorem 2.1. Hence, we focus on k
odd.
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For B large and v finite, let e =1/p. Then (2.17) implies that

(2.18) 0=esin ¢ - []—+7€:n—_—l)ls

As € = 0, we must have S — 0, which implies the first assertion. To see that there are
restrictions on the values of the integer k, we formulate the problem to use the
implicit function theorem; the restrictions correspond to the zeroth-order stage of
that calculation. We write

L1 1
(2.19) §=—=8=—sin(km+c, e+ O0(e?)).
€ €

[ j )E(”l ‘)] A
] ] S.

(2.20) sin ¢; =
m
At € =0, (2.20) implies that {¢;}, S satisfy
(2.21a) sin ¢, = L
m
m—1
(2.21b) Y. ¢ =km.
j=1

We now assume that k is odd. To see that (2.21) implies restrictions on (k, m), we
note that (2.21), (2.19) must be solvable for ¢, in the limit € — 0. As a function of Cp»
lim__, ;S vanishes at ¢, =0 and is a monotone-decreasing function of ¢, over some
range of the latter. |c,| must be small enough that (2.21a) is solvable for all j. Indeed,
since lim_ , , § = —c, and the largest value of the right-hand side of (2.21a) occurs
for j =m — 1, we must have [(m — 1) /m]c,| < 1. Thus, to solve (2.21b), the left-hand
side of (2.21b) must be larger than k7 at the boundary of the interval of possible c,.
Since this boundary is |c;|=m/(m — 1), this implies that m and k must satisfy the
restriction

1
(2.22) sin‘l[
m—1

2
+sin‘1[—1 + -+ +sin” (1) > k.
m—

Note that (2.22) fails for m small and k > 1. The left-hand side of (2.22), when divided
by m, approaches the limit [ sin~'(x) dx. Thus, the constant C providing the fraction

is

1 1 T 1

—/ sin” ' (x) dx = (— - 1)(—).

) 2 T
We also note that the {¢;} of these solutions lie in the primary branch of sin~'(-), i.e.,
] < 7/2.

We now show that, if (2.21) is satisfied, then there are indeed antiwave solutions
with end-to-middle lags approaching k7 and that these are stable. We consider (2.20)
and the equation for S as m equations in the m + 1 variables ¢, (1 <j<m —1), ¢,
and e. We assume that (2.21) is satisfied, so we can solve those equations for {qb} and
¢, at € =0. We wish to solve (2.21a), (2.19) for 0 < € < 1. Consider the matrix of the
linearization of this system around the e =0 solution. The last row of that matrix,
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corresponding to the linearization of the equation for S, has all zero entries, except
for the last entry, which is +1 or —1, depending on whether k is even or odd.
Omitting the last row and column, the resulting (m — 1) X (m — 1) matrix from (2.4a)
is diagonal, with the jth entry cos ¢;. Since {¢} is constructed so that |¢;| < 7/2 for
every j, we have cos ¢; > 0. Hence the determinant of the matrix is nonzero, so the
solutions exist. The solutions are stable by Theorem 2.1, providing that —cos(XZ¢;) > 0,
which is true if k£ is odd.

Now suppose that B stays finite but that y — . The analysis is as before, with
(2.21a) replaced by sin ¢; = (1 —j/m)S, whose largest value occurs now at j = 1. The
singular solutions are also the same as before, with the transformation ¢; - ¢, _;.
The implicit function theorem argument is as before.

(d) Now let y and B be fixed, and m — ». We show what the behavior of the
solutions must be if there are solutions; however, the limiting argument does not
construct the solutions. If there is to be any limit, we must have ¢, — 0 for each j.
Hence, since (2.17) is true for all j, we must also have S — 0, or ¢,,, = km for some
integer k. To more fully understand the {¢}, we let e=1/(m — 1), ¢, = €y;. Then
(2.17) becomes

—|8;  S=sin[kw+eL, +O0(e?)].

(2.23)  sin(ey;) = ['y(l - J—) B
m

Dividing the first equation of (2.23) by € and letting € — 0, we obtain the singular
equation

(2.24) w(x) = (=D [y —x) + Bx1L,; j:tlf(x)dx=k7r.

Equations (2.24) may be solved for L, and ¢/(x) for any positive integer value of k;
for m finite, we expect solutions for some finite range of k, but this remains to be
proved. 1]

Remark 2.5. The branch of antiwaves that bifurcates from the synchronous
solution appears to exist as long as the local phase differences ¢; do not cross /2,
the turning point of sin x. In simulations with short enough chains, the antiwaves do
disappear with increasing B or . See §6.2.

Remark 2.6. Parts (a) and (b) of Theorem 2.3 give only necessary conditions for
pitchfork and saddle-node bifurcations to antiwave solutions. These have been supple-
mented by numerical simulations. From these, we find that the antiwaves that
bifurcate from synchrony exist for some range of y> — B+ 2/(m — 1). Similarly, in
simulations there appear to be curves of saddle-node bifurcations through the points
constructed in Theorem 2.3 (b), and the solutions born at such saddle-node curves
exist for a range of values of y larger than the values on those curves.

Remark 2.7. There is a critical value of y and B at which both traveling waves
and antiwaves bifurcate from synchrony, resulting in a double zero eigenvalue.
Symmetry methods (see, e.g., [25]) can be used to unfold this degeneracy and resolve
the stability of the two branches. We have not performed these calculations analyti-
cally, but include numerical results on the global bifurcation picture. (See Fig. 2,
curves 3 and 4.) Other than in a neighborhood of this degeneracy, the antiwaves that
bifurcate from a stable synchronous solution appear to be stable. If the synchronous
branch is unstable (as a result of a traveling wave bifurcation), the antiwave branch is
initially unstable, but it appears to stabilize as y is increased.
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Stabilization of S-waves. S-waves exist for all values of the parameters by symme-
try, but they are stable only in some regions of parameter space. As shown in
Proposition 2.1, S-waves are unstable for small enough long-distance coupling. Fur-
thermore, by Theorem 2.2, traveling waves bifurcate from the S-waves as y increases.
The main result of this section is that, for y = 0, the S-waves stabilize as B increases.
Note that this does not follow from Theorem 2.1 because the first hypothesis of that
theorem is not valid for the middle phase lag j = m. Nevertheless, we can prove the
stability by making use of the structure of the equations to localize the eigenvalues
enough to see that they have negative real part. We discuss the transition from
unstable to stable and the effects of y# 0 in remarks at the end of this section.

THEOREM 2.4. Suppose that y= 0. For B sufficiently large, the eigenvalues of the
linearization of (2.2) around an S-wave are all in the left-hand plane. Of the 2m — 1
eigenvalues, two are O( B), and the others are bounded as B — .

Proof. The equations linearized around the S-wave solution have the following
form:

(2.25) —2x; +x, = Ax,,
2m—1
(2.25)m-1 Xy = 2%y =Xy B Y X;=AX,
j=m
m 2m—1
(2.25)m X1 F2X, t X =B X =B X X;=AX,,,
Jj=1 j=m
m
(2.25)m+1 Xt 2Xp i F X+ B Y X = AKXy,
j=1
(2.25)2m -1 Xopm-2—2Xp_1=AXp, 1,
(2.25); X1 —2x+x,, = Ax;,

where the last equation holds for j#1, m—1, m+1,2m —1. We let e= 1/B and
A = eA. Multiplying (2.25) by € and letting € tend to zero, we are left with a matrix M
of coefficients, whose rows are entirely zero except for those corresponding to

j=m—1, m, m + 1. These rows are

,...,0,1,1,...,1),
(-1,...,-1,-2,—-1,...,-1),
1,...,1,1,0,...,0).

The eigenvalues A are zero (with multiplicity 2m — 3) and —1 (with multiplicity 2);
the latter statement can be checked by noting that the associated eigenvectors are
,0,...,0,1,0,-1,0,...,0) and (0,...,0,1, —2,1,0,...,0). For B large, the eigenval-
ues —1 perturb to other eigenvalues in the left half-plane. To show stability, we must
show that the remaining 2m — 3 eigenvalues perturb to values in the left-hand plane.

We return now to the original equations (2.25). We are interested in the
eigenvalues that remain regular as 8 — o« and we start by computing their limiting
values. Using the ansatz x; = sin aj for the components of an eigenvector, where « is
to be determined, (2.25),- implies that A is then 2[cos a — 1]. This ansatx is motivated
by the fact that, in the absence of the B terms, up through the m — 1th row, the
linearized matrix is equal to that of the discrete diffusion matrix with zero Dirichlet
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conditions; the latter matrix has eigenvectors of that form and of the above eigenval-
ues. We show that, for large B, the limiting eigenvalues and eigenvectors of (2.25) do
satisfy this ansatz. _

Let M be the matrix of coefficients in (2.25). M is symmetric around j = m, so
we can calculate the eigenvalues by splitting the space into sums of eigenvectors that
are either symmetric (x; =x,,,_;) or antisymmetric (x; = —x,,, _;). First, note that, for
each eigenvalue A that goes to zero with e, the corresponding A is bounded. Consider
now an eigenvector associated with such a A, with components {xj} that are them-
selves bounded. From (2.25),_, and (2.25),,,, we then have that ¥7_,x; and
Xir - lx; are O(1/B).

We start with the antisymmetric subspace, which has dimension m — 1. Antisym-
metry implies that x,, =0 and x,,,, = —x,,_;. Therefore the first m — 1 equations of
(2.25) decouple from the rest. However, (2.25),,_, does not constrain the solutions to
lowest order, because high-order changes to {x;} can change the O(1) value of
BEZm—lx,. Indeed, for the limiting solution for regular eigenvalues, we can replace

j=m

that equation by

(2.26) Y x;=0.
j=1

The first m — 2 equations of (2.25) are satisfied by the ansatz (for the eigenvalues and
eigenvectors) for any value of a. Using x,, =0 and the ansatz x; = sin(j), (2.26) is
equivalent to

m—1
Y sin(aj) =0,
j=1
which, in turn, is equivalent to
(2.27 sin(ma) —sin[(m — 1)a] — sin a =0.

The solutions to (2.27) are a =2wk/m, k=1,...,m/2 and a=2wk/(m—1), k=
1,...,(m —1)/2, where we do not include 7 among the possible roots. There are
m — 2 such roots. For the above values of a, the associated values of A have negative
real part. Since the roots are all simple, they and the associated eigenvalues perturb
for small 1/8 by O(1/B).

We now consider the subspace of symmetric solutions. The first m equations of
(2.25) then decouple from the rest. This time both (2.25),,_; and (2.25),, are each
unconstraining of the lowest-order part of the solution. In the limit, we have (2.26) as
before, which we can write as

(2.28) Xp=— L X

We also have one more equation that comes from combining (2.25),,_, and (2.25),, to
eliminate the common terms that are dependent on higher-order perturbations.
Inserting the ansatz, we find that the first m — 2 equations are again satisfied by the

ansatz for any value of a. Using x,, as in (2.28), the combined equation becomes
Am—1
5 Y sin(aj).

j=1

A+ Msinfa(m — 1] —sin[a(m —2)] =
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Using trigonometric identities as above, the latter can be shown to be equivalent to
(2.29) sin(ma) —sin[(m — 1) a] + sin a = 0.

The roots of (2.29) are «a =Qk — Dw/m, k=1,...,m/2 and a=Qk+ Dmw/(m —1),
k=1,...,(m —1)/2. There are m — 1 such roots, and the associated eigenvalues lie
in the left-hand plane. Again, for large values of B, the roots perturb by O(1/8), and
hence the associated eigenvalues remain in the left-hand plane. O

Remark 2.8. For y =0, the stabilization of S-waves as B increases is somewhat
complicated, and depends on the length of the chain. In numerical experiments, we
have found that, for short chains (m = 1,2,3), the S-wave becomes stable as 3 passes
through B =1, where there is a degeneracy in (2.2). For longer chains and B <1,
there is a single positive eigenvalue. At 8 =1, a zero eigenvalue appears (with the
mth unit vector as its eigenvector). As B increases further, the zero eigenvalue moves
back into the right-hand plane; however, still further, two real positive eigenvalues
coalesce, then become complex, and move so as to cross the imaginary axis at some
B = By, producing an inverse Hopf bifurcation that stabilizes the S-waves. For all
B> By, the S-wave is stable.

Remark 2.9. We have also numerically considered the behavior for y > 0. For
Be( BLy), By(y)), there are periodic solutions to (2.2), which we call “S-wobbles,”
that bifurcate supercritically from S-waves as vy is increased from y=0. As S
decreases for y > 0 fixed, such a periodic solution appears to die at some B{y) on an
infinite period solution. As B increases, it dies by an inverse Hopf bifurcation at
Bu(y). BL0) =1 and B,(0) =2, so there is a region of S-wobbles even for y=0. At
least for m = 8, the points B.(y) and B,(y) come together at some finite value of vy,
beyond which there are no more S-wobbles. An S-wave that is stable at y= 0, B8 large
loses stability to a traveling wave as vy is increased (see Theorem 2.2); this happens
through a zero eigenvalue. See Fig. 2, curves 6 and 7.

Half chains. In [5] Cohen, Holmes, and Rand also discussed chains with local
coupling and sparse long-range coupling, using the same functions as in this paper for
short- and long-range coupling. In that paper, the long-range connections are between
the end two oscillators, and the coupling from the first to the last has the same
strength as that from the last to the first. We show here the sense in which the work
of this section constitutes a generalization to that work. In particular, we show that
with the connectivity as in [5], even if the two long-range connections have different
strengths, the analysis reduces to that of traveling wave and antiwave solutions given
above.

By a ‘“half-chain,” we mean a chain of length N with inhibitory connections
between the two ends (as opposed to connections between the ends and the middle).
For such connectivity, we let B8 be the strength of the connection from oscillator 1 to
N and vy the strength from N to 1. Let N =m — 1. Then the equations are exactly
(2.15). Thus each antiwave solution for the full chain provides a solution for the
half-chain. Recall that these solutions have ¢; varying with j, so they do not give rise
to constant-speed traveling waves. There are additional solutions if 8= vy. For 8=y
[5], the traveling wave ansatz ¢, = ¢ leads to (2.6) with &= 0.

3. Long chains and unsymmetric perturbations. All the results of §2 were
obtained under hypotheses of strict symmetry on the equations. Since the solutions
obtained are asymptotically stable, the qualitative behavior must remain under
perturbations that remove some features of the symmetry. However, for long chains,
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the solutions may change under perturbation. The central result of this section is that
the qualitative behavior of the antiwaves does not persist for long chains if the local
coupling is anisotropic, i.e., if the coupling from the kth oscillator to the (k — Dth is
not the same as the coupling from the kth to the (k + Dth. More explicitly, we derive
the natural equations for a continuum limit of such solutions and show that, if the
local coupling is anisotropic, there cannot be antiwave solutions. The arguments do
not rule out traveling waves, but place some restrictions on them. For this work, the
local and global coupling functions are allowed to be more general than the specific
functions used in the previous section.

A continuum limit for antiwave solutions. A continuum limit description is appro-
priate for solutions such as antiwaves in which the middle-to-end phase lag ap-
proaches a limit as m —  and whose phase lags ¢, vary in a manner consistent with
the discretization of a continuous function. We are looking for a continuous function
O(x) defined for 0 <x <1 such that @(j/2m) = 6,. If there is to be a limiting value
for the end-to-middle lag, the lags must each be small, except perhaps for those near
the ends or middle of the chain. Thus, the natural continuum limit of (2.1)]-, j#1, m,
m+1,2mis

_ A?
B  Q=A(a"—a)O, + -2—[(K+— k)02 + (at+a )0, ] +o0(A?),

where A=1/2m, a*=(h*)(0), k*=(h*)"(0), and Q is the phase-locked fre-
quency. (Equatlon (3.1) is derived from (2.1); by writing 6,,, = 6, + A6, +(A*/2)6,,

+ 0(A?) and usmg a Taylor expansion through 0(4%).) Note that if the medium is
isotropic, then a*=a~, so the terms of order A cancel. We also note that the
assumptions on 4% in the stability Theorem 2.1 guarantee that the coefficient of @,
is positive. Such a continuum description is consistent with the equations for j =1, m,
m + 1, 2m, provided that 16,,,, — 0,/ = =, |6,, — 6,,| = 7, and f*(7)=0=g*(m),
as in the coupling we have been using.

Suppose that the medium is anisotropic, so that the coefficient of ®, is nonzero.
Then the first term on the right-hand side of (3.1) dominates the others. Rescaling ()
by defining () = A(Q), we have the equation expected to be valid away from boundary
layers,

(3.2) Q=(a"—a7)0O,.

It is immediate from (3.2) that such a description is incompatible with antiwaves. The
reason is that (), the scaled phase-locked frequency, is independent of x and must be
the same on both sides of the antiwave. However, (3.2) then implies that the phase
gradient has the same sign on both sides of the middle of the chain, which contradicts
the defining property of antiwaves. We can summarize this discussion in the following
proposition.

PROPOSITION 3.1. Suppose that the local coupling in (2.1) is anisotropic and that the
long-range coupling functions vanish at 0 and . Then the continuum limit equations
(3.1) have no solutions representing antiwaves.

Remark 3.1. Numerical simulations suggest that traveling waves continue to exist
for the anisotropic regime. Away from the ends and the middle, they appear to satisfy
(3.2) with the end-to-middle lag approximately k7 for some k odd.

Remark 3.2. The continuum limit used in this section differs in an important way
from that of [7] and [15]. When there is only local coupling, as in the latter papers, the
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total phase lag does not approach a limit as the strength of the chain grows without
bound; instead, it is the individual lags that approach such a limit. The appropriate
continuum limit for the latter situation keeps the coupling strength between succes-
sive oscillators constant as the size grows, unlike the current situation in which the
strength scales like discretization of derivatives.

Finite chain perturbations. For any given chain size, the stable solutions (and the
hyperbolic ones as well) perturb with changes of the equation. However, the size of
the allowable perturbation of the equation can a priori go to zero as the chain grows
in size. To explore this, we did numerical simulations with variations on the equations
investigated analytically. We found that, if we keep the coupling “diffusive” (i.e.,
h*(0) =0, although A* need not be odd functions), then the S-waves and the
traveling waves persist even for long chains. (The bifurcation diagrams change, of
course, e.g., the pitchfork bifurcation of the traveling waves is no longer symmetric.)
By contrast, the antiwaves are much less robust. In particular, in simulations using
h*+ h~, the antiwaves disappear for long enough chains. This is consistent with the
continuum limit analysis presented earlier in this section. We have not been able to
understand the behavior of perturbed systems in which the coupling is not diffusive.

4. Chains with one-point inhibition. We now consider a different connection
topology, in which the long connections from and to both ends go to a single
oscillator, rather than to a pair. We find some major differences in the behavior of the
chain.

To take advantage of the simplicity afforded by symmetries, it is now useful to
work with an odd number of oscillators, and we let N=2m + 1. The equations are
now

(4.1); d—t]=w+h+(0j+1—@)+h“(0j,1—0j)
for j# 1, m + 1, 2m + 1. The remaining equations are
de, .
4.1 7=w+h (02~01)+f+(0m+1—01),
déy
4. DN 7=w+h“(0,\,_1—HN)+f'(0m+1~9N),
(4.1)m+1
d9m+1

T 0 (65— 0, )+ H (6, = 6,0 ) +87 (0, 6,00

+g+(0N_ 0m+1)'

The functions A%, f*, and g* are as in §2.

Before we perform the analysis, we must first give the appropriate meaning of
traveling waves and antiwaves. We note that there is no analog of S-waves for this
connection topology; without an overlap, there is no possibility of domains of
synchrony separated by antiphase in phase-difference coupled equations. (Such do-
mains are possible even with nearest-neighbor architecture for relaxation oscillators
coupled with some classes of coupling [26]; they are also possible for limit cycle
oscillators with long-range inhibition, provided that there is an amplitude variable
that can go to zero at the interface of the domain [27].) Nor have we found any new
family of solutions that exists for this connectivity, but not the overlap connectivity of
§2. See Fig. 5 for the bifurcation diagram.
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FiG. 5. Schematic bifurcation diagram for one-point inhibition. Symbols mean: T, traveling waves; A,
antiwaves; 0, synchrony. (1) Pitchfork bifurcation to stable traveling waves from synchrony. (2) Pitchfork
bifurcation to antiwaves from synchrony. (3) Stabilization of antiwaves via secondary bifurcation (numerical). (4)
Stabilization of traveling waves through secondary bifurcation.

By a traveling wave, we mean a solution of the form

4.2 ¢j=$¢0,77 forj+m, m+1; ¢, =¢,.,.=¢.
Antiwaves are solutions of the form

(4.3) &= —brm_ji1-

We treat solutions of the form (4.2) and (4.3) together in the next theorem. The
methods are similar to those of Theorem 2.2, but the analysis is much easier.
THEOREM 4.1. (a) For small enough y and B, the only stable phase-locked solutions
are synchronous.
(b) Traveling waves correspond to nontrivial solutions to

4.4) sin ¢ = ysin(me).

A branch of such traveling waves bifurcates from synchrony at the line y=1/m, and
other branches arise from saddle-node bifurcations at higher values of y. Such a solution
is stable if 0 < ¢ < /2 and § lies on a branch of sin(m¢) having negative slope. For y
sufficiently large, there are approximately m /4 such stable solutions, and, as y — =, the
stable solutions have an end-to-middle phase difference that approaches ki, where k is an
odd integer.

(c) Antiwaves satisfy the implicitly defined equations (2.20), where S is now

4.5) S=sin(2¢j).
1
A necessary condition for bifurcation from synchrony is satisfied if

1
(4.6) ym+B(m+1)=2+—.
m
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At B =y, a necessary condition for bifurcation is satisfied for values of y and ¢ such that
the graph of ¢ — sin ¢ is tangent to that of ¢ — ysin(md). For vy large, there are
antiwave solutions, and their end-to-middle phase lag approaches a multiple of w; such a
solution is stable if that multiple is odd.

Proof. (a) Corollary to Proposition 2.1.

(b) Solutions satisfying (4.1), (4.2) must satisfy the analog of (2.6), namely,

—sing+ ysin[(m—1)¢+£]1=0,

4.7 —
—sin ¢ + sin £=0.

The second equation of (4.7) implies that ¢ = ¢ or ¢ = 7 — £, and we discuss only the
former, since the latter appears (numerically) to be unstable. Equation (4.4) is now
immediate. The assertions about the bifurcations follow from considerations of the
graphs of sin ¢ and ysin(mde), as in §2. The asymptotic stability follows from
Theorem 2.1, since the slope of the graph of sin(m ¢) specifies the sign of the relevant
derivatives in the hypotheses. That there are approximately m /4 such stable solutions
for y sufficiently large follows from the fact that the graph of vy sin(m¢) has
approximately m /4 positive sections in the interval 0 < ¢ < /2, and for y large
enough each such section intersects the graph of sin(¢) exactly once at a point of
negative slope of y sin(mde). As y — =, the intersections approach kw/m, for k an
odd integer, so the end-to-middle phase lag approaches k7.

(c) Substituting (4.3) into (4.1) yields equations for {¢;}. These equations are
similar to (2.15), this time for an m X m system whose first m — 1 equations are those
of (2.15), and mth is sin ¢,,_; — 3sin ¢,, = —2BS. The solution to these equations is

) 23j+y(2m+1—2j)s
Sin ¢, = 2m+ 1

To compute the bifurcation from synchrony, we linearize these equations around
¢ = 0. Summing the series for S, we then have the linearized condition

Zy— [my+B(m+1D]S=S.
This has a nonzero solution if and only if (4.6) is satisfied.

If B=v, then ¢;= ¢, independent of j, as in §2. Then §= sin(mg), so
saddle-node bifurcations can occur only where (4.4) and its derivative with respect to
¢ are both zero, ie., where there are tangencies of the graphs of sin ¢ and
v sin(m¢). For vy large, the proof of existence of antiwave solutions is as in §2, as is
the proof of asymptotic stability. o

Remark 4.1. The bifurcation analysis for the traveling waves is much simpler in
the one-point inhibition case because (4.7) does not have the terms of (2.6) involving
B. The bifurcation curves are thus independent of B, and there is not the complex
interplay of bifurcation curves displayed in Figs. 4(a) and 4(b). In this case, it is much
clearer where the stable solutions originate, and we may ignore a priori the solutions
originating with £ = .

Remark 4.2. The continuum limit analysis is as in §2.

5. Translation-invariant coupling. We now turn to another topology for the
long-range coupling. For this topology, the coupling between 6; and a middle
oscillator 6,,,, is repeated between 6, and 6, ., for each j such that m +j<N.
Similarly, coupling between the end oscillator and a middle oscillator is also repeated
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in a translation-invariant way. As in the previous parts of this paper, such coupling
can be done in two ways, with a pair of central oscillators as in §2, or a single central
oscillator as in §4. In this section, we present numerical studies concerning the
behavior of chains with such architectures. We find traveling wave and antiwave
solutions very similar to those that occur with the more sparse coupling of §§2 and 4.
However, in this case, antiwaves appear to be far less robust and were found only in
small parameter regimes. The work reported in this section is entirely numerical.

The local coupling is given as before by h(¢)=h*=h"=sin ¢. Instead of
inward and outward coupling, we now have descending and ascending coupling
F(¢) = —sin ¢ = G(¢), with coupling strengths 8 and «. The phase differences ¢;
are defined as before. For coupling with a pair of middle oscillators, and N = 2m, the
equations for the {qu} take the form

dd,
E‘ =h(¢j+1) _h(¢]) +h(_¢j) _h(_d)j_]) + «a

m m-—1
1p> %,)—F( > %,)]

k=1 k=0
forj=2,....m—1,

de,
— L =h(dy ) —h(d) +h(= ) —h(=¢;_)

+ 6

of-E o) of-E o

for j=m+1,...,2m — 2. The remaining equations are

d m m—1
7¢l—=h(¢2)—h(¢1)+h(—¢1)+a F( > ¢k+1) _F( )y ¢k+l)]’
t k=1 k=0
do,,
7=h(¢m+1)_h(¢m)+h(_¢m)_h(_¢m—l)
m m—1
+8G[- ) ¢>k)—aF( ) ¢k+m)’
k=1 k=0
d _
¢Z L (o) + (= dba) = h(— )

+é6

o)l Eo]

We start by discussing the isotropic case where a = 8. As in the other topologies,
the synchronized solution is stable only for a small, with bifurcations occurring at a
value that tends to zero as the chain size grows without bound. Traveling waves
bifurcate stably at some value a = a; and remain stable for all values of a> ay.
Near the bifurcation value, the unstable eigenfunction has the approximate form
¢, =sin(mj/2m). As @ increases, the {¢;} remain positive and tend to a constant
¢ =~ 2m/(2m — 1), the uniform traveling wave.
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If we continue to follow the synchronous branch beyond the first bifurcation, we
find a second bifurcation with an eigenvector that is approximately ¢; = sin(27j/2m).
This solution is antisymmetric around the center of the chain and hence represents an
antiwave. Since the bifurcation occurs from an unstable solution, it is itself unstable;
however, after further increases in «, the solution stabilizes (at a value a,). Still
further increases in « cause the antiwaves to coalesce with an unstable branch of
solutions; thus the antiwaves persist for only a small range of values of a. For
example, if N = 12, the antiwaves exist for a € (0.36, 0.58).

We now consider the effect of anisotropy, i.e., a# 8. For a fixed and &
decreasing, the traveling wave persists, but it loses its symmetry around the center.
The wave exists for all § down to §=0 and remains stable. If § is decreased from
8=a in the range where stable antiwaves exist for the isotropic case, the stable
antiwaves continue for some interval of § and then merge with an unstable branch in
a saddle-node bifurcation and disappear. The size of the ratio 8/« appears to make
little difference in the robustness of the stable antiwaves.

We have been unable to obtain stable S-waves for this topology and conjecture
that they cannot exist, though unstable S-waves do exist. We also did not find any
dynamic phenomena, such as S-wobbles. We found no major differences between the
two-center and one-center topologies when there is translational invariant coupling.

6. Discussion.

6.1. Chains of oscillators and neural development in vertebrates. In §1 we
discussed observations on motor behavior during early development. We now use
some of the mathematics from the previous sections to produce a speculative account
of how such a sequence of changes could take place. It must be cautioned that the
mathematics describes neural behavior, while the observations were made about
mechanical behavior; it is known that the transformation between the neural activity
and the mechanical activity that it causes is not necessarily straightforward [28]. With
that caveat, we identify the observations on mechanics with the behavior of the neural
network.

The rhythmic C-coils that appear very early correspond to synchronous oscilla-
tory contractions of the muscles all along the spinal cord. It was shown in [7] that a
chain of oscillators coupled locally using coupling modeled on diffusion produces such
synchrony. Furthermore, electrical junctions that provide this kind of coupling are
believed to be very common in early development [29], [30]. Finally, the local coupling
(sine of phase differences) that we use in our models is the outcome of the reduction
process that produces (2.1) when the physical coupling is diffusion and the oscillators
have some symmetry properties [16]. Thus the local coupling that we use is a
reasonable phenomenological description of coupling action during very early devel-
opment and produces the observed C-coil behavior.

This paper shows that the traveling waves and S-waves associated with the later
stages of development could occur as a consequence of fairly simple changes in
architecture involving the addition of some long fibers whose connections are de-
signed to create antiphase behavior between the two oscillators directly coupled.
Those long fibers need not go precisely to and from the middle; any position roughly
near the middle with long fibers overlapping will do. For example, suppose that the
long fibers grow from the ends, and synapses made en passant do not become
functional (or permanent) until the two sets of inwardly growing fibers reach a
common area. These inward fibers could give rise to the S-waves and intermediate
stages described above. If fibers following the paths of the inward fibers then grow
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outward from the middle, traveling waves also become possible. Though there are
many such waves possible, the wave with wavelength equal to body length occurs first.

The long fibers discussed above cannot be the only mechanism giving rise to the
production of traveling waves of locomotion, at least for adult lampreys. The reason is
that parts of the spinal cord that are considerably shorter than half the total length
are still capable of self-organizing into a traveling wave with an unchanged phase lag
between two given points [4]. We note that the traveling waves produced during
development might act as a “teaching signal,” which could then be used by the animal
at a later stage to create local connections that could produce the waves without the
long fibers. Models showing that such “learning” of phase lags is possible are in [31].

There are other wave-like phenomena exhibited by other species that display
undulatory swimming. A number of electric fish retain the ability to produce waves
more complicated than traveling waves on a dorsal or ventral fin [32]. Like antiwaves,
these waves can have as leading oscillator one in the middle of a fin, with waves
progressing outward; unlike our waves, the leading oscillator can itself change
position. For more phenomenological descriptions of oscillators in development, see
[33]. We also note that the “intermediate” behavior in development that we described
in the Introduction has not been well characterized, leading to terminology that is not
well specified: e.g., S-wave is used in the biological literature to denote a range of
behaviors, including what we have here called S-waves and antiwaves [23].

6.2. Chain size and scaling. We have seen that “short” chains can exhibit some
emergent behaviors that are not found in longer ones. (See Remarks 2.5 and 2.8). For
example, we have seen that, in the overlap topology with nearest-neighbor coupling,
antiwaves exist in some short chains (m < 3) for only a finite range of the inward
coupling parameter . By contrast, the antiwaves persist for all B when the chain is
sufficiently long. We remark here that the notion of short can be influenced by the
degree of coupling in the chain; this observation is relevant to the application
discussed in §6.1, since the local and global coupling is believed to be to multiple
oscillators.

To make this more specific, we consider a chain of 18 oscillators, coupled as in
§2. Such a chain is long enough that antiwaves persist stably for all values of B. We
now increase the extent of the coupling by allowing local interactions between an
oscillator and each of its three nearest neighbors to each side. (The local coupling is
sinusoidal, as in §2.) Similarly, each of the three end oscillators send long inhibitory
connections to the oscillators at a distance of +9 away with coupling strength 8, and
the oscillators 7, 8, and 9 (respectively, 10, 11, and 12) send inhibitory connections
outward to oscillator 18 (respectively, 1) with strength . Note that, if this chain of
length 18 is grouped by threes, the result is analogous to a chain of length 6 (ie.,
m = 3), with the overlap topology of §2.

Numerical simulations show that the modified chain of length 18 does indeed
behave like a chain of length 6: As B is increased with y= 0, the antiwaves cease to
exist as one of the phase lags increases to about 7/2; this happens for g <3.

The above simulations show that the effective length scale is a combination of
the length N of the chain and the degree of coupling. We conjecture that, if g
denotes the number of oscillators directly affected by a given oscillator (in each of the
local and global couplings), then the effective length scale is given by N/q. Indeed, if
we fix ¢ and let N — o, the behavior is that of a singular two-point boundary value
problem. However, if N/q is fixed and N — o, the behavior is that of an integral
equation. (See [24].)
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