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Abstract. Singular perturbation methods are used to construct traveling waves for models of
thalamic networks. We first study a single layer of mutually inhibitory neurons, each of which has
the ability to rebound after hyperpolarization. Two types of waves are constructed: smoothly prop-
agating waves and lurching waves which propagate in a saltatory fashion. We reduce the existence
of these waves to simple boundary value problems or algebraic systems which are solved using the
computational package AUTO. The resulting calculations are compared to numerical simulations of
the network. Finally, some comments are made concerning two-layer networks.
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1. Introduction. A number of computational models have been developed with
the aim of understanding the mechanisms of wave propagation in networks of neurons
in thalamic slice preparations [3, 4, 5, 7, 12, 14]. The slice preparation was developed
by McCormick and his collaborators in order to study various rhythms that underlie
sleep and are believed to originate in the thalamus [1, 2, 9, 10, 11, 14]. The compu-
tational models typically consist of two layers of neurons: the thalamocortical (TC)
cells and the reticularis (RE) cells. The TC cells are excitatory and project to both
the cortex and the RE cells. The RE cells are inhibitory and project to other RE
cells as well as to TC cells (see the circuit in Figure 1). Both cell types have various
ionic currents that are responsible for their properties, but the dominant current and
the one that gives rise to their interesting properties is the so-called T-current. The
T-current is produced by the influx of calcium ions and leads to a large depolarization
of the membrane on which spikes generated by other fast currents ride. These bursts
of action potentials are observed both in models and in intracellular recordings of
the cells. The T-current (depending on parameters) operates in two different modes.
In the excitable mode, a brief depolarization results in a burst of action potentials
from the cell. In the rebound mode, the cell must be hyperpolarized (brought to a
potential more negative than rest) and then released from the inhibition before it can
fire a burst of action potentials. In some modeling studies [8] the TC cells have the
rebound property and the RE cells have the excitable property. Thus, the propagation
of activity is mediated as follows. A burst of TC cells excites neighboring RE cells
causing them to fire. This in turn inhibits neighboring TC cells. When the inhibition
wears off, the TC cells rebound with a burst which continues the process along the
tissue.

In a recent paper, Rinzel et al. [12] considered a simplification of this circuit. By
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Fig. 1. Two-layered network of TC cells and RE cells. The TC cells excite the RE cells. The
RE cells send inhibition back to the TC cells and also inhibit each other.

endowing the RE cells with the rebound property, they reduced the two-layered net-
work to one layer which is able to produce propagating waves. The feature that makes
these waves interesting from a mathematical point of view is that they do not travel in
a smooth fashion, but rather have a saltatory, or “lurching,” quality. Experimentally,
it is not known whether the waves in the slice lurch since the spatial measurements
of the membrane potential are not sufficiently fine to discriminate variations in the
velocity due to heterogeneities from actual dynamic lurching. However, many of the
computational models have this lurching property. Rinzel et al. also made the follow-
ing observation. If the coupling had a local gap (e.g., cells were not coupled locally
but were coupled at some distance from the center), then smooth propagation occurs.

Golomb and Ermentrout [7] have recently used a simple integrate and fire model
with conductance delays to study the difference between smooth and lurching waves.
They find that as the coupling delay between neurons increases, the smoothly prop-
agating wave becomes unstable and lurching waves arise. The coupling gap in the
work of Rinzel et al. essentially allows cells to escape from inhibition sooner so that
this “delay” is shorter and smooth waves result.

In this paper, we explore the biophysical equations used in Rinzel et al. [12] as
well as in [8] and study the existence of smooth and lurching waves using singular
perturbation theory. Instead of the model considered in [7] we study the full net-
work equations. Using geometric singular perturbation methods, we derive explicit
formulas for when a particular type of wave exists. These formulas also determine
how the velocity of the waves depends on network parameters. As we shall see, each
type of wave may leave a variety of different sorts of activity patterns in its wake.
The geometric methods we develop are very useful in understanding the mechanisms
responsible for these different patterns.

In the next section, we lay out the model. Various types of activity patterns
we observed in the full two-layer network are described in section 3, followed by an
introduction to basic singular analysis methods in section 4. Sections 5 and 6 contain
the bulk of the paper, where we analyze the smooth and lurching waves for one-layer
networks. The discussion in section 7 contains comparisons of various models and
results, as well as some open problems.
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Fig. 2. Nullclines corresponding to a single oscillatory cell. The bold curve represents the
singular periodic solution (limit cycle).

2. The model.

2.1. Single cell. In the numerical simulations, individual cells satisfy differential
equations of the form

Cmv
′ = −gL(v − vL) − gCam∞(v)h(v − vCa),(2.1)

h′ = ε(h∞(v) − h)/τh(v).

These equations arise as reduced models for thalamic neurons; see, for example, [8, 12].
The definitions of the nonlinear functions and parameters in (2.1) are given in the
appendix. The results do not, however, depend on the precise details of the equations.
For this reason, we usually write (2.1) as

v′ = f(v, h),(2.2)

h′ = ε(h∞(v) − h)/τh(v).

The following assumptions on the nonlinear functions in (2.2) will be needed for the
analysis: We assume that the v-nullcline {f = 0} represents a cubic-shaped curve,
denoted by C, as in Figure 2. We further assume that v′ > 0 (< 0) above (below) C.
The h-nullcline {h = h∞(v)} is taken to be a nonincreasing curve that intersects C
at a unique point, which we denote by p0 = (v0, h0). Moreover, τh(v) is assumed to
be positive and nonincreasing; it then follows that h′ > 0 (< 0) below (above) the
h-nullcline. If p0 lies on the left branch of C, then (2.2) is said to be excitable; in this
case p0 is a globally stable fixed point of (2.2). If p0 lies on the middle branch of C,
then (2.2) is said to be oscillatory; (2.2) will then exhibit a stable limit cycle when ε
is small.

2.2. Synaptic coupling. We model two mutually coupled cells as

v′i = f(vi, hi) − gsynsj(vi − vsyn),

h′i = ε(h∞(vi) − hi)/τh(vi),

s′i = α(1 − si)H(vi − θ) − εβsi.

Here, i, j = 1, 2 and i �= j. The constants α, β, and gsyn are all positive and H is
the Heaviside step function. Hence, θ is a threshold above which the presynaptic cell
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Fig. 3. Examples of two different types of synaptic footprint: (a) on-centered and (b) off-centered.

j must be to activate the synaptic variable sj . If vj < θ, then sj decays slowly to 0
(deactivates) at the rate εβ. On the other hand, if vj > θ, then sj activates with rate
α + εβ which is O(1) with respect to ε. Our choice of synaptic turn-on and turn-off
rates is motivated by models for thalamic sleep rhythms. The synapses are said to be
excitatory if the reversal potential vsyn satisfies vsyn > v0, and inhibitory if vsyn < v0.

2.3. Architecture. We consider one-dimensional arrays of cells. The network
may be single layered or double layered. A single-layered network is modeled as

v′i = f(vi, hi) − gsyn
N

(vi − vsyn)
∑
j

Wijsj ,

h′i = ε(h∞(vi) − hi)/τh(vi),(2.3)

s′i = α(1 − si)H(vi − θ) − εβsi.

Here, N is the total number of cells in the network, the sum is over all the cells in the
network, and Wij represents a synaptic weight; it can be viewed as the probability that
there is a synaptic connection between cell j and cell i. We assume that Wij is of the
form Wij = W (i−j), where W (x) is a positive, even function, often referred to as the
“synaptic footprint.” Figure 3 shows two possible choices for W (x). In Figure 3(a),
W (x) has a maximum at x = 0 and is decreasing for x > 0. This is referred to as
on-centered connectivity. In Figure 3(b), the connectivity is off-centered , where W (x)
is small for x small and has a maximum at some x0 > 0.

For the analysis it will be convenient to consider a continuum limit as the number
of cells becomes unbounded. We are then led to consider the integral-differential
equation

vt = f(v, h) − gsyn(v − vsyn)

∫ ∞

−∞
W (x− y)s(y, t)dy,

ht = ε(h∞(v) − h)/τh(v),(2.4)

st = α(1 − s)H(v − θ) − εβs,

where (v, h, s) are functions of (x, t).
We shall also briefly discuss two-layered networks, as illustrated in Figure 1. The

different layers represent thalamocortical relay (TC) and thalamic reticularis (RE)
cells. The TC cells send excitation to the RE cells, while the RE cells send inhibitory
coupling both to the TC cells and to other RE cells. We do not present the full
equations for this network here; more information can be found in the appendix.

3. Numerical results. To illustrate the numerous types of propagating pat-
terns, here we describe some results obtained from numerical simulations of the full
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Fig. 4. Smooth waves for a two-layered network: (a) a solitary pulse, (b) a double pulse, (c) a
multiple pulse solution. Parameter values corresponding to each wave are given in the appendix.

Fig. 5. Lurching waves for a two-layered network: (a) a solitary lurcher, (b) a double lurcher,
(c) a lurching wave with periodic clustering in the wake. Parameter values corresponding to each
wave are given in the appendix.

two-layered network. Two general classes of waves are observed, which we refer to
as smooth waves and lurching waves. A smooth wave corresponds to a fixed profile
moving with constant velocity, much like a single action potential traveling down a
nerve axon. If we keep track of the spatial positions x and the times t for which the
leading edge of the membrane potential is at some fixed value, then this defines a
straight line of the form x−µt = constant, where the slope µ corresponds to the wave
speed.

Several types of smooth waves are shown in Figure 4. Parameter values are given
in the appendix. A solitary pulse is illustrated in Figure 4(a). Multiple pulses may
also exist, and a double pulse is shown in Figure 4(b). There may also exist periodic
smooth wave trains. Finally, a more exotic smooth wave is shown in Figure 4(c);
three bursts at a frequency of about 6–7 Hz are followed by a silent period of about
200 ms, and this is then followed by another sequence of three bursts.

A lurching wave does not propagate with constant velocity. Instead, the propa-
gating wave recruits groups or clusters of cells in discrete steps. The leading edge of
active cells inhibits some cluster of cells ahead of it; the size of this cluster depends
on the synaptic footprint. Inhibited cells must wait until the active cells fall back to
the silent phase, and then for inhibition to wear off, before they are able to jump up
to the active phase.

Several types of lurching waves are illustrated in Figure 5. There may exist single
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and multiple lurching pulses as shown in Figures 5(a) and (b). For each of these
solutions, the network eventually returns to rest in the wake of the propagating wave.
The network may, however, also exhibit sustained oscillations. Cells in the wake of the
wave may oscillate synchronously, or they may form clusters as shown in Figure 5(c).
The firing of cells within each cluster is nearly synchronous, while different clusters
are desynchronized. The activity patterns in the wake of the wave may also be quite
complicated and disorganized.

4. Introduction to the analysis.

4.1. Singular solutions. It is instructive to consider simple networks before
discussing large arrays of oscillators and population dynamics. To introduce our basic
approach for analyzing the models in section 2, it is important to first understand
the intrinsic dynamics of a single cell and how an individual cell responds to synaptic
input from another cell.

All of the solutions discussed in this paper are analyzed using a geometric singular
perturbation approach. The parameter ε is taken to be small, which allows us to
dissect the full equations into fast and slow subsystems and then construct “singular
solutions” of the equations in which ε is formally set equal to zero. The singular
solutions typically consist of several pieces; each piece is a solution of one of the
reduced fast or slow subsystems. These singular constructions enable us to derive
formulas for when a particular solution is likely to exist, what bifurcations of the
solutions might take place as parameters are varied, and how properties such as the
wave speed depend on parameters.

The basic idea behind our approach is most simply illustrated by considering a
single oscillatory cell without any synaptic input. Recall that such a cell satisfies
(2.2), and since it is oscillatory, the fixed point p0 lies on the middle branch of the
cubic-shaped nullcline C. The system (2.2) then gives rise to a limit cycle which
approaches the singular solution shown in Figure 2 as ε → 0. This singular solution
consists of four pieces. The silent and active phases correspond to the pieces on the
left and right branches of C, respectively. These pieces satisfy slow equations which
we will define shortly. The two remaining pieces are transitions between the silent
and active phases; they correspond to the jump-up and jump-down between the left
and right branches of C and are governed by fast equations.

The fast equations are obtained by simply setting ε = 0 in (2.2). Note that h is
then constant and v satisfies a scalar equation. The slow equations are obtained by
introducing the slow time τ = εt in (2.2) and then letting ε = 0. This leads to

0 = f(v, h),(4.1)

ḣ = (h∞(v) − h)/τh(v),

where differentiation is with respect to τ . These equations tell us that (v, h) lies on
C with the evolution along C given by the second equation in (4.1).

It will be convenient to introduce the following notation. Let CS , with 0 <
S < 1, denote the curve {(v, h) : f(v, h) − gsynS(v − vsyn) = 0}. These curves
are cubic shaped as long as gsyn is not too large. We denote the left and right
knees of CS by (vLK(S), hLK(S)) and (vRK(S), hRK(S)), respectively. Let PFP (S) =
(vFP (S), hFP (S)) be the point of intersection of CS and the h-nullcline {h = h∞(v)}.
This is a fixed point for each cell if the synaptic input is held constant at the level S.
We say that CS is excitable (oscillatory) if (vFP (S), hFP (S)) lies on the left (middle)
branch of CS . Throughout the analyses that follow, it will be assumed that each cell
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without any input is excitable; hence, C0 is excitable. It is possible, however, that
CS is oscillatory for some other levels of synaptic input S. As we shall see, this may
have an important impact on the types of waves that emerge. We remark that for
excitatory coupling, CS lies below C0, and for inhibitory coupling, CS lies above C0.

In larger networks, the cells will still lie on the left branch of some cubic during
the silent phase and on the right branch of possibly another cubic during the active
phase. Which cubic the cell lies on is determined by the level of synaptic input the
cell receives.

4.2. When does one cell fire in response to another?. Here we consider the
simple network consisting of a pair of cells with cell 2 receiving synaptic input from
cell 1. We assume that cell 1 fires an action potential burst and describe the possible
responses of cell 2. In particular, we find conditions on the parameters for whether
or not cell 2 also fires a burst.

Now cell 2 evolves according to the equations

v′2 = f(v2, h2) − gsyns1(v2 − vsyn),(4.2)

h′2 = ε(h∞(v2) − h2)/τh(v2),

where s1(t) satisfies the scalar equation

s′1 = α(1 − s1)H(v1 − θ) − εβs1.

In the following discussion, we will work with the slow equations (i.e., change the
independent variable to τ = εt) and view the jumps up and down as instantaneous.
Assume that cell 1 fires at τ = 0 and remains active for 0 < τ < T0; that is, v1 > θ
for 0 < τ < T0. It then follows that in the limit ε → 0,

s1(τ) =

{
1 for 0 < τ < T0,
e−β(τ−T0) for τ > T0.

We plug this into the slow equations derived from (4.2) to determine the evolution of
cell 2.

Cell 2’s response depends on several factors, both intrinsic and synaptic. The
synaptic factors include

• whether the synapse is excitatory or inhibitory (that is, vsyn),
• whether cell 2 is oscillatory for some levels of input,
• the rate at which the synapse turns off (controlled by β),
• the strength of synaptic input (represented by gsyn).

Our geometric approach will be very useful in determining how each of these factors
influence cell 2’s response. This information will then allow us to classify the sorts of
waves which emerge in large arrays of cells.

4.3. Response to inhibitory input. Since the analyses in sections 5 and 6 will
focus on the effects of inhibitory coupling in networks, we prepare the ground here
by discussing how cell 2 may respond to inhibitory input from cell 1. Let vsyn < v
along singular solutions, which implies that C0 lies below C1 for v > vsyn. There are
two main cases to consider, depending on whether C1 is oscillatory or excitable (recall
that C0 is always taken to be excitable).

First, suppose that C1 is oscillatory. When cell 1 fires, cell 2 jumps from the rest
point on C0 to the left branch of C1. If T0 is sufficiently large, then cell 2 will evolve
along the left branch of C1 all the way to the knee, and then jump up at some time
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Fig. 6. PIR. While a cell receives inhibitory input, it evolves along the left branch of C1. After
it is released from inhibition, the cell will jump up to the active phase if it can “escape” by reaching
the curve of left knees.

T1 < T0. Hence, cell 2 is able to “escape” its silent phase by reaching the curve of left
knees while cell 1 is still active.

Now let us assume that C1 is excitable. In this case cell 2 evolves up the left
branch of C1 toward the stable fixed point PFP (1) during 0 < τ < T0, while cell 1 is
active. At τ = T0, cell 1 jumps down and the synaptic variable s1(τ) begins to decay.
If, at this time, cell 2 lies above the left knee of C0 and the inhibitory input it receives
is decaying relatively fast, then it will fire. This mechanism of firing is referred to
as postinhibitory rebound (PIR). It is often considered to be a “release” phenomenon,
whereby the ending of cell 1’s active phase removes the inhibition felt by cell 2, thus
switching cell 2 from silent to active. We remark, though, that the dynamics of PIR
can be much more complex and subtle than the simple description above reveals. If
the synaptic activation and deactivation constants were both O(1), then indeed, the
release of cell 2 from inhibition would occur instantaneously on the slow time scale,
so rebound firing would be elicited immediately. However, if the synaptic decay rate
is εβ = O(ε), as in our model, then the inhibitory influence will remain even after the
active cell stops firing. So whether rebound firing actually occurs will depend on if cell
2 can escape the residual inhibition by reaching the curve of knees. In other words,
when there are slow synaptic processes at work, PIR is a combination of “release”
and “escape” mechanisms; see Figure 6.

The arguments above demonstrate that cell 2 can fire due to PIR if gsyn, T0, and
β are all sufficiently large: gsyn needs to be large so that hFP (1) > hLK(0), which
ensures that if T0 is big enough, then cell 2 lies above the left knee of C0 when τ = T0;
we need β to be sufficiently large so that the synaptic input decays rapidly enough
for cell 2 to be able to reach the curve of left knees. If β is too small, then cell 2 will
follow close to the fixed points PFP (s1(τ)) and return to rest.

The slow variables governing the behavior of cell 2 are h2 and s1. Reduced
equations for their evolution can be derived. This slow subsystem cannot typically
be solved explicitly since the h2 equation is in general nonlinear, but it nevertheless
provides a helpful way to visualize and interpret solutions. We depict in Figure 7 the
projection of cell 2’s trajectory onto the (h2, s1) slow phase plane. The bold curve
represents cell 2’s trajectory; it begins at the rest point p0 and jumps vertically to
{s1 ≡ 1} when cell 1 fires. It then moves horizontally toward (hFP (1), 1) until cell 1
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Fig. 7. Slow phase plane. The slow variables are h and s (subscripts have been dropped). If
the trajectory can reach the curve of left knees {h = hLK(s)}, as the bold curve does, then the cell
will jump up to the active phase. If the parameter β is too small, then this will not be possible, as
illustrated by the dashed curve.

jumps down at time τ = T0. For τ > T0, s1(τ) decreases. Cell 2 fires if its trajectory
is able to reach the curve {h = hLK(S)}. As discussed earlier, if β is too small, the
trajectory will stay close to {h = hFP (S)}; this is illustrated by the dashed curve in
Figure 7.

5. Smooth waves.

5.1. Introduction. Smooth waves arise when cells are able to leave their silent
phase without having to wait for presynaptic cells to jump down first. As we have
described in the preceding section, a cell could manage this if, while receiving some
nontrivial level of inhibitory input S, it lies on a cubic that is oscillatory. However,
we mentioned in the introduction that there are other possible mechanisms. In this
section, we show that smooth propagation of activity may arise even if each CS is
excitable, providing the synaptic footprint is off-centered.

Consider a one-dimensional continuous array of cells coupled through mutual
inhibition. A smooth wave corresponds to a traveling wave solution of (2.4); that is,
it is a solution of (2.4) of the form

(v(x, t), h(x, t), s(x, t)) = (v(ξ), h(ξ), s(ξ)), ξ = x + εct.

Plugging the above into (2.4), we find that (v, h, s) satisfy the system

εcv′ = f(v, h) − gsynStot(ξ)(v − vsyn),

εch′ = ε(h∞(v) − h)/τh(v),(5.1)

εcs′ = α(1 − s)H(v − θ) − εβs,

where the derivative is with respect to ξ and

Stot(ξ) =

∫ ∞

−∞
W (ξ − y)s(y) dy.(5.2)

A smooth wave is then a solution of (5.1) that satisfies the boundary conditions

(v, h, s)(±∞) = (v0, h0, 0).
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We will consider c > 0, that is, waves moving to the left. Note, also, that the velocity
of the wave is taken to be O(ε).

We can reduce this integral-differential equation to a system of ordinary differ-
ential equations (ODEs) as follows. Consider a solitary (single-peaked) pulse and
assume that v(ξ) > θ if and only if 0 < ξ < a, where the constant a is yet to be
determined. Once c and a are known, we can solve the third equation in (5.1) for
s(ξ). In the limit ε → 0, we find that

s(ξ) =




0 if ξ < 0,
1 if 0 < ξ < a,

exp
{
−β
c (ξ − a)

}
if ξ > a.

(5.3)

Now plug this formula for s(ξ) into (5.2) to obtain an expression for Stot(ξ). Since
this depends on the unknown constants c and a, we will sometimes write Stot(ξ; c, a).
The first two equations in (5.1) can then be treated as a system of nonautonomous
ODEs.

5.2. The singular trajectory. As described in section 4, we construct a singu-
lar solution of (5.1) by dissecting the trajectory into different pieces corresponding to
either the silent or active phases or to a transition between these phases. Over each
piece, the solution satisfies reduced equations in either the fast or slow variables. We
begin our construction at ξ = −∞ and increase ξ, describing the singular trajectory
in the (v, h) phase plane along the way.

We will assume a footprint of unit length; that is, W (ξ) = 0 for |ξ| ≥ 1. The
translation of the wave is chosen so that the initial jump up to the active phase occurs
at ξ = 0. It then follows that for ξ < −1, we have Stot(ξ) = 0, and (v(ξ), h(ξ)) lies at
the rest point (v0, h0) on the left branch of the Stot = 0 cubic.

For −1 < ξ < 0, the cells lie in the silent phase along the left branch of the
cubic associated with Stot(ξ), which we write as v = vL(h, Stot)(ξ). The variable h(ξ)
evolves according to the second equation in (5.1), a nonautonomous ODE in which
v = vL(h, Stot)(ξ). We view h(ξ) and Stot(ξ) as the slow variables. Note that they
depend on the unknown constants a and c. These constants should be chosen so that
(h(0), Stot(0)) lies on the curve of knees h = hLK(S) in the slow phase plane (since
the jump-up to the active phase is supposed to occur at ξ = 0). Such a choice may
not be possible, in which case the smooth wave will not exist.

For example, take a square on-center synaptic footprint, without gaps. In this
case, Stot(ξ) is nearly constant while in the silent phase; so, given that the cells are
excitable for all levels of synaptic input, (v(ξ), h(ξ)) must approach the fixed point
along the left branch of the cubic associated with this constant Stot level. A smooth
wave is therefore not possible. In contrast, if there is a gap in the synaptic footprint,
then Stot(ξ) will achieve a maximum at some point ξ0 ∈ (−1, 0) and then begin to
decrease. For simplicity of calculation, we work with a synaptic footprint of unit
length that has rectangular peaks and a gap of length 2γ between them, as described
in the appendix. We see that Stot reaches a maximum at ξ = −γ, after which it
decreases as ξ → 0. In this case (h(ξ), Stot(ξ)) is able to evolve to the curve of knees,
thus escaping the silent phase and making possible the existence of a smooth wave.
We will denote the jump-up point on the curve of knees by (hJ , SJ).

A reduced equation for the fast jump up can be derived by introducing the fast
variable η = ξ/ε into the first two equations of (5.1) and then letting ε = 0. This
yields the fast equations cv′ = f(v, h) − gsynStot(0)(v − vsyn) and h′ = 0, where
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differentiation is now with respect to η. Along the jump up, both h and Stot are
constant; that is, (h, Stot) = (hJ , SJ). During the active phase, when 0 < ξ < a,
(v(ξ), h(ξ)) travels along the right branch of the cubic determined by Stot(ξ). There
is then a jump down at ξ = a. As with the jump up, we can obtain a reduced equation
for v with both h and Stot constant. This is as far as we’ll take the description of the
singular solution for now.

5.3. Estimating the wave speed. The singular construction allows us to ob-
tain estimates on the wave speed. This is based on reducing the integral-differential
system (5.1) to a two-point boundary value problem involving the unknown param-
eters a and c. The boundary value problem can then be solved using the numerical
continuation package AUTO [6].

Consider (5.1) for −1 ≤ ξ ≤ 0; recall that this corresponds to the silent phase
of the singular solution. We begin by writing the first two equations of (5.1) as the
autonomous system

εcv′ = f(v, h) − gsynStot(x)(v − vsyn),

ch′ = (h∞(v) − h)/τh(v),(5.4)

x′ = 1.

Note that there are three dependent variables along with two unknown parameters a
and c. In order to have a unique solution, we need to specify boundary conditions.

Since, as stated in section 5.2, (v(ξ), h(ξ)) = (v0, h0) for ξ < −1, a natural
condition at ξ = −1 is

v(−1) = v0, h(−1) = h0, and x(−1) = −1.(5.5)

For a boundary condition at ξ = 0, we use the fact that this is when the jump up
takes place, and that (v(0), h(0)) must lie on the curve of left knees. We assume that
this curve is linear, i.e., hLK(S) = hLK(0) + λS for some constant λ whose value can
be estimated from plots of nullclines. Hence, we have the boundary condition

h(0) = hLK(0) + λStot(0; c, a),(5.6)

where Stot(0; c, a) is calculated from (5.3) and (5.2); see, for example, the formula
shown in the appendix.

To complete the system, one more condition relating the parameters is needed.
This arises by considering the active phase of the singular solution. During the active
phase, when 0 < ξ < a, reasonable simplifying assumptions are that h∞(v) = 0 and
τ(v) = τR for some positive constant τR. These imply that h(ξ) satisfies ch′ = −h/τR,
and hence h(ξ) = h(0)e−ξ/cτR . We will further assume that Stot = 0 at the jump
down. This is not quite correct; however, provided β is not too small, it will be a
reasonable approximation as numerical simulations will show. It then follows that
hRK(0) = h(0)e−a/cτR , or

a = cτR ln

(
h(0)

hRK(0)

)
= cτR ln

(
hLK(0) + λStot(0)

hRK(0)

)
.(5.7)

Note that Stot(0) depends on a so this is a nonlinear implicitly defined condition on
a. Our boundary value problem therefore consists of the ODEs (5.4) together with
the boundary conditions (5.5), (5.6), and (5.7). There are five conditions for this
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Fig. 8. Plots of wave speed versus parameters for smooth waves: (a) gsyn; (b) β; (c) σ ≡ 1−γ,
where γ is the gap size of the synaptic footprint. The solid curves were obtained from the two-point
boundary value problem, and the dashed curves directly from the integral-differential equations. The
parameter ranges shown are those for which a pulse can be found in both of the systems. In each
plot, the nonvarying parameters are set at their default (or “starting”) values given in the appendix.

three-dimensional system. However, we have two free parameters, the pulse width, a,
and the velocity, c, so there is a possibility for finding solutions.

Results obtained from using AUTO are shown in Figures 8 and 9. The solid curves
were obtained from the two-point boundary value problem described here, while the
dashed curves were computed by first numerically solving the integral-differential
equations of (2.4) and then measuring the velocity of the resulting smooth wave.
Observe that the speed varies noticeably with respect to β, τR and the gap size of
the synaptic footprint; it does not depend much on gsyn, a parameter that manifests
itself in the strength of inhibition between cells, nor on τL, which measures the rate
of recovery of each cell while in its silent phase.

In Figure 10(a), we plot the v-component of a single-pulsed solution to (5.1)
against position x at a fixed time, and show also the solution of the two-point boundary
value problem. In Figure 10(b) we plot Stot, and in Figure 10(c) the h-component is
plotted. Note that Stot decreases sharply just before the cell fires. It is during this
period that a gap in the inhibitory input to cells allows them to reach the curve of
knees and “escape.” In Figure 10(d), we plot the projection of (v(ξ), h(ξ)) onto the
(v, h) phase plane and in Figure 11, we show the projection of (h(ξ), Stot(ξ)) onto
the phase plane of slow variables. Our numerics demonstrate that the solution of
(5.1) behaves closely to that predicted by the singular perturbation construction. In
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Fig. 9. Plots of wave speed versus (a) τR and (b) τL for smooth waves. See caption of Figure 8
for more explanation.

particular, the trajectories follow the nullcline determined by Stot(ξ); moreover, the
jumps up and down occur at left and right knees. Views of a two-pulsed solution,
found at small values of the gap size, are shown in Figure 12.

5.4. A priori estimates on the wave speed and gap size. In this subsection
we demonstrate how one can derive analytical estimates on the wave speed. We also
present estimates on how large the gap in the synaptic footprint should be for there to
exist a singular smooth wave. Our calculations here are done using the rectangular-
peaked footprint described in section 5.2 and in the appendix, and cells are assumed
to be excitable for all levels of synaptic input. First, we need the following lemmas.

Lemma 5.1. Let a be the width of the singular smooth pulse; then 0 < a < 1.
Proof. If a ≥ 1, then Stot(ξ) = 1/2 for −γ ≤ ξ ≤ 0. That is, (v(ξ), h(ξ)) lies

on the left branch of the Stot = 1/2 cubic for −γ ≤ ξ ≤ 0. It is then impossible for
(v, h) to lie along the curve of knees at ξ = 0 in order to jump up to the active phase.
Hence, a smooth wave cannot exist.

Lemma 5.2. There exists δ0 > 0, that does not depend on γ, such that Stot(−γ)−
Stot(0) > δ0.

Proof. Note that the curves hFP (S) and hLK(S) are monotone increasing. Let
SFP (h) and SLK(h) denote their inverses, respectively. The assumption that each
cell is excitable for fixed levels of input implies that there exists δ0 > 0 such that
SFP (h) − SLK(h) > δ0 for each h for which both curves are defined.

Now (h(ξ), Stot(ξ)) reaches a maximum value of Stot at ξ = −γ and then must
cross the fixed point curve at some ξ0 ∈ (−γ, 0) before it can jump up. It follows that

Stot(−γ) > Stot(ξ0) = SFP (h(ξ0)).(5.8)
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Fig. 10. Various perspectives of the one-pulsed solution: (a) Plot of v versus x; the solid curve
was obtained from the two-point boundary value problem, and the dashed curve from the integral-
differential system, at a fixed time t. (b) Plot of Stot versus x. (c) Plot of h versus x. (d) Projection
of solution trajectory (solid curve) onto the (v, h) phase plane; the dashed curves are the nullclines
for Stot = 0, the dotted curve is the cubic-shaped nullcline for Stot ≈ 0.0055, and the dot-dashed
curve corresponds to the cubic-shaped nullcline for Stot ≈ 0.28.

Moreover, h′(ξ) < 0 for ξ ∈ (ξ0, 0), and hence h(ξ0) > h(0). Since SLK(h) is monotone
increasing, it follows that

SLK(h(ξ0)) > SLK(h(0)) = Stot(0).(5.9)

The last equality holds because the jump-up is at ξ = 0. From (5.8), (5.9), and the
definition of δ0, we conclude that

Stot(−γ) − Stot(0) > SFP (h(ξ0)) − SLK(h(ξ0)) > δ0,

as claimed.
To derive a priori bounds on the wave speed, we obtain from (5.7) and Lemma 5.1

the upper bound

c = a

{
τR ln

h(0)

hRK(0)

}−1

<

{
τR ln

hLK(0)

hRK(0)

}−1

.

In order to obtain a lower bound, we can calculate that if a < 1 − γ, then
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Fig. 11. Plots of the solution trajectory (solid curve) corresponding to the smooth wave in the
phase plane of slow variables h and Stot. (b) zooms in on a portion of (a). The dashed curve is the
curve of left knees {h = hLK(Stot)}; the dotted curve is the curve of fixed points {h = hFP (Stot)}.

Stot(−γ) =
1

2(1 − γ)

(
c

β
(1 − e

β
c (γ+a−1)) + a

)

<
1

2(1 − γ)

(
c

β
+ a

)
=

c

2(1 − γ)

(
1

β
+ τRln

hJ
hRK(0)

)

<
c

2(1 − γ)

(
1

β
+ τRln

1

hRK(0)

)
.

Together with Lemma 5.2, this implies that

c > 2δ0(1 − γ)

(
1

β
+ τRln

1

hRK(0)

)−1

.

If a ≥ 1 − γ, then a lower bound for c follows from (5.7).
Next, we find a lower bound on the gap size. First we assume that γ < min{a, (1−

a)}; then using Lemma 5.2 and the formula for Stot in the appendix, we find that

δ0 < Stot(−γ) − Stot(0) =
1

2(1 − γ)

{
c

β

(
e

β
c (a−1) − e

β
c (γ+a−1)

)
+ γ

}
<

γ

2(1 − γ)
,

and hence γ > 2δ0
1+2δ0

. A similar analysis holds if either γ > a or γ > 1 − a, with help
from the bounds on c.
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Fig. 12. Various perspectives of a two-pulsed solution, which was found for γ ≈ 0.1 (in general,
multipeaked waves can be generated at small values of γ): (a) Plot of v versus x. (b) Projection
of solution trajectory (double-looped solid curve) onto the (v, h) phase plane; the dashed curves are
the nullclines for Stot = 0, the dotted curve is the cubic-shaped nullcline for Stot ≈ 0.0186, and the
dot-dashed curve corresponds to the cubic-shaped nullcline for Stot ≈ 0.0515. (c) Plot of Stot versus
x. (d) Plot of h versus x.

6. Lurching waves.

6.1. Introduction. We view lurching waves as activity propagating through
a network of cells via post inhibitory rebound. As in section 5, consider a one-
dimensional continuous array of cells coupled with synaptic inhibition. We begin with
every cell at rest and excite a certain group of cells in the array, inducing them to fire.
This group of active cells will inhibit a cluster of cells ahead of it, and the inhibited
cells may then fire due to PIR after the active group returns to the silent phase. If this
process continues along the array, a lurching wave is produced. Consecutive leading
active clusters need not be adjacent to each other (see [12]), although this is the case
for each example shown in Figure 5.

Recall from section 5 that a smooth wave cannot exist if the cells are excitable for
all levels of inhibitory input and the synaptic footprint is on-centered. In this section
we shall show that, in contrast, a lurching wave can be constructed under these
conditions. Note, however, that we do not preclude the possibility of lurching waves
existing when the connectivity is off-centered. Indeed, analysis for the off-centered
case will be very similar to that presented in the following subsection, leading to
slightly different formulas, as mentioned in the appendix.
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6.2. Analysis of solitary lurching pulses. Here we present the singular con-
struction of a solitary lurching pulse like the one illustrated in Figure 5(a). To simplify
the calculations, we will make a number of assumptions. Comparisons of how well
our formulas predict the velocity of lurching waves in network simulations are given
at the end of this section.

First, we suppose that consecutive active clusters are adjacent to each other and
of the same size. Let us denote the size of each cluster by φ; in other words, φ will
be the width of our lurching pulse. This width is not known a priori, but an implicit
formula will be derived for it in subsection 6.4. We further assume that all cells within
the same cluster receive the same amount of total synaptic inhibition. This implies
that cells belonging to the same cluster are completely synchronized with each other,
which allows us to view them as lying along a single trajectory in phase space. We
remark that even if the total synaptic input within each cluster is not constant, cells
within each cluster will typically still be nearly synchronized. The geometric approach
can then be used to obtain bounds on the wave speed. We shall work with a square,
on-centered, synaptic footprint: W (x) = 1 for |x| < σ, and W (x) = 0 otherwise.

Suppose that at time τ = 0, the active cluster consists of those cells with position
x ∈ (−φ, 0). Let us call this cluster G1. When G1 falls down to the silent phase, cells
with 0 < x < φ jump up to form the new active cluster. This new cluster will be
denoted G2, and the time at which G2 jumps up will be called Ttot. We shall derive
a formula for Ttot. The velocity of the lurching pulse can then be computed in terms
of φ and Ttot.

Next, we calculate the total synaptic input to each cell. Assume that the synapses
turn off quickly (on the slow τ = εt time scale), i.e., β is large. It then follows that,
in the singular limit ε → 0, each s(x, τ) = 1 whenever v(x, τ) > θ, and s(x, τ) = 0
otherwise. Since the cells within G1 are active for 0 < τ < Ttot, it follows that if
0 < τ < Ttot, then s(x, τ) = 1 for −φ < x < 0, and s(x, τ) ≈ 0 for other x. Note
that if σ > 2φ, then Stot(x, τ) =

∫∞
−∞W (x − y)s(y, τ) dy ≈ φ whenever |x| < φ and

0 < τ < Ttot; that is, the total synaptic input felt by cells within both the G1 and
G2 clusters is approximately at the same level, namely, φ, as long as G1 is active. A
similar analysis shows that, in the case of a solitary pulse, this also holds when G2

is active. We remark that if there is further activity in the wake of the wave, more
complicated interactions may occur, so throughout this section we focus on solitary
lurching waves. In the next subsection, conditions on parameters will be derived to
ensure that cells fire only once as the wavefront passes; that is, the network returns to
silence in the wake of the wave. As pointed out above, even if the condition σ > 2φ is
not satisfied, cells within each cluster will be almost synchronized and the geometric
methods can then be used to obtain a priori bounds on the wave speed. This is
discussed further at the end of section 6.4.

We denote the trajectory of cells within G1 as (v1(τ), h1(τ), s1(τ)) and the tra-
jectory of cells within G2 as (v2(τ), h2(τ), s2(τ)). These trajectories are illustrated in
Figure 13. At τ = 0, G1 lies along the curve of knees, poised to jump up to the active
phase. G2 lies at the rest point p0 and jumps to the left branch of Cφ. For τ > 0,
G1 moves down the right branch of Cφ and G2 moves up the left branch of Cφ. This
continues until G1 reaches the right knee of Cφ and jumps down. Suppose that this
happens at time TA. Then the synaptic variable s1(τ) begins to decrease and release
G2 from inhibition. The cycle is complete when G2 reaches the curve of knees, which
we assume is at τ = Ttot. In order to be a lurching pulse, we require that the position
of G2 at τ = Ttot is precisely the same as the initial position of G1 at τ = 0. This will
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Fig. 13. Singular solutions corresponding to a lurching wave. The solid curve is the trajectory
of G1, while the dashed curve represents the trajectory of G2.

lead to an analytic expression for Ttot.
We now list some simplifying assumptions concerning the nonlinear functions

in the model. All of these assumptions are nearly satisfied for the system given
in the appendix, and numerical simulations demonstrate that they lead to accurate
expressions for the wave speed.

(A1) In the silent phase, τ(v) = τL, a constant.
(A2) In the active phase, τ(v) = τR, a constant, and h∞(v) = 0.
(A3) The left branches v = vL(h, S) of CS do not depend on h.
(A4) The curve of left knees is linear: there exists λ such that hLK(S) = hLK(0)+

λS. In the models we consider, λ is positive.
To explain (A3), note that the cubic CS is given by gL(v − vL) + gCam∞(v)h(v −
vCa) + gsynS(v − vsyn) = 0 and in the silent phase, m∞(v) is very small. So if we
take m∞(v) = 0 in the silent phase, then the left branch of CS is given by

v =
gLvL + gsynvsynS

gL + gsynS
.

Observe that under (A2), equation (4.1), which describes the evolution of h(τ) in the
active phase, simplifies to

ḣ = −h/τR .(6.1)

From (A1) we obtain that in the silent phase, h(τ) satisfies the equation

ḣ = (h∞(v) − h)/τL .(6.2)

Using (A3), we see that on the left branch of CS for any fixed S, v takes a con-
stant value, which must then be vFP (S); therefore, h∞(v) is also a constant, namely,
hFP (S), and hence we have the following equation describing behavior in the silent
phase:

ḣ = (hFP (S) − h)/τL .(6.3)

We now consider TA. Suppose that G1 jumps up at h1 = hJ , where hJ is yet to
be determined. It then follows from (A2) that for 0 < τ < TA, h1(τ) satisfies (6.1)



1596 D. H. TERMAN, G. B. ERMENTROUT, AND A. C. YEW

subject to h1(0) = hJ . Now G1 jumps down at the right knee of Cφ at τ = TA. This
implies that h1(TA) = hRK(φ). Solving (6.1) together with these two boundary
conditions leads to the following expression relating the unknowns hJ and TA:

TA = τR ln
hJ

hRK(φ)
.(6.4)

We next compute an expression for TS ≡ Ttot − TA. This is the time from
when G1 jumps down until G2 reaches the curve of left knees and jumps up. For
TA < τ < Ttot, s1(τ) satisfies ṡ1 = −βs1 with s1(TA) = 1. Hence, s1(τ) = e−β(τ−TA)

and therefore

Stot(x, τ) =

∫ ∞

−∞
W (x− y)s1(τ)dy = φe−β(τ−TA) for |x| < φ.(6.5)

Since G2 jumps up at τ = Ttot, it must lie at the left knee of the cubic determined
by Stot(Ttot). That is, h2(Ttot) = hLK(Stot(Ttot)). From (A4) and (6.5), this implies
that

h2(Ttot) = hLK(0) + λφe−β(Ttot−TA).

Now the position of G2 at Ttot should be the same as the position of G1 at τ = 0. In
particular h2(Ttot) = h1(0) = hJ . Since TS = Ttot − TA, we conclude that

TS =
1

β
ln

λφ

hJ − hLK(0)
.(6.6)

Now (6.4) and (6.6) give two equations for the three unknowns TS , TA, and hJ .
We obtain a third equation by explicitly solving for h2(Ttot). This is done as follows.

In the silent phase, h2(τ) follows the left branch of Cφ for 0 < τ < TA, and
therefore satisfies (6.3) with S ≡ φ and the initial condition h(0) = h0, where h0

corresponds to the rest point on C0. Hence,

h2(τ) = hFP (φ) + (h0 − hFP (φ))e−τ/τL .(6.7)

To simplify the calculations, we continue to assume that β is rather large. This implies
that G2 moves nearly horizontally from the left branch of Cφ to the curve of knees as
shown in Figure 13. In other words, we assume that during this transition, i.e., for
TA < τ < Ttot, we have h2(τ) ≡ h2(TA). In particular, h2(TA) = h2(Ttot) = hJ , and
we conclude that

hJ = hFP (φ) + (h0 − hFP (φ))e−TA/τL .

Together with (6.4) this leads to the relation

A1(hJ) ≡ hFP (φ) − hJ
hFP (φ) − h0

=

(
hRK(φ)

hJ

) τR
τL ≡ A2(hJ).(6.8)

This is a single equation for the unknown hJ . The other parameters in this equation
can be determined (numerically) by properties of a single cell with constant input.
Once we solve for hJ , we can compute TA and TS from (6.4) and (6.6) and then
compute the total duration of one cycle Ttot = TA + TS .
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Fig. 14. Plots of Ttot versus parameters for lurching waves: (a) gsyn, (b) β, and (c) the
ratio between τR and τL (active and silent phase rate constants, respectively). The solid curves
come from the analytic formulas, and the dashed curves from numerical integration of the discrete
network equations. In each plot, the nonvarying parameters are set at their default (or “starting”)
values given in the appendix.

This equation has either two roots or no roots. To see this, note that A1(0) < ∞
while A2(h) approaches ∞ as h → 0. Furthermore, A1(hFP (φ)) = 0 < A2(hFP (φ)).
Thus if there is one nontangent root, then there must be another. One of these is close
to 0 and the other is close to hFP (φ), and as the ratio τR/τL increases, the second root
approaches hFP (φ). Since no jump to the right branch can occur if hFP (φ) < hLK(0),
we see that if we choose the larger root of (6.8), then (6.6) will be defined.

With help from AUTO [6], we computed how Ttot changes with respect to various
parameters and the results are shown in Figure 14. We picked the larger root of (6.8).
The solid curves in Figure 14 represent the solutions of the analytic formulas presented
above, while the dashed curves were determined by first numerically integrating the
differential equations (2.3) for a discrete array of cells and then measuring the duration
of one cycle. Note that a lurching wave does not exist if gsyn is too small. In this
case, the point PFP (φ) along Cφ might lie below the left knee of C0 so cells will not
be able to jump up to the active phase. As shown in Figure 14(c), lurching waves
do not exist if the ratio τR/τL is too small, that is, if the active phase of each cell
is relatively short. This also follows from (6.8). Since h0 < hJ < hFP (φ) must hold
if hJ exists, the left-hand side of (6.8) must be less than and bounded away from 1.
However, if τR/τL becomes very small, then the right-hand side of (6.8) gets close
to 1, and so the equality cannot be satisfied. Finally, recall that in the derivation of
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(6.8), we assumed that β is rather large. Figure 14(b) demonstrates that (6.8), (6.4),
and (6.6) give an excellent prediction of the wave speed even for small β. Note also
that as β increases, TS decreases and thus Ttot approaches the value of TA, which is
independent of β.

6.3. Wake of the wave. Here we derive an analytic condition for when the
network returns to rest in the wake of the wave. To determine whether or not cells
continue to oscillate, we continue the analysis begun in the preceding subsection.
That is, we assume that G1 fires at τ = 0 and returns to the silent phase at τ = TA.
Moreover, G2 fires at τ = Ttot = TA + TS . We ask whether G1 fires again for some
τ > Ttot.

As before, we assume β is large, so that the synapses turn off quickly on the
τ = εt time scale. In this case G2 jumps up quickly after G1 returns to the silent
phase and releases G1 from inhibition. In the limit of large β, we have that TS = 0
and Ttot = TA. We use these in the arguments that come next. It is clear that the
analysis extends to more general cases; however, the resulting formulas are quite a bit
more complicated.

Now G2 lies in the active phase for TA < τ < 2TA, during which time G1 lies in
the silent phase along the left branch of Cφ. At τ = 2TA, G2 jumps down and releases
G1 from inhibition. Since the synaptic turn off is fast, G1 will jump to one of the
branches of C0. If, at this time, G1 lies below the left knee of C0, then it will not be
able to jump up to the active phase. Hence, a solitary pulse will arise if

h1(2TA) < hLK(0).(6.9)

We derive an analytic expression for this in terms of the network parameters as follows.
For TA < τ < 2TA, G1 lies on the left branch of Cφ so h1(τ) satisfies (6.3) with
S ≡ φ. Since G1 jumps down at τ = TA, we have that h1(TA) = hRK(φ). Hence, for
TA < τ < 2TA, h1(τ) = hFP (φ) + (hRK(φ) − hFP (φ))e−(τ−TA)/τL . Therefore,

h1(2TA) = hFP (φ) + (hRK(φ) − hFP (φ))e−TA/τL .

From (6.4) it follows that (6.9) is satisfied if

hFP (φ) − hRK(φ)

hFP (φ) − hLK(0)
>

(
hJ

hRK(φ)

)τR/τL
.(6.10)

6.4. The pulse-width. Here we derive an approximation for the width of the
pulse. As before, we suppose a group of cells of size φ jumps across to the right branch
at τ = 0. Cells ahead of the pulse will move up the left branch corresponding to the
synaptic input they receive. The active group will move down the right branch of the
nullcline until they encounter a right knee and then make the jump back to the left
branch. This will release those cells along the left branch that lie above hLK(0). The
size of this group of cells must be precisely φ. Thus, we will be able to compute a
self-consistent equation for the pulse-width φ.

We continue to assume that the time each cell spends in the active phase is some
constant, TA, say. It is not necessary to assume, however, that the total synaptic
input to cells within each cluster is constant. Note that TA should, in fact, depend on
the amount of synaptic input the cell receives. Later we discuss how one can obtain
bounds on this time; this will lead to bounds on the pulse width. We also assume, as
before, that the parameter β is large. It then follows that each s(x, τ) = 1 whenever
v(x, τ) > θ and s(x, τ) ≈ 0 whenever v(x, τ) < θ.
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Consider a rightward-moving wave and suppose that when τ = 0, the cells with
position y ∈ (−φ, 0) are active. Then the total input to the cell at position x > 0 is

stot(φ, x) =

∫ 0

−φ
W (x− y) dy.

The cells ahead of the pulse will evolve along the left branch of the cubic determined
by stot(φ, x) for time TA. Let ĥFP (φ, x) ≡ hFP (stot(φ, x)). As in the derivation of
(6.7), it follows that for 0 < τ < TA, h(x, τ) can be approximated as

h(x, τ) = ĥFP (φ, x) + (h0 − ĥFP (φ, x))e−τ/τL .

When the active group of cells makes the jump down, some inhibited group of cells
will jump from left to right. All the cells such that h(x, TA) > hLK(0) will make the
jump. Only a group of size φ can jump, so that cells for x > φ must be below the left
knee while those for which 0 < x < φ must be above the left knee. Thus, we have the
threshold condition

h(φ, TA) ≡ ĥFP (φ, φ) + (h0 − ĥFP (φ, φ))e−TA/τL = hLK(0).(6.11)

This gives a formula for φ.
Remark. In the derivation of this formula, we assumed that cells remain synchro-

nized as they jump up to the active phase. This requires that the synaptic activation
is slower than the jumping up process. One way to achieve this is to consider indirect
synapses as in [13]; this introduces a small, but O(1) with respect to ε, delay from the
time a cell fires until the corresponding synapse begins to activate.

In fact, generically, there will be either two or no roots to (6.11). To see why, note
that hFP (S) is a monotonic function of S since as S increases, the v-nullcline rises
and thus h∞(v) will increase since v is decreasing. The function S(φ) ≡ stot(φ, φ), on
the other hand, is shaped like an inverted parabola: clearly S(0) = 0, and S(φ) then
increases as φ increases, reaches a maximum, and thereafter decays toward 0 as φ is
increased further. If W (x) has compact support, then S(φ) will vanish for φ > φmax.
Since hFP (S) is monotone increasing and S(φ) is shaped like an inverted parabola, it
follows from (6.11) that

h(φ, TA) ≡ hFP (S(φ))[1 − e−TA/τL ] + h0e
−TA/τL

is also shaped like an inverted parabola. Thus, if there are any roots at all, there will
be a pair corresponding to a small φ− and a large φ+.

It is instructive to consider the effect of changing the synaptic conductance (gsyn).
As the conductance increases, the function hFP (S) becomes steeper and rises to a
larger value. Thus if we decrease the conductance, φ− will increase while φ+ will
decrease. At sufficiently small conductance values, the two roots will merge. Numer-
ically, we find that as the conductance is reduced, the pulse-width decreases in size.
This leads us to conjecture that the stable branch of lurching solutions is the one
corresponding to φ+.

Note that if TA � τL, then h(φ, TA) ≈ h0 < hLK(0), so there will be no solution.
Since TA represents the length of the cell’s active phase, this implies that lurching
waves cannot arise in inhibitory networks of spiking neurons (whose active phases are
very short) unless they are endowed with additional properties.



1600 D. H. TERMAN, G. B. ERMENTROUT, AND A. C. YEW

One can obtain a simple bound on TA if we assume that (A2) is satisfied. Then
TA satisfies (6.4) where hJ is the value of h where the cells jump up. Since hLK(0) <
hJ < hFP (1), we conclude that

τR ln
hLK(0)

hRK(1)
< TA < τR ln

hFP (1)

hRK(1)
.

7. Discussion. We have discussed a variety of waves that are found in inhibitory
thalamic networks endowed with rebound behavior. The analysis we develop leads
to implicit formulas describing how the velocity of the waves relates to network pa-
rameters. The geometric constructions of singular smooth and lurching waves are
quite similar. In both cases, cells lie along the left branch of some cubic-shaped curve
while silent and along a right branch while active. Cells on a left branch must be able
to escape from the silent phase—that is, reach a left knee—in order to jump up to
the active phase. If the cells are excitable at all levels of synaptic input, then silent
cells must first be released from inhibition before they can escape. The generation of
smoothly propagating waves is impossible if the connectivity is on-centered; a smooth
wave can exist only if the synaptic footprint is off-centered, and cells are released when
they enter the region corresponding to the gap in the effective input. In the case of
lurching waves, cells are released from inhibition only after the preceding cluster of
active cells returns to the silent phase.

Distinguishing whether or not cells are able to escape the silent phase leads to
conditions on parameters for when a particular wave exists. Supposing that each cell
is excitable for all levels of synaptic input, then a traveling wave cannot exist if gsyn
is too small. The geometric reason for this is that with very small gsyn, the fixed
point on the cubic corresponding to maximal inhibitory input lies below the left knee
of the cubic corresponding to zero inhibitory input. This argument also explains why
a lurching wave cannot exist if the parameter τR is too big, that is, in the case of
spiking neurons. For both smooth and lurching waves, a small value of β, i.e., a very
slow rate of synaptic deactivation, makes escape impossible. Escape will be possible
provided both β and gsyn are sufficiently large.

Note that in the case of lurching waves, cells must wait in the silent phase for
the preceding cluster of active cells to jump down and release them from inhibition.
There is therefore a delay from when a cell first starts to receive inhibition to when
that cell begins to be released from the inhibitory influence. During this delay period,
cells within the inhibited cluster approach the fixed point along their associated left
branch. This results in a compression of the distance in phase space between these
cells, which tends to synchronize cells within each cluster. Since with smooth waves
the firing of cells is not contingent on presynaptic cells jumping down first, there is
no such delay. Hence, there is less compression of the distances between cells, and the
cells are thus able to jump up in a continuous fashion.

Our results complement those of Golomb and Ermentrout [7] in which simple
models of neurons with excitatory coupling and coupling delay were studied. In the
context of the thalamic RE-TC network, the neurons in [7] correspond to the RE
cells which effectively send excitatory coupling to other RE cells through interactions
with the TC cells. The coupling delay is due to the time needed for post inhibitory
rebound of the TC cells, as well as the long active phases of the RE cells. It is
shown in [7] that for the specific example of integrate and fire neurons, a smooth
wave becomes unstable if the coupling delay becomes large enough. In the present
paper, we view the neurons in a single-layered network as corresponding to the TC
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cells which effectively send inhibition to other TC cells through interactions with the
RE cells. Since an inhibited cell with the rebound property must wait a prescribed
amount of time for the inhibitory influence on it to wear off before firing, effectively
it cannot fire until a fixed delay passes. If this delay can be shortened, then smooth
waves are expected. One advantage of the approach we take in this paper is that the
coupling delay emerges from the geometric analysis and is not specified a priori.

Our analysis has been for one-layered networks. However, the numerical results
clearly demonstrate that both smooth and lurching waves exist in two-layered net-
works and the geometric approach certainly generalizes to this case. It is interesting
to compare the lurching waves illustrated in [12], which were generated from a single-
layered network, with those illustrated here, which were generated from a double-
layered network. The wakes of the lurching waves shown in Figure 5 are much more
organized than those shown in [12]. In Figure 5(c), for instance, cells in the wave’s
wake break up into different synchronized clusters that take turns firing. Distinct
clusters with fixed membership of cells have not been observed to form in the wake
of the lurching waves in [12]. In a two-layered network, the cells of the layer cor-
responding to TC cells must wait in the silent phase until cells of the second layer,
corresponding to RE cells, jump down and release them from inhibition. If the active
phase of the RE cells is quite long, there would be strong compression among the TC
cells receiving inhibition in the silent phase. This strong compression would lead to
more synchronized clusters in the wake of the lurching wave. We remark that, by
adjusting the length of the RE cells’ active phase, it is much easier to control the
degree of compression in a two-layered network than in a one-layered array. A more
detailed discussion comparing synchronization and compression mechanisms in one-
and two-layered networks is given in [13].

A given network may display other types of propagating activity patterns besides
the smooth and lurching waves described here. Bistable patterns that exist for the
same set of parameter values may also be possible. For example, in [12] a saltatory
wave is shown which lurches in one direction and each new active cluster leaves a
smooth wave in its wake. Although the behavior of this solution in one direction is
very different from that in the other direction, the underlying network is completely
homogeneous and symmetric; the only asymmetry is in the initial data. By choosing
the initial conditions appropriately it may be possible to generate a periodic smooth
wave within the same parameter regime. A more complete discussion of such bi-
stability issues is beyond the scope of this paper.

The integral-differential equations studied here resemble reaction-diffusion sys-
tems such as the FitzHugh–Nagumo equations. We remark that the speed of a trav-
eling wave solution of a reaction-diffusion system is usually determined by the fast
jumping up process. This contrasts sharply with the waves studied here, for which
the velocities are determined by the slow dynamics, intrinsic and synaptic. In the
geometric singular perturbation framework, we reduce the analysis of the full system
to studying equations for just the slow variables. These slow subsystems often consist
of first-order, scalar equations; for this reason, we were able to derive formulas for
the wave speed. Such formulas are typically impossible to find for reaction-diffusion
systems.

We have not addressed the issue of stability of the waves in the present paper.
This is a difficult problem. Our numerical results indicate that in cases where there
are two possible velocities, the slower wave is usually the stable one. This is in contrast
to integrate and fire models as well as other models of excitation-driven waves, for
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which the faster waves are stable. Finally, we have only looked at one-dimensional
propagation. An interesting question is whether or not lurching waves exist in two-
dimensional arrays, and if so, what do they look like? Preliminary numerical results
suggest the possibility of lurching target waves. This is an open area to explore.

Appendix. Here we present various equations and formulas which are not in
the body of the text. The nonlinear functions m∞(v) and h∞(v) of (2.1) are as-
sumed to take the same general form. In addition, a function s∞(v) also of that
form was used to approximate the Heaviside function H(v − θ) when numerically
integrating (2.3) or (2.4). Specifically, letting X = m, h, or s, we have X∞(v) =

[1 + exp(−(v − θX)/σX)]
−1

. The remaining nonlinear function τh(v) in (2.1) is de-
fined by τh(v) = τR + (τL − τR)/ [1 + exp(−(v − θhτ )/σhτ )].

The smooth waves in Figures 8–11 were found in the following parameter regime.
Fixed values were gL = 0.4, vL = −70, gCa = 1.5, vCa = 90, vsyn = −85, θm =
−40, σm = 7.4, θh = −70, σh = −4, θhτ = −50, σhτ = −3. For the synaptic footprint
we used a function W (x) defined as

W (x) =

{
1
2σ : γ < |x| < 1,
0 : otherwise,

where σ = 1−γ. For direct numerical integration of the integral-differential equations
(dashed curves in Figures 8 and 9), we also took α = 1, θs = −35, σs = 2, and initiated
the wave with a localized small perturbation (either depolarizing or hyperpolarizing)
from the resting potential (v0 ≈ −65.57). In our computations based on the two-point
boundary value problem (solid curves in Figures 10–11), we took λ = 5.58, ε = 0.1
as default values, but it turns out that at least for 0.05 ≤ ε ≤ 2 and 3 ≤ λ ≤ 6.1
the values of these parameters have little effect on the results. For the parameters
we varied, the default or starting values were gsyn = 2.5, β = 0.025, σ = 0.5, τR =
30, τL = 830. We initialized the AUTO continuation process using the following
values for the wave speed and pulse-width: c = 0.0018, a = 0.21125. In both types of
computation (boundary value problem or integral-differential system), an extra factor
δ was inserted in front of the h vector field. This has the effect of scaling τ(v). Our
curves were obtained with δ = 0.25.

We present here a few salient facts about the Stot(ξ; c, a) calculated from (5.2)–
(5.3) and a footprint W (x) of the form described in the previous paragraph. Since we
do not analyze the wake of the smooth wave in this paper, we shall only be concerned
with behavior up until the jump-up occurring at ξ = 0. For ξ ≤ 0, Stot is described

by the following formulas: S1 = 1
2σ (1 + ξ), S2 = 1

2σ{ cβ [1 − e
β
c (a−ξ−1)] + a}, S3 = 1

2 ,

S4 = 1
2σ{ cβ [1 − e

β
c (a−ξ−1)] + (a − γ − ξ)}, or S5 = 1

2σ · cβ {e
β
c (a−ξ−γ) − e

β
c (a−ξ−1)}.

Which form Stot takes depends on the relative sizes of a, γ, σ, as well as on the value
of ξ. From the above expressions for Stot(ξ; c, a), we find Stot(0; c, a) to be

Stot(0; c, a) =




1
2σ · cβ e

β
c (a−γ)

{
1 − e−

β
c σ

}
if a < γ,

1
2σ

{
c
β

[
1 − e

β
c (a−1)

]
+ (a− γ)

}
if γ < a < 1,

1
2 if a > 1.

Also, one can see that Stot reaches a maximum at ξ = −γ, and this peak value is

Stot(−γ; c, a) =

{
1
2σ

{
c
β

[
1 − e

β
c (γ+a−1)

]
+ a

}
if a < 1 − γ,

1
2 if a > 1 − γ.
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For the lurching waves in Figure 14, the following parameter values were used.
Fixed values were gL = 0.1, vL = −60, gCa = 1.5, vCa = 90, vsyn = −95, θm =
−40, σm = 7.4, θh = −78, σh = −2, θhτ = −50, σhτ = −3, τR = 100. For numerical
integration of the network equations (2.3) (dashed curves in Figure 14), we also took
α = 2, θs = −35, σs = 2, and initiated the wave with a slight depolarization from
the rest state (which has v0 ≈ −60). In this parameter regime, a lurching wave was
observed in the simulations when we set self-inhibition to be zero, i.e., each cell in
the model (representing a cluster of cells physically) inhibits its immediate neighbors
but not itself. Therefore, for consistency, in our calculations based on the analytic
formulas (6.6)–(6.8) we used hRK(0) instead of hRK(φ) and took hFP (φ) = hFP (1).
All arguments presented in section 6.2 are just as valid in this situation of off-centered
connectivity. For these formula-based calculations (solid curves in Figure 14) we also
took λ = µ gsyn, and the constant of proportionality µ was chosen to be 6.25. For the
parameters we varied, the starting values were gsyn = 0.4, β = 0.05, and τL = 200.

Each wave shown in Figures 4 and 5 is a solution of a two-layered network as
illustrated in Figure 1. Every cell without any coupling satisfies a system of the form
(2.1). The nonlinear functions m∞(v), h∞(v), and τh(v) are defined as above. The
coupling between RE and TC cells is modeled as follows. To the voltage equation of
the jth TC cell we add the term gTsyns∞(vjRE)(vjTC − vTsyn). Here vjRE is the voltage

of the jth RE cell and vjTC is the voltage of the jth TC cell. To the voltage of the
jth RE cell, we add the term

1

2ω
gRsyn(vjRE − vRsyn)

j+ω∑
i=j−ω

s∞(viTC).

So each TC cell receives input from precisely one RE cell, while each RE cell receives
input from a set of TC cells with square footprint of size determined by ω. For
simplicity, we use instantaneous synapses.

For each solution shown in Figures 4 and 5, the network consisted of 75 TC
cells and 75 RE cells, with ω = 6. Fixed values corresponding to each TC cell
were gL = .01, vL = −75, gCa = 1, θm = −65, σm = 7.8, θh = −79, σh = 5, τR =
1, τL = 80, θhτ = −65, σhτ

= 4. Fixed values corresponding to each RE cell were the
same as for the TC cells with the exception of gL = .2, vL = −80. Also fixed were
θs = −20, σs = 2, vTsyn = −80, vRsyn = 0. In Figure 4, vCa = 120. The values of ε for
the TC and RE cells in Figures 4(a), 4(b), and 4(c) were (1, 1), (2, .6), and (2, .36),
respectively. The values of (gTsyn, g

R
syn) were (.03, .1), (.1, .1), and (.1, .1), respectively.

In Figure 5, vCa = 90, gTsyn = .1, and gRsyn = .3. The values of ε for the TC and RE
cells in Figures 5(a), 5(b), and 5(c) were (3, 1), (5, 1.01), and (3, .5), respectively.

Acknowledgment. We thank the referees for their many useful suggestions and
comments.

REFERENCES

[1] T. Bal, M. von Krosigk, and D.A. McCormick, Synaptic and membrane mechanisms under-
lying synchronized oscillations in the ferret lateral geniculate nucleus in vitro, J. Physiol.
Lond., 483 (1995), pp. 641–663.

[2] T. Bal, M. von Krosigk, and D.A. McCormick, Role of ferret perigeniculate nucleus in the
generation of synchronized oscillations in vitro, J. Physiol. Lond., 483 (1995), pp. 665–685.

[3] M. Bazhenov, I. Timofeev, M. Steriade, and J. Sejnowski, Self-sustained rhythmic activity
in the thalamic reticular nucleus mediated by depolarizing GABA-A receptor potentials,
Nature Neurosci., 2 (1999), pp. 168–174.



1604 D. H. TERMAN, G. B. ERMENTROUT, AND A. C. YEW

[4] Z. Chen, B. Ermentrout, and X.-J. Wang, Wave propagation mediated by GABAB synapse
and rebound excitation in an inhibitory network: A reduced model approach, J. Comput.
Neurosci., 5 (1998), pp. 53–69.

[5] A. Destexhe, T. Bal, D.A. McCormick, and T.J. Sejnowski, Ionic mechanisms underlying
synchronized oscillations and propagating waves in a model of ferret thalamic slices, J.
Neurophysiol., 76 (1996), pp. 2049–2070.

[6] E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B. Sandstede, and
X. Wang, Auto97: Continuation and Bifurcation Software for ODEs (with homcont),
Technical Report, Concordia University, 1997.

[7] D. Golomb and B. Ermentrout, Continuous and lurching traveling pulses in neuronal net-
works with spatially-decaying connectivity and delay, Proc. Natl. Acad. Sci. USA, 96 (1999),
pp. 13480–13485.

[8] D. Golomb, X.-J. Wang, and J. Rinzel, Propagation of spindle waves in a thalamic slice
model, J. Neurophysiol., 75 (1996), pp. 750–769.

[9] U. Kim, T. Bal, and D.A. McCormick, Spindle waves are propagating synchronized oscilla-
tions in the ferret LGNd in vitro, J. Neurophysiol., 84 (1995), pp. 1301–1323.

[10] U. Kim and D.A. McCormick, The functional influence of burst and tonic firing mode on
synaptic interaction in the thalamus, J. Neurosci., 18 (1998), pp. 9500–9516.

[11] D. Pinault and M. Deschenes, Anatomical evidence for a mechanism of lateral inhibition in
the rat thalamus, Eur. J. Neurosci., 10 (1998), pp. 3462–3469.

[12] J. Rinzel, D. Terman, X.-J. Wang, and B. Ermentrout, Propagating activity patterns in
large-scale inhibitory neuronal networks, Science, 279 (1998), pp. 1351–1355.

[13] J. Rubin and D. Terman, Analysis of clustered firing patterns in synaptically coupled networks
of oscillators, J. Math. Biol., to appear.

[14] M. Steriade, D.A. McCormick, and T.J. Sejnowski, Thalamocortical oscillations in the
sleeping and aroused brain, Science, 262 (1993), pp. 679–685.


