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THE EXISTENCE OF SPIRAL WAVES IN AN OSCILLATORY
REACTION-DIFFUSION SYSTEM*

JOSEPH PAULLET!t, BARD ERMENTROUT'#§ AND WILLIAM TROY$

Abstract. Rotating waves are proven to exist on the unit disk for an oscillatory reaction-diffusion
equation with Neuman boundary conditions.- The method of proof relies on a two-parameter shooting
argument for the ensemble frequency and the radial derivative of the magnitude. Numerical solutions
indicate that the waves are stable if the diffusion is sufficiently small. It is also shown that these
solutions cease to exist for large diffusion. The origin of the rotating waves is discussed.
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1. Introduction. Spiral waves are a common feature in many active media such
as chemical oscillators, excitable slime molds, epileptic waves, and cardiac fibrillation.
(See [12] for a comprehensive review.) These phenomena are generally modelled as
systems of reaction-diffusion equations where the reaction terms are either excitable
or oscillatory. The mathematical problem is then to prove the existence of rotating
Archimedean spirals in the domain of interest.

There have been many approaches to the solution of this problem. Keener and
collaborators [7],[8] have used singular perturbation, asymptotics, and other formal
arguments to construct spiral waves in the infinite plane as well as in three dimensions.
They take advantage of the slow time scales of some of the variables as well as a
small parameter multiplying diffusion. This approach has led to good qualitative and
quantitative agreement with numerical results. Fife [4] views the existence of spirals
in the plane as a free boundary problem. Recently, Xin [13] proves that a solution to
Fife’s free-boundary problem exists for a certain class of models that have symmetry
and are in the oscillatory regime (in spite of the title of the paper). Cohen et al. [3] use
fixed point methods to prove the existence of logarithmic spiral waves in a reaction-
diffusion equation that has unusual local dynamics (in the sense that they do not
arise as a normal form near a Hopf bifurcation). This result is rigorous and concerns
the infinite plane. Greenberg [5] and Hagan [6] both consider oscillatory rather than
excitable systems and formally construct spiral wave solutions in the plane. Their
work is the main motivation for the results in the present paper.

Rather than work in the whole plane, we will restrict our attention to the question
of existence of spiral waves in a finite circular domain. The restriction to a finite
domain is not unreasonable as most experimental and numerical simulations are by
necessity in a finite region. The restriction to a circular domain allows us to exploit
the rotational symmetry and thus reduce the question of existence to a solution to a
boundary value problem.

Here, we consider an oscillatory medium in a circular domain and rigorously prove
the existence of rotating waves which in the limit of large domains approach the
Archimedean spirals that have been formally constructed in infinite planar systems.
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We begin with the equation
ur = uA(u,v) — vw(u,v) + dAu,

(1.1) vy = v\ (4, v) + uw(u,v) + dAv,

(1) n-Vu = 0 ondl,
n-Vv = 0 ondl,

where

(1.3) My, v) =1 —u? —0?,

(1.4) w(u,v) = 1+ q(u? + v?),

and I' is the unit disk. This problem arises formally from the expansion of a general
reaction diffusion system with scalar diffusion near a Hopf bifurcation:

¢t = dAc+ F(e,p),
n-Ve=0 ondrl,

where c is a vector of concentrations and p is some parameter. At p = 0 there
is a supercritical Hopf bifurcation of the kinetics, F. After rescaling time and the
amplitudes, (1.1) and (1.2) arise in a formal expansion near this critical parameter
[10]. We note that if the diffusivity is not scalar, then the diffusion coefficient in
(1.1) is a complex scalar. This makes the analysis much more difficult so we will
restrict our attention to the scalar case. Thus, one can view our system better as a
model of reacting chemical species which generally have similar diffusion coefficients
than as a model for interacting pacemaker cells where only the potential diffuses. We
only consider Neumann boundaries as these are the natural ones for a set of chemical
species in a dish. Dirichlet conditions, while perhaps interesting from a mathematical
point of view, introduce an unrealistic inhomogeneity in the medium. (Indeed, in
real chemical systems, the homogeneous oscﬂlatlon is always a solution; Dirichlet
conditions prevent this.)

The problem (1.1) has been of interest to a number of researchers, particularly
with respect to the existence of spiral waves. Hagan [6] analyzes it on the infinite
domain and shows that when ¢ = 0 there is a stable rotating wave solution of the
form

(1.5) u+iv = A(R) exp(i(t + ¢)),

where (R, @) are the polar coordinates on the (z,y) plane and A(0) = 0, A(R) — 1
as R — oo. He uses the prior results of Greenberg [5] in order to obtain the existence
of the function A(R). Kopell and Howard [9] rigorously prove the existence of spiral
waves in the whole plane by exploiting the smallness of the parameter q. Their
approach is to treat the systems as a perturbed central force problem and then use
dynamical systems and energy functions to obtain the proof. The proofs here have
a similar flavor although we use standard methods from analysis rather than the
geometric techniques that they exploit. Furthermore, by restricting our attention to
the finite domain, we find some interesting behavior as a function of the domain size
that is missed in the full plane analysis. The behavior in the finite plane then suggests
a formal bifurcation analysis that sheds light on the stability of the spiral waves as
well as their origin.

In addition to the single-armed spirals, one could also look for multi-armed spirals
as well. Indeed, Hagan formally finds a family of such waves in the infinite plane
case. We have no doubt that such solutions could probably be found in a finite dish;
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however, Hagan also shows that these modes are formally unstable. Thus, we have
not attempted to prove existence for the multi-armed case.

It is clear from the form of the solution (1.5) that such a solution represents a
rotating wave that is more of a “pinwheel” than a true spiral. Hagan then uses formal
perturbation arguments to construct rotating waves of the form

R
(1.6) u+iv = A(R) expi ((1 - Nt + P+ / k(s)ds).
0

Because k(R) ~ ko as R — oo these solutions are similar to Archimedean spirals, for
then

1.7 (u,v) ~ (cos((1 — Q)t + ¢ + koR),sin((1 — Q)t + ¢ + ko R)),

that is, the contours of constant “concentration” satisfy (2 + 1)t + ¢ + kgR = C.
Notice that when kg = 0 the contours are radial lines and so are the aforementioned
pinwheels. We note that when ¢ = 0, it must be the case that = 0 and £(R) = 0 (see
§2.2 for details). Therefore, in order to get “geometric” twist in the spiral patterns,
one must have nonzero values of q.

Without loss of generality, we may assume that the domain is the unit disk since
the radius can be scaled into the diffusion parameter, d. We will rigorously prove
the existence of solutions of the form (1.6) for ¢ nonzero on the unit disk if d is
sufficiently small. In fact, we show that if d is too large, then such solutions do not
exist. Although we do not prove it, we conjecture that the critical diffusivity is given
by d* = 1/+/2*, where z* is the first zero of the derivative of J; the first-order Bessel
function. We also believe that these solutions will be stable only if d is sufficiently
small. Thus, only sufficiently large domains can support stable spirals.

Substituting (1.6) into (1.1) and (1.2) we obtain the following boundary value
problem:

A A A
" alal e 2 s 2 _
(1.8) A+ S = gy = AR+ (AP - 1),
pan(Li ) _0ran’
(1.9) k +Ic(R+ 1) = 7
(1.10) A(0) = k(0) = 0,
(1.11) A'(1) = k(1) =0.

The problem that Hagan formally analyzes is identical except that (1.11) is replaced
by conditions at infinity:

(1.12) A(c0) =1 k(R) ~ ko as R — oo.

Remark 1.1. We note that if (A, k) solves (1.8)—(1.11) for some ¢ >0 and 2 <0
then there corresponds a second solution, (A, —k) which solves (1.8)—(1.11) for the
parameter values § = —q < 0 and Q=-0>0. Therefore, in Theorem 1 below we
restrict our attention to positive values of ¢ and negative values of Q). Specifically, we
prove the following theorems in the next sections.
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THEOREM 1.2. Ifd > 0 is sufficiently small there ezists a value q; > 0 such that
if 0 < g < q1 then the problem (1.8)—(1.11) has a solution for some Q) € (—q,0), and
this solution satisfies A’ > 0 over [0,1). If ¢ = 0 then (1.8)—(1.11) has a solution for
Q2 =0, and this solution also satisfies A’ > 0 over [0,1).

THEOREM 1.3. Let d > 1. Then no solution of (1.8)—(1.11) exists which satisfies
A > 0 over (0,1).

2. Outline of proofs and the g = 0 problem.

2.1. Outline. For Theorem 1 we employ a two-dimensional shooting argument.
The parameters which we adjust are d > 0, ¢ > 0, 2 < 0 and « > 0, where A’(0) = a.
In §2.2 we set ¢ = 0 and conclude that Q = 0 and therefore k = 0 as long as A > 0.
With £ = 0 we then analyze (1.8) and show that if d > 0 and small there is an
oy = ap(d) > 0 for which A’ > 0 on [0,1) and A’(1) = 0. For such small fixed d we
then “perturb” off of the solution for which o = ap(d) and consider the full system
(1.8)—(1.9) for small ¢ > 0. We do this in §3. In particular, we find that  must lie in
the interval (—g¢,0). Then, using a topological result due to McLeod and Serrin [11]
we prove that there is a continuum I" contained in the region @ > 0,9 € (—g,0), which
joins the lines {2 = 0,a > 0} and {Q = —¢,a > 0} and such that A’ > 0 on [0,1)
and A’(1) = 0 for each (a,Q) € T'. For (a,Q) € T" and close to = 0 we prove that
k(1) < 0, while k(1) > 0 if £ is close to —g. Since the interval 0 < R < 1 is compact,
then k(1) is continuously dependent on (o, 2). Thus, since I is a continuum, there
must be an (&, Q)el" for which k(1) = 0, and our theorem will then be proved. The
proof of Theorem 2 relies on an analysis of the equation for p = A’/A. Tt is very short
and straightforward and appears in §4.

2.2. The reduced problem for g = 0. With ¢ =0, (1.9) reduces to

1 24 Q

K -4+ — | =—-=

sh( g+ 2) =1
and a simple integration gives

RA*(R)k(R) = —%— /OR tA%(t)dt.

Since A’(0) = a > 0 there is a small € > 0 such that the solution exists for 0 < R < ¢,
and therefore L = foe tA?(t)dt > 0. Suppose that Q # 0 and that conditions (1.10)-
(1.11) are satisfied. Then both A(R) and k(R) must be bounded. If > 0 the
previous equation leads to RA?(R)k(R) < =& < 0 for ¢ < R < 1. Thus, because
k(1) = 0, we see that A%2(R) — oo as R — 1, contradicting the boundedness of A.
Similarly € cannot be negative. Thus, if (1.10)—(1.11) are to be satisfied, it must be
the case that Q@ = 0. This reduces the initial value problem for A to

(2.1) A" + %/ - % = g(ﬁ —1),
(2.2) A(0) =0, A(0) =

We let A(R, o) denote the solution of (2.1)-(2.2). Wherever it is convenient, however,
we will omit the dependence of A on «. The rest Qf this section is devoted to the anal-
ysis of the behavior of solutions of (2.1)—(2.2). In order to construct our topological
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shooting argument for the full problem (i.e., ¢ # 0) we shall need a few preliminary
results. The first is the following.

- LEMMA 2.1. Letd > 0 and a > 0. If A'(R) = 0 for some ﬁrst R > 0, then
A"(R) < 0.

Proof. The definition of R implies that A”(R) < 0. If A”(R) = 0 then A”(R) =
—2A(R)/R’ < 0. Thus A” > 0 on an interval (R—¢, R). This implies that A’(R) <0
on (R —¢,R), contlgadlctmg the definition of R. Therefore we must conclude that
A"(R) < 0, and the proof is complete. O

Next, we consider small values of d > 0 and a > 0 and prove the following.

LEMMA 2.2. There are values di € (0,1) and & > 0 such that if 0 < d < d; and
0 <a<a, then A'(R) =0 at some first R € (0,1).

Proof. We assume, on the contrary, that the conclusion of the lemma is false. Then
there are positive, decreasing sequences {c; }ien and {d;}icn with lim; oo (s, d;) =
(0,0) and such that for each 4,A” > 0 for R € (0,1) as long as the solution exists.
For ease of notation we delete the dependence of «; and d; on i. The variation of
parameters formula for A’ is given by

1 (R t2 9
(2.3) A =atg | (1+R2)A(A —1) dt.

It is apparent from (2.3) that A’ < o and so A < aR as long as 0 < A < 1. Thus we
restrict our attention to 0 < a < 1 so that 0 < A < 1, and the solution exists with
A’ > 0 on the entire interval (0,1). Next, setting p = A’/A we find that p satisfies

(24) p,:—p2——+_+—

Note that p > 0 on (0,1) since we are assuming that A’ > 0 over (0,1). We consider
the interval 1 < R < 3. Since A < aR we may choose d > 0 and « > 0 sufficiently
small so that (2.4) reduces to

1 3
. ! - <R<L-.
(2.5) p < (p +4d> for2_ <7

Integrating this differential inequality from % to R we concludg that

(2.6) tan~'(2v/dp(R)) < tan~? (2\/8;) (%)) - #j (R - %)

Since 0 < p < 00, then tan~*(2v/Ap(3)) < Z. Thus for d small it follows that, at
R = 3/4,tan"1(2/dp(3/4)) < 5 - ﬁ < 0; hence p < 0 and A’ < 0, a contradiction
since A’ is assumed to be positive over (0,1). This completes the proof. 0

We now restrict d to 0 < d < d; and consider large values of a.

LEMMA 2.3. Let0 < d <dy and o > 3 + 9\/— Then A(Ry) =1 at some first
Ry €(0,d], and A’ > 0 for all R € [0, Ry].

Proof. Recall that the variation of constants formula for A’ is given by

(2.7) A =a+ —/ (1+t2/R*)A(A? — 1)dt.

[N
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Thus, since A(4% —1) > 2% %> (2.7) reduces to

(2.8) A'>a——1—/R<1+ﬁ>dt—a——4—R
’ - 3dv3 Jo R? 9dv3

If0<R<d,then A’ >0 for o > gf A further integration gives A(R) > aR gdf
From this it follows that A(R;) =1 at some first Ry € (0,d] if a > & + 5 \/3- O

Hereafter we assume that d € (0, d;) is fixed. It is possible that solutions of (1.8)—
(1.9) exist which satisfy A — co at finite R € (0,1). Thus, in order to proceed with
our shooting argument, we first need to prove that there is a value of a for which the
solution exists over the entire interval [0,1], and that A’ > 0 over this interval. This
is accomplished within the next lemma.

LEMMA 2.4. There erists a value a* > 0 such that the solution A(R,a*) satisfies
A’ >0 for all R > 0 and limp_,o.o A = 1.

Proof. Define the set E = {& > 0| if a > & then there exists a first R; =
Ri(a) > 0 such that the solution of (2.1)—(2.2) satisfies A’ >0 for 0 < R < R
and A(R;) =1}. ]

It follows from Lemma 3 and continuity that E is nonempty and open. Let
o* = inf E. Then, by Lemma 2, a* > @. Let a = a*. If it were the case that A’ =
at some first R then Lemma 1 shows that A”(R) < 0. Since A(R) > 0,A4'(R) = 0,
and A”(R) < 0, equation (2.1) shows that A(R)/R?+ A(R)/d(A%(R) — 1) < 0. Thus,
A(R) < 1. Furthermore, we conclude from these observations that there is an interval
(R, R+ 6) in which A(R) > 0 and A’(R) < 0. This and continuity imply that o ¢ FE
if @ — @* > 0 and sufficiently small, contradicting the definition of a*. Thus A’ > 0
for all R > 0. Again, continuity and the definition of a* imply that A < 1 on [0, 00).
It then follows from (2.1) that limg_,ooc A =1 and limp_,oo A’ = 0.

Next, we further restrict our attention to the range 0 < o < o*. At a = o*
we have shown in Lemma 4 that the solution A(R,a*) satisfies A’(R,a*) > 0 and
A < 1on [0,00). For a € (0,*) we will prove in Lemma 5 that the solution A(R,«)
of (2.1)~(2.2) remains below A(R,a*) for R € (0,1) as long as A’(R,a) > 0. This
crucial property prevents A(R, a) from becoming unbounded at some finite R before
A'(R,a) has a zero. In turn this observation will then allow us to proceed with the
construction of our shooting argument for the full system (1)—(2). Thus, for each
a € (0,a*) we define R = R(a) by

R=sup{R € (0,1)|A'(R,a) >0 for 0 < R < R}.
LEMMA 2.5. Let0<d<d; and 0 < a < a*. Then
0 < A(R,a) < A(R,a*) for 0 < R < R(a).

N

Proof. We set v = 24 and analyze the behavior of solutions of the problem
da
/
2. my ¥ Y _Yi3g2 g
(2.10) v(0) =0, 2'(0)=1.

We show that v" > 0 and therefore v > 0 over (0, R). This implies that 24 (R, a) >
0; hence A(R,a) < A(R,a*) over (0, R). To do this we use the comparlson function
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=% — 4 which was introduced by Greenberg [5]. The use of (2.1) and (2.9), and

v A
two applications of L’Hopital’s rule, give
2.11 li R) =0.
(2.11) A (R)

Furthermore, 1 satisfies

i

/ 2
(2.12) w'w(%wﬂj) 24

From (2.11), (2.12) and the definition of R it immediately follows that 1) > 0 over
(0, R). Therefore ¥ > 4 > 0 over (0, R) and the lemma follows. O

We need one last technical result for (2.1)—(2.2). We assume that 0 < d < d;
is fixed and that o* = a*(d) satisfies Lemma 4. We then completely determine the
behavior of the reduced system (2.1)—(2.2) over an appropriate range of o values in
the interval (0, *). This analysis will then allow us to proceed with our topological
shooting argument for the full system (1.8)—(1.9).

LEMMA 2.6. Let 0 < d < dy. There exist positive values o, and ag with 0 < a, <
ap < a* such that (see Fig. 1) —

(i) if ap < a < o* then A'(R,a) > 0 and A(R,a) < A(R,a*) for0 < R < 1,
(ii) A'(R,ap) > 0 for R€[0,1) and A’(1,ap) = 0;

(iii) if o < a < ag there is a first R = R(a) € (0,1) such that A'(R(a), @) = 0,
and A'(R,a) < 0, A(R,a) > 0 for all R € (R,1].

Proof. The first step is to define ay. For this we consider the set G = {& € (0,a*)|
if & <a<a* then A(R,a) >0 for all R € [0,1]}. It follows from continuity of
solutions with respect to initial values, and Lemma 4 that G is open and nonempty.
We define ag = inf G. Then Lemma 2 implies that ap > 0. Next, consider the solution
A(R, ). If A'(R,00) = 0 at some first R > 0, then Lemma 1, continuity, and the
definition of ag force R = 1. If A'(R,ap) > 0 for all R € [0,1], then ap € G,
and continuity implies that a € G if ap — o > 0 is sufficiently small, contradicting

AR, o)

A(R, o)

AR, o)

| |

E(a*) R_(Ot)

Fic. 1. A(R) for various values of a.



SPIRAL WAVES 1393

the definition of ag. Thus, it must be the case that A’(1,ap) = 0 and part (ii)
holds. Lemma 5 and the definitions of G and g lead immediately to the proof
of (i). For part (iii) we first conclude from (ii) and Lemma 1 that A’(1,a0) = 0
and A”(1,ap) < 0. Thus the implicit function theorem guarantees the existence of a
continuously differentiable function R(c) defined on a small interval (ap — €, a0 + €)
over which A’(R(a),a) = 0. Differentiating both sides of the equation with respect to
a, and appealing to Lemmas 1 and 5, we conclude that dR/da = —v'(R)/A”(R,a) > 0
for ap—e < a < ap+e and small e. Furthermore, it follows from (1) and the definition
of R that R > d/2. Thus, for small € > 0 we see that (d)}/? < R(a) < lifap—e < a <
ap. We need to show that if € > 0 is small enough, then A’(R, ) < 0 and A(R,a) >0
over (R, 1]. Recall that A(1,a9) > 0 and A’(1,ap) < 0. Then A(R,ap) > 0 over an
interval (0,1 + p) independent of €. Thus, by continuity, A(R,a) > 0 over (0,1 + %)
for op — € < a < ag and € small. This and (1) imply that A’(R, ) cannot have a
zero over (R,1+p/2) if ap — e < a < ag. Therefore we set o, = ap — € and the proof
is complete. a

3. Completion of Proof of Theorem 1. In order to complete the proof of
Theorem 1 we employ a two-dimensional topological shooting arguement. Throughout
we assume that d € (0,dy) is held fixed, where d; is the value found in §2 for the
reduced problem (2.1)—(2.2). It follows from continuity and Lemma 6 that there exists
a small value q; = g1(d) > 0 such that if 0 < ¢ < q1,Q € (—¢1,0) and a. < a < o¥,
then the solution of the initial value problem (1.8)-(1.10), with A’(0) = «, must
satisfy 0 < A < 1 over (0, 1]. Also, A’(1) < 0 if @ = a,, and A’'(1) > 0 if a = a*. (See
Fig. 2.)

Assume now that g € (0, ¢) is held fixed. This leaves us with the two parameters
a and © to be further adjusted. We restrict our attention to the parameter set
D = {(a, Q)la* <a<a*and —q < Q < 0}. The choice for the range of Q is justified
in the next lemma.

LEMMA 3.1. If there is a solution of (1.8)—(1.10) which satisfies (1.11), and
0 < A <1 over (0,1], then Q € (—g,0).

*

A'18)<0 A'(19%)>0

NN\

FIG. 2. The shooting set for the topological argument.
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Proof. An integration of (1.9) gives

R 2 '
(3.1) RA*(R)k(R) = —/ %(Q +qA*dt, 0<R<1.
0

At R =1, condition (1.11) implies that
1
(3.2) / tA%(Q + qA%)dt = 0.
0

Since 0 < A < 1 it then follows immediately from (3.2) that —¢ < Q < 0, proving the
lemma. 0O ‘
We are now prepared to define our topological shooting sets. These are

E = {(a,Q) € D|A'(1) < 0}
and
F = {(a,Q) € D|A'(1) > 0}.

It follows from our earlier discussion, and continuity, that £ and F' are relatively
open, nonempty subsets of D. Furthermore, the sets £ and F contain, respectively,
the line segments {a = a,,—¢ < Q2 <0} and {a=a* —¢<Q <0},

In order to complete the first part of our proof of Theorem 1 we need the following
topological result proved by McLeod and Serrin [11].

THEOREM 3.2. Let I be the closed unit square {0 < z < 1,0 < y < 1} in the
(z,y) plane, and let S~ and ST be disjoint, relatively, open subsets of I, respectively,
containing the lines y = 0 and y = 1. Then the complement U of St and S™ in I
contains a continuum joining the lines x =0 and x = 1.

The McLeod-Serrin result applies to any closed rectangle in the plane. We need to
apply this result to the closure of D. According to Theorem 3, the properties of E' and
F which we have now established allow us to conclude that there exists a continuum
I in the set D\ (E U F) which joins the line segments { = 0,a, < a < o*} and
{Q = —q,a, < a < a*}. Tt is clear from the definitions of F and F' and the fact that
A’(1) exists that

(a,Q) el = A'(1) =0.

We now let (o, ) pass along I’ from @ = 0 to Q@ = —¢. Near Q = 0 we have the
following.

LEMMA 3.3. There is a value Q; € (—gq,0) such that if @1 < Q <0 and (a,) €T
then k(1) < 0.

Proof. At =0 we see that (3.1) reduces to

R 2
RA%(R)k(R) = _/ %(qﬁ)dt <0 for0O<R<1.
0

Thus k(1) < 0. This and continuity of solutions with respect to o and (2 lead imme-
diately to the conclusion of the lemma. 0

Next, we consider the behavior of solutions near €2 = —q.

LEMMA 3.4. There exists Qg € (—q,Q1) such that if —q < Q < Qg and (o, ) €T
then k(1) > 0.
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Proof. Setting = —q, we see that (3.1) becomes

R
(3.3) RA*(R)k(R) = %/ tA%2(1 — A%)dt for0 < R<1.
0

Since A’ > 0 over (0,1] and A’(1) = 0, then A”(1) < 0. It then follows from (1.8) that
A(1) + A(1)(K*(1) + 3(A4%(1) — 1)) < 0. Since A(1) > 0 this inequality implies that
A(1) < 0. Thus A(R) < 0 for all R € (0, 1) and we conclude from (3.3) that k(1) > 0.
Again, continuity leads us to conclude that k(1) > 0 if (a,Q) € ' and |Q + q| is
sufficiently small. This completes the proof. a -

We now finish the proof of Theorem 1. First, since [0,1] is compact, and I' is
contained in the bounded set D, it must be the case that k(1) depends continuously
on (a, Q) € T. Thus we conclude from Lemmas 8 and 9 that as (a, Q) passes-along I
from Q = 0 to Q = —gq, then k(1) = 0 at some (&, ) € T'. Therefore at (, Q) = (&, Q)
condition (1.11) is satisfied and our proof is complete.

4. Proof of Theorem 2. The proof of our second main result relies on an
analysis of the differential equation for p = A’/A, namely,

1 (4%2-1)

4.1 r__pe_ P - A7)

(4.1) p==—r-—gtrt—yg

LEMMA 4.1. Letd > 1 and let a > 0. Then p > 0 for 0 < R < 1 as long as the
solution exists.

Proof. Since a > 0 and we see that A’ > 0 and A > 0 at least on a small interval

(0,€). Thus, p > 0 on (0,¢). If p(R) = 0 at some first R € (0,1], then

+ k2.

(4.2) p'(R) <0.

Furthermore, A(R) > 0 since p = A’/A > 0 over (0, R). This and (4.1) lead to

. 1 A%2(R) -1 .
p’(R):§5+——(%—+k2(R)>O -

since d > 1. This contradicts (4.2). Thus p > 0 over (0, 1] as long as the solution
exists and the lemma is proved. 0

We now complete the proof of Theorem 2. Let d > 1,a > 0, and 2, ¢ be real.
If the corresponding solution of (1.8)—(1.10) exists for all R € [0,1], then Lemma
10 implies that A’ > 0 for all R € [0,1] so that condition (1.11) cannot hold.
Thus no solution of the boundary value problem (1.8)—(1.11) exists and the proof is
complete.

5. Discussion and numerical results. In Figs. 3a, b we show contours of the
solutions on a disk with d = .08 and ¢ = 0,8 respectively. The figure with zero
twist (¢ = 0) shows that the rotating waves themselves have no curvature and the
arms are straight. In contrast is Fig. 3b which shows a distinct curvature. To see
how the solutions to the boundary value problem change with the twist, g, we plot
k| = fol |k(t)|dt at several values of ¢ as well as the ensemble frequency and the
magnitude of the spiral at R = 1 in Fig. 4. The frequency is initially very close to a
linear function of g but seems to saturate as q increases. The amplitude decreases as
q increases. The magnitude of k increases as is expected since this is what imparts
the radial dependence on the phase and gives the rotating waves their characteristic
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(b)

F1G. 3. The magnitude and contours of u(z,y,t) at a fized value of t for d = .08 and (a) ¢ = 0;
(b) ¢=38.

geometric twist. Hagan obtains essentially the same results in the infinite domain,
but no amplitude effects are seen as all waves approach 1 in magnitude as R — oo.

While the behavior of the wave curvature and the frequency of the spiral waves
is similar in the finite- and infinite-dimensional cases, the magnitude of the waves
is very dependent on the domain size (a feature obviously irrelevant in the infinite
case.) As the domain size is proportional to 1/ Vd, we will fix ¢ and vary the diffusion
size. As d — 0 the spiral will approach that computed by Hagan and Greenberg.
Theorem 2 shows that for d sufficiently large (d > 1), the spirals do not exist. We
obtain fairly good estimates of the critical value of d. To obtain a better quantitative
value of the critical diffusivity, we.numerically solve the boundary value problem.
In Fig. 5, we depict the solution to (1.8)—(1.11) as a function of d by showing the
magnitude of the spiral at the edge of the medium. Clearly, for d — 0 the magnitude
tends to 1 and as d increases, the wave shrinks to 0. This indicates that the wave
magnitude is small and since g appears only in the nonlinear terms, the critical value
of d is independent of q. The numerical value at which the wave vanishes is close
to .3. The way in which the spiral disappears is suggestive of a Hopf bifurcation.
This leads us to consider this possibility by looking at the linearization of (1.1) on
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F1G. 4. The behavior of solutions to (1.8)—(1.11) for d = .08 as a function of q. (a) A(1) and
Ikl; (b) €.

the disk. The eigenfunctions of the Laplacian on the disk are J,(vR) cos(nf) where
J! (v) = 0 with eigenvalues, —v2. Thus, the eigenvalues of the linearized problem are
1 —dv? £i. As d increases, there will be Hopf bifurcations at d* = 1/v2. The smallest
value of d at which this occurs is when n = 1 and v is the first zero of the derivative
of Ji. A simple calculation reveals that d* = 0.2949889302, which is very close to
the numerically observed value and close to the bound obtained in Theorem 2. The
numerical picture in Fig. 5 shows that the bifurcation is supercritical. However, the
solution bifurcates from the trivial branch which is already unstable; thus, this initial
branch is unstable and has two eigenvalues with positive real parts. The results of
Hagan show that in the infinite domain, if q is small enough, the spiral wave is stable.
Numerical integration of (1.1) for d small reveals that the spiral we have computed
is also stable. Thus, as d decreases, the initially unstable branch of spiral waves
stabilizes at some value ds and remains stable for all smaller values. Put another way,
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A(l;d)

F1G. 5. The magnitude of the wave, A(1) for ¢ =1 as a function of d.

as the domain size increases from very small, the following sequence occurs: (i) a small
amplitude spiral wave bifurcates from the unstable origin and is initially unstable; (ii)
as the domain increases, the spiral grows in amplitude and at a critical domain size
it stabilizes. Below, we confirm this heuristic argument with a formal bifurcation
analysis.

A complete bifurcation analysis of this solution is difficult, however, if we add
a free parameter governing the “amplitude” and fix the diffusion coefficient d to be
small, it is possible to perform a formal analysis on the interaction of the rotating
wave with the spatially homogeneous periodic solution. This analysis enables us to
understand the nature of the bifurcation that ultimately stabilizes the rotating waves.
Thus, we consider (1.1), (1.2) with (1.3) replaced by

(5.1) X Mu,v) = Ao — u? — 02

Our formal approach will be to consider A\g the bifurcation parameter and to let d be
small so that near A\g = 0 there will be another complex conjugate pair of eigenvalues
with a real part close to (but not identically) zero. Using formal secondary bifurcation
methods, we can then derive a set of bifurcation equations for the amplitudes of the
different modes. It is easiest to work in the complex coordinate z = u + iv when
we analyze

(5.2) 2zt = z(Ao +1— (1 —1iq)2Z) + dAz

with the Neumann boundary conditions on the unit disk. The normalized eigenfunc-
tions of the Laplacian on the unit disk with these boundary conditions are

Enm(r,0) = cnm exp(inf) Jn(anmT)
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with eigenvalues, —a2,,. Here n is any integer and a,, is the mth zero of the derivative
of J,. The normalization constant c,,, is chosen so that

1 27 1 _
—/ d0/ rdr Epm (1, 0) Enm (1, 0) = 1.
0 0

T
Note, for example, that when n = 0, ag; = 0, the normalized eigenfunction is 1, and is
thus spatially homogeneous. The first nonzero eigenvalue is for n = 1 and corresponds
to the branch of the spiral wave described above. With real d the eigenvalues of the
linearization of (5.2) are

Vpm = Ao — do2, +1i.

For A9 = 0 there is (as is obvious) a Hopf bifurcation. From construction of the
model, we see that it is supercritical and stable. Note that for \g = da?; there is
another Hopf bifurcation from the trivial state. Similarly, there is a Hopf bifurcation
for each value of n, m at successively higher values of A\g. One can perform a standard
bifurcation analysis on each of the branches bifurcating from rest and see that they are
all supercritical. However, due to the fact that the rest state from which they bifurcate
is unstable, they too will be unstable. Nevertheless, for d small (that is, for a large
domain) the bifurcations occur close to each other and there may be some interaction.
Since the first branch is homogeneous and leads to stable periodic solutions and the
next one is the branch of our spiral waves, we will formally look at the interaction of
these two modes. This approach is a standard one in secondary bifurcation theory
(see, e.g., Cohen [2]). Thus, we seek solutions bifurcating from the origin of the form

2(t) = e(zo(7)e™ + z1(7)J1 (a117)eX T 4 25 (1) J1 (a117)e! D) + O(£?),

where T = €2t is slow time. We assume that Ao and d are small so that after routine
calculations, we obtain the formal equations

Orz0 = 20(Ao — (1 — iq) (2020 + 22121 + 22222)),

Or21 = z21(M\g — da2; — (1 —iq)(az1Z1 + 20222 + 220%)),

Orza = 21(Ao — da?1 — (1 —iq)(azeZ2 + 2a2121 + 220%0)),
where a = 2f01(c11J1(a11r))4rdr ~ 1.168. As with all systems such as this, one
need only look at magnitudes of the solutions in order to study the stability and
bifurcation from rest. Letting |z;| = s; and s’ denote the derivative with respect to
7, the magnitudes satisfy

(5.3) sh = s0(Ao — 82 — 257 — 252),

(5.4) 81 = s1(Mo — da?, — as? — 2as3 — 2s2),

5.5 sh = sa(\g — da?, — as? — 2as? — 2s2).
2 11 2 1 0

)
The homogenous oscillation corresponds to the solution s2 = A\ and s1,2 = 0. The
eigenvalues about this solution are —2\g, —\g — da?;, —\g — da?;, so that the inter-
action with the inhomogeneous state never destabilizes the homogeneous oscillations.
(If the formal analysis is to be taken seriously, this had better be the case as the



1400 JOSEPH PAULLET, BARD ERMENTROUT, AND WILLIAM TROY

homogeneous oscillation is always a stable solution to (1.1).) The spiral wave solution
corresponds to sp = 0 and either of s1, s2 nonzero. Without loss of generality, we take
s2 =0 and s? = (Ao — da?,)/a. Thus, this solution bifurcates for a higher value of \g
than does the homogeneous solution. The eigenvalues about this solution are

2
v, = )\0 - E(}\O - da%l),

vy = —2(Ao — da%l),
V3 = —()\0 - da%l).

(Note that these correspond to complex conjugate pairs of eigenvalues for the full
complex system.) It is clear that just past the bifurcation point, this solution is
unstable since v; > 0. However, since a < 2 it is possible for v; to become negative if
either Ay is large enough or d is sufficiently small. For example, fixing Ay positive and
viewing d as the “bifurcation” parameter, one sees that as d decreases to d** = Ag(1—
a/2)/a?, the “spiral” wave becomes stable via a Hopf bifurcation. The stabilization
is a result of the nonlinear interaction with the branch of homogeneous oscillations.
One can readily show that there are no stable “mixed mode” solutions. The argument
is purely formal but seems to agree with our numerical results. We have neglected
other modes although Hagan has shown (at least in the infinite domain) that these
are likely to be unstable. This analysis also points out some differences between the
infinite and finite domains. The spiral wave in the infinite domain is always stable,
whereas in the finite domain it is initially unstable and then stabilizes for large enough
domains or large enough Ag.

One should note that the conjectured Hopf bifurcation that leads to the stabiliza-
tion of the spiral wave is not the same as that discussed by Barkley [1]. Barkley [1]
and others have run extensive simulations of spirals in the circular domain in order
to understand the loss of stability of the regular rotating spiral and the appearance
of the so-called wobble solutions. His instability is related to the destabilization of
the spiral as the equivalent of the parameter ¢ in our model is increased. Again,
appealing to numerical results, we have found that as ¢ increases, the spiral winds
more tightly and at a critical value loses stability to a Hopf bifurcation. The resul-
tant solution is no longer a solution to an ordinary differential equation and instead
becomes a spiral that meanders about the core. Barkley (personal communication)
has recently developed a formal analysis of this bifurcation based on normal forms of
the interaction of a Hopf bifurcation with the almost translational invariance of the
spiral core. Since we are able to explicity solve for the spiral wave we hope to apply
some of these techniques to the behavior of the present model as ¢ increases.

The bifurcation argument above does not depend on any special properties of
(1.1). Thus, any system of reaction-diffusion equations on a disk that has scalar dif-
fusion and an unstable equilibrium with the instability arising from a pair of complex
conjugate eigenvalues with positive real parts will have a Hopf bifurcation at a critical
domain size or diffusivity. This branch of solutions will be unstable but can possibly
stabilize as the domain increases in size. The symmetry of this solution is similar to
that of the rotating waves in excitable media and is closely related to the spiral we
have computed in the present paper. Recent numerical results on spatially discrete
arrays as well as some preliminary analysis reveal that once the discrete analogue of
the spiral wave is well established it is possible to change a parameter that controls
the transition from oscillatory to excitable in such a way that the spiral wave persists.
Thus, we are led to conjecture that the well-known spiral waves in excitable media
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are continuations of branches that arise in oscillatory media and that these latter
branches arise themselves from Hopf bifurcations from an unstable steady state. This
conjecture has been numerically verified in (spatially discrete) square domains where
there is a continuous change in the shape of the spiral as one goes from an oscillatory
to an excitable system.
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