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Abstract. We consider the existence and stability of standing pulse solutions to a system
of integro-differential equations used to describe the activity of synaptically coupled networks of
excitatory and inhibitory neurons in a single spatial domain. Assuming an arrangement of synaptic
connections described by “lateral inhibition,” previous formal arguments have demonstrated the
existence of both stable and unstable standing pulses [S. Amari, Biol. Cybern., 27 (1977), pp. 77–
87]. These results have formed the basis for several recent hypotheses regarding the generation
of sustained activity patterns in prefrontal cortex and other brain regions. Implicit in the lateral
inhibition arrangement, however, is the assumption that the dynamics of inhibition are instantaneous.
Here we present two arguments demonstrating the loss of stability of standing pulse solutions through
a Hopf bifurcation when more realistic inhibitory dynamics are considered. The first argument
parallels Amari’s formal presentation, while the second provides a rigorous analysis of the linearized
system. Additionally, we extend the existence of solutions to include a broader range of conditions
by constructing a standing pulse using singular perturbation analysis.
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1. Introduction. Lateral inhibition (LI) first gained broad acceptance as a
mechanism for neuronal processing through a series of reports on the retina of the
horseshoe crab Limulus polyphemus (for review, see [18]). The Limulus retina is com-
posed of a lattice of light-sensitive units, each having a direct inhibitory effect on its
neighbors; the effect is weak for nearest neighbors, stronger for units separated by
some distance, and negligible for pairs more than 8–10 units apart. The dynamics of
this inhibition are such that effects may be delayed for up to 200 ms, independent of
the spatial separation between pairs.

Several studies have examined theoretically the dynamics of activity in LI net-
works [33], [3], [36], [37], [29], [1], [34]. Typically, networks are considered in which
nearby neurons excite each other, while more distant pairs have an inhibitory effect
(for review, see [13]). In contrast to studies in the Limulus retina, the effects of
inhibitory delays or temporal differences between excitation and inhibition are not
usually considered in detail (however, see [7]).

An early finding from the analysis of LI networks is that they admit standing
pulse solutions, i.e., regions of excitatory activity sustained in the absence of external
drive. The existence and stability of such solutions were demonstrated numerically
in [34] and, under certain simplifying assumptions, proven analytically in [1]. More
recently, it has been suggested that a similar set of network dynamics may be involved
in the sustained activity recorded from neurons in prefrontal cortex during the delay
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period of a delayed-response task [3], [2], [16].
In the present study, we investigate the ability of LI networks to maintain sta-

ble standing pulse solutions in the presence of more realistic inhibitory delays. In
particular, we examine the existence and stability of standing pulse solutions to an
integro-differential equation system used to describe neuronal activity in a synap-
tically coupled network of excitatory and inhibitory neurons along a single spatial
domain:

ut = −u+

∫ ∞

−∞
wee(x− x′)Pe(u(x

′, t)− θ)dx′(1)

−
∫ ∞

−∞
wie(x− x′)Pi(v(x

′, t)− θ)dx′,

τvt = −v +

∫ ∞

−∞
wei(x− x′)Pe(u(x

′, t)− θ)dx′

−
∫ ∞

−∞
wii(x− x′)Pi(v(x

′, t)− θ)dx′.

Here, u and v represent the average level of activity (e.g., voltage) in a population of
excitatory (e) and inhibitory (i) neurons, respectively, at spatial point x and time t;
wjk is the distance-dependent kernel representing the strength or “weight” of connec-
tivity from population j to population k (j, kε{e, i}); τ is the inhibitory time constant;
and Pj is the synaptic firing rate, which depends on the activity in population j rel-
ative to some constant threshold θ.

A more detailed description of the equations and underlying assumptions is pre-
sented below in section 2. In particular, we show that using an LI weight kernel that
neglects inhibitory dynamics carries the implicit assumption that inhibitory mecha-
nisms act instantaneously. In section 3, we review previous arguments for the existence
of standing pulse solutions and then employ a singular perturbation approach to con-
struct solutions under different circumstances. Interestingly, both the inner and outer
layers of the perturbation analysis involve a convolution operator, requiring both sets
of solutions to be considered globally. In section 4, we review a previous formal ar-
gument for the stability of standing pulse solutions and then present two arguments
demonstrating the loss of stability when more realistic inhibitory dynamics are con-
sidered. The first is a formal argument that parallels Amari’s strategy. The second is
a rigorous analysis examining the eigenvalues of the linearized system. In section 5,
we summarize our results and discuss their implications for understanding neuronal
processing in prefrontal cortex and other brain regions.

2. Mathematical assumptions. In the analysis which follows, we assume that
the firing rate function for the inhibitory population (Pi) is linear and denote the
excitatory function, Pe, as simply P . This renders the equations slightly less general
but is in fact a reasonable assumption, supported by experimental data comparing the
firing properties of excitatory versus inhibitory neurons in neocortex [24]. In addition,
for simplicity of exposition, we neglect the term describing recurrent inhibition (i → i),
although much of the analysis would proceed unaltered were it included. Under these
assumptions, (1) becomes

ut = −u+

∫ ∞

−∞
wee(x− x′)P (u(x′, t)− θ)dx′ −

∫ ∞

−∞
wie(x− x′)v(x′, t)dx′,

τvt = −v +

∫ ∞

−∞
wei(x− x′)P (u(x′, t)− θ)dx′.(2)
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We consider the functions wij to be defined on (−∞,∞) as bounded, nonneg-
ative, even, and normalized such that

∫∞
−∞ wij(x)dx = 1. As an example, consider

w(x) = 1/2b e−|x|/b or w(x) = 2
√

b/πe−bx2

, where b > 0 is a measure of the synaptic
“footprint.” The function P is defined on [0, 1], monotonic increasing, P ′(0) < 1,
P ′(1) < 1, and such that the function f(u) ≡ −u + P (u) has precisely three ze-
ros, typically at or near u = 0, k, and 1, with 0 < k < 1. As an example, consider
P (u−θ) = 1

2 (1+tanh(β(u−θ))), or, as a limiting case (β → ∞), P (u−θ) = H(u−θ),
where H(x) = 0 for x < 0, H(x) = 1 for x ≥ 0. Here, θ is some constant thresh-
old value (0 < θ < 1). We will employ the result of [12] establishing the existence of
traveling front solutions under the above conditions on w, P , and in the absence of in-
hibition (v ≡ 0), e.g., solutions of the form u(x, t) = U(x− ct), monotonic decreasing,
U(−∞) = 1, U(∞) = 0, with c of constant value.

As described above, many previous studies have considered networks with direct
LI, employing a single kernel in which nearby regions exert a positive influence while
more distant regions have an inhibitory effect. Anatomical results, on the other hand,
suggest that it is the excitatory projections that extend across long distances, while
inhibitory connections tend to remain more local [21], [15]. This seeming contradiction
is resolved by recognizing that network models using direct LI implicitly assume that
inhibition acts instantaneously. In (2), for instance, with instantaneous inhibition
(i.e., τ = 0) we solve the second equation for v and substitute into the first to obtain

ut = −u+ (wee − wie ∗ wei) ∗ P (u− θ).(3)

(For clarity, the notation f ∗g ≡ ∫∞
−∞ f(x−y)g(y)dy will be used where appropriate.)

Assuming that the excitatory projections extend equally to both populations (i.e.,
wee and wei have the same footprint [35]), the resulting kernel indeed describes direct
LI. Figure 1 illustrates the generation of LI from anatomically correct patterns of
excitatory and inhibitory connections.

3. Existence of standing pulses. This section explores the existence of stand-
ing pulse solutions in LI networks, i.e., regions in which activity is sustained in the
absence of external input. More formally, we consider standing pulses as station-
ary solutions of (2) (or, equivalently, (3)) of the form u(x, t) = U(x), U(±∞) = 0,
U(a1) = U(a2) = θ, where 0 < θ < 1/2, U(x) < θ for x > a2 and x < a1, and
Φ = a2 − a1 describes the width of the pulse (cf. Figure 2b). Note that because we
are examining steady state solutions, the dynamics of excitation and inhibition are
not relevant, so that direct LI may be assumed.

3.1. Amari’s argument for pulse existence. If, in addition to LI, we assume
that the firing rate can be described using the Heaviside function, H(u − θ), then it
is straightforward to establish the existence of standing pulse solutions. We present,
in brief, an argument first described by Amari [1].

Let w(x) describe a direct lateral inhibition kernel (Figure 1). Note that steady
state solutions of (3) satisfy

u(x) =

∫ ∞

−∞
w(x− x′)H(u(x′)− θ)dx′,

which, in the case of a standing pulse solution, reduces to,

u(x) =

∫ a2

a1

w(x− x′)dx′.
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Fig. 1. Lateral Inhibition. Anatomically, the extent of excitatory connections (we) is broader
than that of inhibitory connections (wi). The extent of indirect inhibition (we ∗wi) is broader than
either type of direct connection alone. The net result is a pattern of influence described by lateral
inhibition (we − we ∗ wi). However, as described in the text, this pattern is valid only under the
assumption that inhibition acts instantaneously.

Moreover, at x = a1,

θ =

∫ a2

a1

w(a1 − x′)dx′

=

∫ a2−a1

0

w(s)ds

≡ G(a2 − a1),

where G(Φ) ≡ ∫ Φ

0
w(y)dy, and we have used the fact the w is even.

To construct a solution, we must show that there is a root to the equation G(Φ) =
θ; this root corresponds to the width of a stationary pulse. Since the system is
translation invariant, the center of the pulse can occur anywhere on the real line.
Only the width must be computed. The graph of G for a typical kernel, w, reveals
that, in fact, two pulse solutions exist over a range of thresholds, θ, one narrow and
one wide (Figure 2(a)). As θ increases, the narrow and wide pulses converge and
vanish.

3.2. Singular perturbation construction. We now return to more general
nonlinearities, P . We will use a singular perturbation argument to construct a stand-
ing pulse by assuming that the footprint of the inhibition is much larger than that of
the excitation. We will assume that the more general firing rate functions P satisfy
the criteria for the existence of traveling fronts as in [12] and summarized above.

Let 1/ε be the footprint for inhibition where ε 
 1. With this assumption, (2)
becomes
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Fig. 2. Schematic of Amari’s construction of stable standing pulses. (a) The pulse width
function G(φ) = θ has two roots, φ1 and φ2, corresponding to the two standing pulse solutions
shown in (b).

0 = −u+

∫ ∞

−∞
we(x− x′)P1(u(x

′)− θ)dx′ − ε

∫ ∞

−∞
wi(ε(x− x′))v(x′)dx′,

0 = −v +

∫ ∞

−∞
we(x− x′)P2(u(x

′)− θ)dx′,(4)

where, for clarity of exposition, we take wee = wei ≡ we, wie ≡ wi, and, to be slightly
more general, we allow P1 to differ from P2, although both satisfy the appropriate
conditions for a firing rate function.

The inner, or narrow, equations are obtained by allowing ε → 0, which yields

0 = −u(x) + (we ∗ P1(u− θ))(x)− v(x),

0 = −v(x) + (we ∗ P2(u− θ))(x),

where v(x) is a constant described below. For the outer, or broad, equations we
compress space with the change of variable ξ = εx to get

0 = −u(ξ) + 1/ε

∫ ∞

−∞
we(1/ε(ξ − ξ′))P1(u(ξ

′ − θ))dξ′ −
∫ ∞

−∞
wi(ξ − ξ′)v(ξ′)dξ′,

0 = −v(ξ) + 1/ε

∫ ∞

−∞
we(1/ε(ξ − ξ′))P2(u(ξ

′)− θ)dξ′

and then let ε → 0 to obtain

0 = −u(ξ) + P1(u(ξ)− θ)− (wi ∗ v)(ξ),

0 = −v(ξ) + P2(u(ξ)− θ).

Here we have employed the fact that, for a Gaussian-like kernel w,

lim
ε→0

1

ε
w

(
(ξ − ξ′)

ε

)
→ δ(ξ − ξ′),
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where δ(x) is the Dirac delta function.
Regions in which solutions are described by the narrow equations will be handled

by appealing to the existence of traveling pulse solutions as described in [12]. Because
inhibition is spatially distributed, and the outer equations involve a spatial convolu-
tion, the outer solutions must be considered globally rather than locally, as is the case
for singular perturbation analysis of differential equations.

The space-clamped phase-plane is useful for describing the construction process
(Figure 3). Beginning with the inner equations, we apply the existence results of
Ermentrout and McLeod to construct a pair of front solutions describing the up and
down jumps of the standing pulse, occurring at spatial points −x and x, say (Figures
3(a) and 3(b)). As discussed in their study, the speed, c, of these fronts satisfies

c =
− ∫ g+(v(x))

g−(v(x))
(−u− v(x) + P1(u− θ))du∫∞

−∞(u
′)2P ′

1(u− θ)dz
,

where g±(v) describes u as a function of v along the appropriate branch of (−u +
P (u− θ))−1 (see Figure 3(a)). Since we require a pulse that is stationary, the points
±x are determined such that the speed of the fronts is zero, i.e., v(x) = µ, where
µ satisfies

∫
(−u + P1(u − θ) − µ)du = 0. Note that the value of µ depends on the

specific shape of P1.
The term v(x) in the inner equation corresponds to the term (wi ∗ v)(ξ) in the

outer equation or, using the second of the outer equations, (wi ∗P2(u− θ))(ξ), where
ξ = εx. Moreover, since (wi ∗ P2(u− θ))(ξ) = −u+ P1(u− θ), we consider solutions
to the outer equations of the form

u =

{
u+, |ξ| < ξ,

u−, |ξ| > ξ,

where u+ = g+(v(ξ)) and u− = g−(v(ξ)). Note that such solutions are composed of
an upper portion, u+, and a lower portion, u−, and match the values of the inner
solution at x and −x.

To complete the construction we must show that there exists some x that satisfies
(wi ∗P2(u−θ))(ξ) = µ, where u is the solution to the outer equation described above.
Less formally, we require a value for x so that the solution, u, described by the outer
equation (which depends on x; see Figure 3(b)) returns the “correct” value when
passed through the convolution (wi ∗ P2(u − θ))(ξ). This correct value, µ, is just
the one that ensures that front solutions produced by the inner equations remain
stationary.

The conditions under which such values for x exist depend on the shapes of P1 and
P2. The exact nature of this dependence has yet to be determined. However, we may
begin to understand the conditions by first considering the case in which P2 is very
sharp, and hence constant on the two domains (P2(u

+ − θ) = v+, P2(u
− − θ) = v−;

see Figure 3(c)). In this case,

(wi ∗ P2(u− θ))(ξ) =

∫ ξ

−ξ

wi(ξ − ξ′)P2(u
+(ξ′)− θ)dξ′

+

(∫ −ξ

−∞
+

∫ ∞

ξ

)
wi(ξ − ξ′)P2(u

−(ξ′)− θ)dξ′,

= v+φ(ξ) + v−(1− φ(ξ)),(5)
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Fig. 3. Schematic of singular perturbation construction for standing pulses. (a) Space-clamped
phase-plane illustrating the construction of the standing pulse shown in (b) from narrow up and
down inner front solutions and a broad outer solution consisting of plateau and recovery portions.
(c) Graph showing the dependence of up and down jump points on the shape of the firing function,
P (u− θ) (see text).
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where φ(ξ) ≡ ∫ ξ+ξ

ξ−ξ
w(y)dy. Then x is defined by satisfying

µ = v+φ(εx) + v−(1− φ(εx)).

As x ranges over [0,∞), φ(εx) = φ(ξ) =
∫ 2ξ

0
w(y)dy spans the interval [0, 1/2].

Thus, so long as

v− ≤ µ ≤ 1

2
(v− + v+),

we are guaranteed that the required x can be found.
More generally, with no steepness conditions imposed on P2, we find values α1,2

and β1,2 such that

α1 ≤ P2(u
+ − θ) ≤ α2,

β1 ≤ P2(u
− − θ) ≤ β2

(Figure 3(c)). Then, using the same strategy as above, we obtain the inequality

α1φ(ξ) + β1(1− φ(ξ)) ≤ (wi ∗ P2(u− θ))(ξ) ≤ α2φ(ξ) + β2(1− φ(ξ))

which, for x = 0, yields

β1 ≤ (wi ∗ P2(u− θ))(ξ) ≤ β2

and, for x =∞,
1

2
(α1 + β1) ≤ (wi ∗ P2(u− θ))(ξ) ≤ 1

2
(α2 + β2).

Thus, (wi ∗P2(u−θ))(ξ) spans values at least over the interval [β2, 1/2(α1+β1)], and
a solution is guaranteed so long as

β2 ≤ µ ≤ 1

2
(α1 + β1).

It remains to show that solutions to the outer equation vanish at ±∞. By sym-
metry, we need consider only the behavior of the solutions as x → +∞.

For ξ just beyond ξ, u = u− lies in the domain of the lower branch and has a
negative value. We show that, as ξ increases, u− increases, and solutions follow the
lower branch asymptotically into zero.

Starting from the outer equation and differentiating,

0 = −u(ξ) + P1(u(ξ)− θ)− (wi ∗ P2(u− θ))(ξ),

0 = −u′(ξ) + P ′
1(u(ξ)− θ)u′(ξ)− (w′

i ∗ P2(u− θ))(ξ),

u′(ξ) = − (w
′
i ∗ P2(u− θ))(ξ)

1− P ′
1(u(ξ)− θ)

.

On the lower branch, we note that P ′
1(u− θ) is positive but small, so that the denom-

inator is always positive. The numerator, as in (5), becomes

w′
i ∗ P2(u− θ) =

∫ ξ

−ξ

w′
i(ξ − ξ′)P2(u

+(ξ′)− θ)dx′

+

(∫ −ξ

−∞
+

∫ ∞

ξ

)
w′

i(ξ − ξ′)P2(u
−(ξ′)− θ)dξ′.
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For simplicity, we consider the case in which P2(u
±−θ) ≈ v± and v+ is sufficiently

large compared to v−, so that the expression is dominated by the first integral. The
general case follows similarly but with a more complicated argument. In addition, we
consider w satisfying the conditions stated above and also that w(x) decreases as |x|
increases (e.g., w(x) = 1/2b e−|x|/b; see [17] for more general connectivity patterns).
Under these conditions we obtain the inequality

(w′
i ∗ P2(u))(ξ) ≈ v+

∫ ξ

−ξ

w′
i(ξ − ξ′)dξ′

= v+

∫ ξ+ξ

ξ−ξ

w′
i(y)dy

= v+(w(ξ + ξ)− w(ξ − ξ))

< 0 for ξ > ξ.

Thus u′(ξ) > 0 for ξ > ξ, and u− increases along the lower branch as required.
Finally, we note that, in contrast to the two pulse solutions derived using Amari’s

argument, the singular perturbation construction results in only one solution. This
can be understood intuitively by examining the widths of the two pulse solutions
described in Figure 2. As w(x) becomes tall and narrow with decreasing ε, the initial
rise of G becomes steeper and the narrow pulse becomes more narrow, ultimately
vanishing as wee approaches δ(x).

4. Stability of standing pulses. This section examines the dependence of the
stability of pulse solutions on the dynamics of inhibition. Beginning with (3), we
review Amari’s formal argument for stability and then extend the strategy to analyze
the same solutions in a system that incorporates more realistic inhibitory dynamics.
Next, a rigorous argument is presented that entails linearization about steady state
pulse solutions and examining the dependence of the resulting eigenvalues on the time
constant of inhibition.

4.1. Amari’s argument for pulse stability. Note that each of the two pulse
solutions described in section 3.1 has exactly two points at which the average activity
just reaches threshold. Let aj (j = 1, 2) be such that u(aj , t) = θ; we then track the
dynamic behavior of these points with

d

dt
u(aj(t), t) = ux(aj , t)

daj
dt

+ ut(aj , t) = 0.

Approximating ux(aj(t), t) by its steady state value, say α,

α
da1

dt
= u(a1(t), t)−

∫ ∞

−∞
w(a1 − x′)H(u(x′, t)− θ)dx′

= θ −
∫ ∞

−∞
w(a1 − x′)H(u(x′, t)− θ)dx′.

Similarly,

α
da2

dt
= −θ +

∫ ∞

−∞
w(a2 − x′)H(u(x′, t)− θ)dx′.

Subtracting and simplifying,

α
d

dt
(a2 − a1) = −2θ + 2

∫ a2−a1

0

w(y)dy
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reduces the system to a single equation describing the pulse width, with Φ ≡ a2 − a1:

α

2

dΦ

dt
= −θ +G(Φ),

where, as before, G(Φ) ≡ ∫ Φ

0
w(y)dy.

As in the existence argument of section 3.1, a sketch of G reveals two steady
state solutions over a range of thresholds, θ: a narrow pulse of width Φ1, and a wide
pulse of width Φ2 (Figure 2(a)). From the same sketch, we note that G′(Φ1) > 0 and
G′(Φ2) < 0, making it immediately apparent that the outer pulse is stable while the
inner is unstable.

As an aside, note that as θ decreases, the width of the wide pulse increases to
infinity, essentially transforming the pulse into a pair of traveling fronts moving in
opposite directions. The speed, c, of these fronts is half the rate at which the pulse
width is increasing, c = 1

2
dΦ
dt = 1

α (−θ + G(Φ)). In the case of strictly excitatory
coupling,

ut = −u+

∫ ∞

−∞
wee(x− x′)H(u(x′, t)− θ)dx′,

for which we have true traveling front solutions [4]; the threshold crossing point, af ,
and hence the front speed, cf , can be tracked in a similar fashion:

cf =
daf
dt

=
1

α

(
−θ +

∫ ∞

0

w(y)dy

)
=
1

α
(−θ +G(∞)).

From this it is seen that the low-threshold destabilization of standing pulse solutions
creates fronts with speeds asymptotically approaching those of true traveling fronts.
This is a strictly formal argument, however, in that once stability is lost, α = α(c)
and can no longer be considered as constant.

4.2. Stability and the dynamics of inhibition.

4.2.1. Pulse width analysis. We now consider the system with more realistic
inhibitory dynamics,

ut = −u+

∫ ∞

−∞
wee(x− x′)H(u(x′, t)− θ)dx′ −

∫ ∞

−∞
wie(x− x′)v(x′, t)dx′,

τvt = −v +

∫ ∞

−∞
wei(x− x′)H(u(x′, t)− θ)dx′,(6)

and derive an evolution equation describing the pulse width, providing a formal anal-
ysis of the dependence of stability on the speed of inhibition.

Starting from (6), we integrate the second equation to obtain

ut(x, t) = −u(x, t) + wee(x) ∗H(u(x, t)− θ)− L{(wI ∗H(u(x, t)− θ)},

where wI(x) = wie(x) ∗ wei(x) and L is the integral operator:

Lf(t) =
1

τ

∫ t

−∞
e−(t−s)/τf(s)ds.
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Considering standing pulse solutions, we again define the points aj(t) (j = 1, 2) such
that u(aj(t), t) = θ. Differentiating, we obtain

ux(aj , t)
daj
dt

+ ut(aj , t) = 0.

Approximating ux by its steady state value and evaluating at x = aj leads to the
evolution equations for aj(t),

α
da1

dt
= θ −WE(a2 − a1) + L{WI(a2 − a1)},

α
da2

dt
= −θ +WE(a2 − a1)− L{WI(a2 − a1)},

where

WE(x) =

∫ x

0

wee(y)dy,

WI(x) =

∫ x

0

wI(y)dy.

As L is simply the convolution with a single exponential function, this is equivalent
to a system of four differential equations:

α
da1

dt
= θ −WE(a2 − a1) + z1,

τ
dz1

dt
= −z1 +WI(a2 − a1),

α
da2

dt
= −θ +WE(a2 − a1)− z2,

τ
dz2

dt
= −z2 +WI(a2 − a1).

Subtract the equations for aj , define Φ ≡ a2 − a1, and let z = (z1 + z2)/2 and
ζ = (z1 − z2)/2, to produce the third order system:

α
dΦ

dt
= −θ +WE(Φ)− z,

τ
dz

dt
= −z +WI(Φ),

τ
dζ

dt
= −ζ.

The last equation of the system is irrelevant, and the first two can be understood using
phase-plane analysis. We comment in passing that this transformation has the effect
of removing the translation invariance and corresponding zero eigenvalue as described
in the next section.

The steady states of the planar system θ = WE(Φ) − WI(Φ) are the same as in
section 3.1. The Jacobian evaluated at the fixed points is

J =

(
W ′

E(Φ)/α −1/α
W ′

I(Φ)/τ −1/τ
)

.

The determinant is 1
τα (W

′
I(Φ)−W ′

E(Φ)) and the trace is W ′
E(Φ)/α− 1/τ. Thus the

smaller root is a saddle point (since at this point W ′
I < W ′

E ; see Figure 2a) while the
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Fig. 4. Dependence of pulse solutions on the speed of inhibition. Numerical solution of (2) with

wee = 1
2(.45)

e−
|x|
.45 , wei =

1
2(.45)

e−
|x|
.45 , wie = .7

2(.62)
e−

|x|
.62 , and P (U − θ) = H(U − θ) with θ = .2.

(a) τ = .4, (b) τ = .55, (c) τ = .7. The initial condition is an instantaneous square pulse with an
activity height of .3 (just above threshold) and a width of 10 spatial points. Note that stability of the
pulse solution is lost as inhibition slows and that both the width and amplitude of the pulse show
signs of oscillating near the bifurcation, indicative of an unstable periodic orbit.

larger root is a node or vortex. The stability is determined by the trace. For large
enough values of the time constant of inhibition, τ , the trace becomes positive so that
the larger fixed point loses stability to a Hopf bifurcation, which will be discussed
further in the following section.

We have used the software program AUTO [10] to compute the direction of bifur-
cation and, in all cases we have tried, the bifurcation is subcritical leading to unstable
periodic fluctuations of the pulse. This differs from reaction-diffusion systems and
may explain why we have not been able to obtain stable “breathing” pulse patterns
in the full integral equations. Figure 4 presents a numerical example in which a stable
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pulse loses stability as inhibition slows. Note the expanding and contracting pulse
width near the bifurcation, indicating an unstable periodic orbit. We remark that
these techniques can also be used to study the evolution of multiple pulses in the
same domain.

4.3. Linear stability analysis. Let u1 be a steady state pulse solution of (6)
centered about the origin so that a2 = a, a1 = −a, and the pulse width φ = 2a;

u1 = (wee − wie ∗ wei) ∗H(u1 − θ).

Linearizing (6) about u1 leads to (u → z, v → ψ)

zt = −z + wee ∗ (δ(u1 − θ)z)− wie ∗ ψ,

τψt = −ψ + wei ∗ (δ(u1 − θ)ψ),

where δ is the Dirac delta function. We look for solutions of the form

z = eλtz1(x),

ψ = eλtψ1(x),

which thus satisfy

λz1(x) = −z1(x) + wee ∗ (δ(u1 − θ)z1)− wie ∗ ψ1,

λτψ1 = −ψ1(x) + wei ∗ (δ(u1 − θ)z1).

Solving for ψ1 in the second equation, the first equation becomes

(1 + λ)z1 =

(
wee − 1

1 + λτ
(wie ∗ wei)

)
∗ (δ(u1 − θ)z1),(7)

which, since u1(±a) = θ, becomes

(1 + λ)z1 = wτ ∗ (δ(u1 − θ)z1)

=
1

|u′
1(a)|

(wτ (x+ a)z1(−a) + wτ (x− a)z1(a)),(8)

where, to simplify notation, we take

wτ ≡ wee − 1

1 + λτ
(wie ∗ wei)

and, for what follows,

w ≡ wee − (wie ∗ wei).

Next we note that

u1(x) = w ∗H(u1 − θ)

=

∫ a

−a

w(x− x′)dx′ =
∫ x+a

x−a

w(y)dy,

so that

u′
1(x) = w(x+ a)− w(x− a)
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and (8) becomes

(1 + λ)z1(x) =
wτ (x+ a)z1(−a) + wτ (x− a)z1(a)

|w(2a)− w(0)| .(9)

Equality (9) implies

z1(±a) = 0 ⇐⇒ z1(x) ≡ 0.

Hence we examine the matrix equation obtained from (9) at the points x = ±a,

(1 + λ)

(
z1(a)
z1(−a)

)
=

1

|w(0)− w(2a)|
(

wτ (0) wτ (2a)
wτ (2a) wτ (0)

)(
z1(a)
z1(−a)

)
,

whence it is seen that nontrivial solutions for z1(±a) (and hence z1(x)) are possible
only for those λ satisfying

1 + λ± =
wτ (0)± wτ (2a)

|w(0)− w(2a)| .

Expanding the eigenvalue equation,

(1 + λ±τ)(1 + λ±)

=
wee(0)(1 + λ±τ)− (wie ∗ wei)(0)± wee(2a)(1 + λ±τ)∓ (wie ∗ wei)(2a)

|w(0)− w(2a)|

=
λ±τ(wee(0)± wee(2a)) + w(0)± w(2a)

|w(0)− w(2a)| ,

we simplify to obtain

λ2
± +

(
1 +

1

τ
− wee(0)± wee(2a)

|w(0)− w(2a)|
)

λ± +
1

τ

(
1− w(0)± w(2a)

|w(0)− w(2a)|
)
= 0.

We first consider the equation for λ−. From the sketch of the LI kernel in Figure
1, note that w(0) > w(2a), causing the last term to vanish. What remains,

λ2
− +

(
1 +

1

τ
− wee(0)− wee(2a)

|w(0)− w(2a)|
)

λ− = 0,

leads to the first two eigenvalues,

λ− = 0,

λ− =
wee(0)− wee(2a)

|w(0)− w(2a)| −
(
1 +

1

τ

)
.

The first, λ− = 0, is an expected result of the translation invariance of pulse solutions.
The second provides the first condition for stability, namely,

wee(0)− wee(2a)

|w(0)− w(2a)| −
(
1 +

1

τ

)
< 0.(10)

Similarly, we obtain an equation for λ+:

λ2
+ +

(
1 +

1

τ
− wee(0) + wee(2a)

|w(0)− w(2a)|
)

λ+ +
1

τ

(
1− w(0) + w(2a)

|w(0)− w(2a)|
)
= 0.
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The eigenvalues λ+ have negative real parts if and only if the coefficients of the
quadratic are positive. If the constant coefficient is positive but the linear coefficient
vanishes, then there are imaginary eigenvalues and we expect a Hopf bifurcation. The
conditions for stability are thus

w(0) + w(2a)

|w(0)− w(2a)| < 1(11)

and

wee(0) + wee(2a)

|w(0)− w(2a)| <

(
1 +

1

τ

)
.(12)

Note that, because (wee(0)+wee(2a)) > (wee(0)−wee(2a)), satisfying condition (12)
is sufficient to satisfy condition (10).

What remains, then, are conditions (11) and (12). Condition (11) corresponds to
Amari’s original condition for the stability of the wide pulse. That is, w(2a) < 0; the
value for the half-width a lies in the negative region of the lateral inhibition kernel.
Condition (12) establishes the dependence of stability on τ , the time constant of
inhibition.

Since, for the wide pulse, wee(2a) − (wie ∗ wei)(2a) < 0, we can establish the
following inequalities:

wee(0) + wee(2a) > wee(0)− wee(2a) > (wie ∗ wei)(0)− (wie ∗ wei)(2a) > 0.

Expanding the denominator of (12),

wee(0) + wee(2a)

|(wee(0)− (wie ∗ wei)(0))− (wee(2a)− (wie ∗ wei)(2a))|

=
wee(0) + wee(2a)

|(wee(0)− wee(2a))− ((wie ∗ wei)(0)− (wie ∗ wei)(2a))|
reveals that the fraction is greater than one for the wide pulse. Thus, so long as τ
is small (i.e., inhibition is fast), condition (12) holds. As inhibition slows, however,
and τ increases, the condition is no longer satisfied and stability is lost. Since (12)
implies that the linear term of the quadratic is positive, violation of this leads to
loss of stability at a Hopf bifurcation. This suggests the possibility of a transition
from a standing pulse to one with an oscillating width, i.e., a breathing pulse. In
some reaction-diffusion systems, such solutions have in fact been found [28], [27].
As mentioned above, however, numerical analysis of the present system suggests the
bifurcation is subcritical, leading to periodic solutions that are unstable.

5. Discussion. This study has examined the existence and stability of standing
pulse solutions to an integro-differential equation system describing neuronal activity
in a synaptically coupled network of excitatory and inhibitory neurons along a single
spatial domain. Using the Heaviside function to describe firing rate, and assuming
that inhibition acts instantaneously, Amari’s formal analysis reveals the existence
and stability of two standing pulse solutions, one wide and stable, the other narrow
and unstable. However, the wide pulse becomes unstable through a Hopf bifurcation
when more realistic inhibitory dynamics are incorporated. This is demonstrated using
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both a formal argument that parallels Amari’s approach and also through analysis
of the linearized system. For more general firing rate functions, standing pulses are
constructed using a singular perturbation argument. Interestingly, because both the
inner and outer equations involve a spatial convolution, the matching criteria require
consideration of global solutions from each layer. Other studies have also examined
the existence and stability of standing pulses in similar systems using a fixed point
theorem [20] and as a homoclinic solution to a similar set of convolution equations
[5].

The present analysis does not support the hypothesis that sustained activity in
prefrontal cortex is a result of the dynamics in an LI network [3], [2], [16]. However, no
attempt was made to quantify the speed of inhibition necessary to maintain a stable
pulse, and so the LI network mechanism cannot be ruled out completely. Anatomical
studies have demonstrated the existence of direct long-distance inhibitory connections
in prefrontal cortex [25], [23], and studies from other brain regions suggest that such
connections can indeed play a functional role in organizing spatial activity [9]. How-
ever, in prefrontal cortex, fewer than 5% of long-distance connections synapse onto
nonspiny neurons thought to be inhibitory in nature [25]. Those same neurons receive
up to 25% of all synapses, both local and long-distance, suggesting that long-distance
connections selectively target excitatory neurons [25]. On the other hand, inhibitory
neurons in neocortex are strongly driven by excitatory input [35]. Thus, despite the
paucity of direct connections, inhibition might still dominate over long distances via
multi-synaptic pathways. While consistent with the underlying anatomy, this hy-
pothesis introduces a delay to the onset of inhibition. Moreover, in contrast to the
direct unit-to-unit connections in the Limulus retina, network inhibition in cortex is
likely to require the integration of multiple inhibitory events, further accentuating the
inhibitory delay [31], [19].

Alternative mechanisms that may explain sustained activity include the state-
dependent bistability of individual neurons [22], [3]. Another possibility is that exci-
tatory connections in prefrontal cortex are dominated by NMDA synapses, operating
on a time scale much slower than GABA-mediated inhibition [32]. Finally, maintained
activity might result from functional connections between the many brain regions ex-
hibiting similar sustained activity patterns [6], [8], [26].
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