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Abstract. The existence of phaselocked solutions in chains of weakly coupled oscillators is
proven rigorously. The solutions show interesting monotonicity which plays an important role for the
existence proofs. Under some conditions, we show that two-dimensional arrays can be decomposed
into two one-dimensional problems. With this theory of decomposition, target patterns can be
explained. Numerical results are provided to illustrate the theorems on the chain problem and to
show traveling waves in the chains and arrays.
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1. Introduction. Coupled oscillators play an increasingly important role in our
understanding of various types of repetitive activity in the nervous system. There
have been numerous analytic and numerical studies of the behavior of systems of
coupled oscillators. These range from models of cognitive processing and binding [1]
to attempts to model locomotor patterns [2]. Several connection topologies have been
explored primarily due to their mathematical tractability. The simplest topology is
a one-dimensional chain of oscillators. Mathematically, the case in which the two
ends are connected is the easiest to analyze, but in realistic applications, this rarely
arises. However, the chain topology is quite natural for models of systems such as
the lamprey swim central pattern generator [2] or the central pattern generator of the
leech [3]. The behavior of weakly coupled oscillators in a chain has been the object
of extensive work by several authors [4, 5, 6, 7, 8].

Two-dimensional arrays of oscillators have been subject to far less mathematical
analysis; most work deals exclusively with numerical simulations. They arise more
naturally than chains in attempts to understand oscillatory neural behavior in neural
tissue which is typically arranged in distinct two-dimensional sheets. Furthermore,
there are many phenomena that can occur in two- and three-dimensional systems of
oscillators that are not possible in one dimension.

It was shown in [5] that the phaselocked behavior of a sufficiently long chain of
weakly coupled oscillators can be described by the solutions of a singularly perturbed
two-point boundary value problem. The point of this reduction is that the analysis
of phaselocking and the behavior of the chain in the presence of inhomogeneities and
anisotropic coupling is much easier for the continuum model than for its discrete
analogue. In this paper, we will use another approach to investigate the phaselocked
behavior with any number of oscillators. That is, we do not require the length of the
chain to tend to infinity.

Coupled oscillators present an almost impossible problem to analyze in any gen-
erality. Thus, we will restrict our attention to a class of so-called phase models that
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arise when oscillatory elements are weakly coupled. As was the case in [5], we will
restrict our attention in this paper to nearest-neighbor coupling. In a later paper, we
investigate coupling with greater spread. We first consider one-dimensional chains of
oscillators. Then, we turn our attention to two-dimensional arrays. Under the condi-
tion that the distribution of intrinsic frequencies is a sum of two stripe distributions:
one with constant frequencies along each row and another with constant frequencies
along each column, we are able to decompose the two-dimensional problem into a set
of one-dimensional problems and from this gain insight into the global phaselocked
behavior. The techniques for two-dimensional arrays can be generalized in an obvious
fashion to three- and higher dimensional arrays.

The equations to be considered have the form

θ′
i = ωi + H+(θi+1 − θi) + H−(θi−1 − θi),(1.1)

where i = 1, . . . , n + 1, both H+ and H− are smooth 2π-periodic functions of their
arguments, and ωi is the frequency for each oscillator. Note that (1.1) is a nearest-
neighbor coupled system. The term H− (respectively, H+) will be ignored for i = 1
(respectively, i = n+1). Equation (1.1) arises naturally in systems of weakly coupled
oscillators. We assume that without coupling, each component of the chain has an
asymptotically stable limit cycle. Thus, without coupling, each oscillator is described
by a single coordinate, the phase, θi. The phase space of the n+1 oscillators then lies
in an n + 1 torus. If the oscillators interact weakly, then this invariant torus persists,
and it follows from averaging theory that the equations for the phases of the n + 1
oscillators is exactly equation (1.1). (For details on the derivation of these equations,
see, e.g., [4].) The interaction functions H± are easily computed once the uncoupled
oscillation is known and a formula is given for the interaction between the oscillators.

We point out that if two oscillators are coupled by diffusion, then the interaction
functions H± vanish at 0. Thus, if there are no local differences in the oscillators (ωi

is independent of i) then the synchronous state θi(t) = ωt is one possible solution.
However, if the coupling between oscillators is based on chemical transmission then one
does not expect that H±(0) will vanish. Because oscillators on the boundary (at the
ends in one dimension, on the edges in two dimensions, etc.) receive less synaptic input
than oscillators in the interior, this sets up a natural frequency difference between
the oscillators. This makes it possible to induce a pattern of relative phases such
as a traveling wave in one dimension and target patterns in two dimensions. In
[5] we analyzed chains of oscillators in which there is an intrinsic anisotropy in the
coupling so that H+ and H− are not necessarily the same. This was exploited in
order to suggest a mechanism for the uniform traveling wave of electrical activity in
the lamprey spinal cord. In this paper, we are mainly concerned with couplings for
which H± are identical. In [7] the behavior of the chain is understood by letting n
get very large and converting to a continuum equation. Here we do not restrict the
size of n; the results hold for both small and large n. The main reason that we first
analyze the one-dimensional chain is that we can then use these results to analyze a
class of solutions in two and higher dimensions.

In section 2, we shall take the technique used in [9] to prove the existence of
phaselocked solutions for several general cases. The monotonicity of the phaselocked
solutions is also obtained. The monotonicity does not have any specific implication for
traveling wave, but it does play a critical role in the existence proof of the phaselocked
solutions.

In section 3, we shall investigate the two-dimensional arrays of weakly coupled
oscillators based on the existence results of section 2. As in the one-dimensional case,
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we restrict our attention to nearest-neighbor coupling, but the coupling in each of
the four directions need not be the same. Under some conditions on the frequencies
ωij , we can reduce this problem to two independent chain problems such that we can
apply the results obtained from section 2 to describe the behavior of two-dimensional
arrays of weakly coupled oscillators. One of the main results is that with isotropic
“synaptic coupling,” target patterns spontaneously form and synchrony cannot occur.
This is due to the effects of boundaries in synaptically coupled cells.

Finally, we discuss some other two-dimensional solutions as well as how small
chains can qualitatively differ from very long chains.

2. Chains of oscillators. For convenience, the equations (1.1) are written in
the form

θ′
1 = ω1 + H+(θ2 − θ1),

θ′
i = ωi + H−(θi−1 − θi) + H+(θi+1 − θi),(2.1)

θ′
n+1 = ωn+1 + H−(θn − θn+1).

We take φi = θi+1 − θi, βi = ωi+1 −ωi, i = 1, . . . , n. Also, we define two functions
f and g related to H+ and H− as f(φ) + g(φ) = H+(φ) and f(φ) − g(φ) = H−(−φ).
In (2.1), if the ith equation is subtracted from the (i + 1)th one, we have

φ′
1 = β1 + f(φ2) + g(φ2) − 2g(φ1),

φ′
i = βi + f(φi+1) − f(φi−1) + g(φi+1) − 2g(φi) + g(φi−1),

i = 2, . . . , n − 1,(2.2)
φ′

n = βn − f(φn−1) − 2g(φn) + g(φn−1).

Two numbers φL and φR need to be considered. They are defined as f(φL) =
g(φL), i.e., H−(−φL) = 0, and f(φR) = −g(φR), i.e., H+(φR) = 0.

We assume some hypotheses on f and g in a sufficiently large interval J around
φ = 0:

(H1) g′(φ) > |f ′(φ)| for φ ∈ J ;
(H2) There exists a unique solution φL (respectively, φR) to f = g (respectively,

f = −g) for φ ∈ J .
These conditions are proposed in [5] with other conditions. Note that φR < 0 <

φL if f(0) > |g(0)| and φL < 0 < φR if f(0) < −|g(0)|.
2.1. Isotropic case with βi = 0, i = 1, . . . , n. We investigate the case with

H+ = H− and βi = 0, i = 0, . . . , n. In this case, f is an even function and g an odd
one. And we have φL = −φR. Then (2.2) can be rewritten as

φ′
1 = f(φ2) + g(φ2) − 2g(φ1),

φ′
i = f(φi+1) − f(φi−1) + g(φi+1) − 2g(φi) + g(φi−1),

i = 2, . . . , n − 1,(2.3)
φ′

n = −f(φn−1) − 2g(φn) + g(φn−1).

First of all, let’s look at the initial value problem (IVP) (2.1) with θi(0) = c where
c is any real number. Then by the facts that H+ = H− and ωi ≡ ω (since βi = 0,
i = 1, . . . , n), we have θi(t) = θn+2−i(t) for t ≥ 0, i = 1, . . . , n+1. Then the IVP (2.3)
with φi(0) = 0 shall yield φi(t) ≡ −φn+1−i(t). That inspires us to study the system
including only half the number of equations of (2.3).
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LEMMA 2.1. Let n = 2m − 1. Assume that f and g satisfy the conditions (H1),
(H2), and f(0) > 0; then the IVP (2.3) with φi(0) = 0, i = 1, . . . , n, has the following
monotonicity along the trajectory:

φL > φ1(t) > φ2(t) > · · · > φm−1(t) > φm(t) ≡ 0(2.4)

and

φ′
i(t) > 0, i = 1, . . . , m − 1(2.5)

for 0 < t < t̂, where t̂ is such that φ′
i(t̂) = 0, i = 1, . . . , m, or t̂ = +∞.

Remark . The fixed point always happens at t = +∞ for an autonomous system.
So we should have t̂ = +∞ here. But a finite positive t̂ does not affect our results.
Hence we define t̂ in the above way for the convenience of proof.

Proof. As we mentioned, φm(t) = −φn+1−m(t) = −φm(t) for t ≥ 0. Then
φm(t) ≡ 0 is obvious. Since we only use half the number of equations (2.3), we restate
them as

φ′
1 = f(φ2) + g(φ2) − 2g(φ1),

φ′
i = f(φi+1) − f(φi−1) + g(φi+1) − 2g(φi) + g(φi−1),

i = 2, . . . , m − 2,(2.6)
φ′

m−1 = f(0) − f(φm−2) − 2g(φm−1) + g(φm−2).

Therefore φ′
1(0) = f(0) > 0, φ′

i(0) = 0, i = 2, . . . , m − 1 (where we use the fact that
g(0) = 0 since g is odd).

Furthermore, one can show by induction that

φ′
1(0) > 0,

φ′
i(0) = · · · = φ

(i−1)
i (0) = 0,(2.7)

φ
(i)
i (0) = g′(0)φ(i−1)

i−1 (0) > 0, i = 2, . . . , m − 1.

Remark . By (H1), g′(0) > 0 such that φ
(i)
i (0) = [g′(0)]i−1φ′

1(0) > 0.
So there exists small δ > 0 such that (2.4) and (2.5) hold for 0 < t < δ if one

applies the Taylor’s expansion for φi(t) and φ′
i(t) around t = 0. Starting with this

result, we need to show that (2.4) and (2.5) are always true for t > 0.
By contradiction, suppose that there is a first place t0 where (2.4) and (2.5) break

down. Then we need to study the following cases.
CASE 1. φL = φ1(t0) ≥ φ2(t0) ≥ · · · ≥ φm−1(t0) > φm(t0) ≡ 0 and φ′

i(t0) ≥ 0,
i = 1, . . . , m − 1.

Then

0 ≤ φ′
1(t0) = f(φ2(t0)) + g(φ2(t0)) − 2g(φ1(t0))

= f(φ2(t0)) + g(φ2(t0)) − 2g(φL)
= f(φ2(t0)) + g(φ2(t0)) − f(φL) − g(φL)
= [f ′(ξ) + g′(ξ)](φ2(t0) − φL)
≤ 0,

where ξ ∈ (φ2(t0), φL) by the mean value theorem and (f ′ + g′)(ξ) > 0 by (H1). This
leads to φ2(t0) = φL.
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By induction on i, we shall gain φi(t0) = φL, i = 2, . . . , m − 1.
Then we have

0 ≤ f(0) − f(φL) − g(φL)
= f(0) + g(0) − f(φL) − g(φL)
= (f ′ + g′)(ξ)(0 − φL),

which implies φL ≤ 0. This leads to contradiction since φL > 0. Therefore Case 1 is
impossible.

CASE 2. φL > φ1(t0) > · · · > φj(t0) = φj+1 ≥ · · · ≥ φm−1(t0) > φm(t0) = 0
for some j ∈ {1, 2, . . . , m − 2} and φ′

i(t0) ≥ 0 ∀i ∈ {1, . . . , m − 1}.
Then

0 ≤ φ′
j+1(t0) = f(φj+2(t0)) − f(φj(t0)) + g(φj+2(t0)) − 2g(φj+1(t0)) + g(φj(t0))

= f(φj+2(t0)) − f(φj+1(t0)) + g(φj+2(t0)) − g(φj+1(t0))
= [f ′ + g′](ξ)(φj+2(t0) − φj+1(t0))
≤ 0,

which implies φj+2(t0) = φj+1(t0) (since f ′ + g′ > 0 in J and φj+1(t0) ≥ φj+2(t0)).
By induction, we have φL > φ1(t0) > · · · > φj(t0) = φj+1(t0) = · · · = φm−1(t0) >

φm(t0) = 0.
Then

0 ≤ φ′
m−1(t0) = f(0) − f(φm−1(t0)) − g(φm−1(t0))

= f(0) + g(0) − f(φm−1(t0)) − g(φm−1(t0))
= [f ′ + g′](ξ)(0 − φm−1(t0)),

which implies φm−1(t0) ≤ 0: a contradiction!
Therefore we eliminate the possibility of Case 2.
CASE 3. φL > φ1(t0) > · · · > φm−1(t0) > φm(t0) = 0 and φ′

i(t0) ≥ 0 ∀i and
φ′

j(t0) = 0 for some j ∈ {1, . . . , m − 1}.
First of all, if j = 1, i.e., φ′

1(t0) = 0, then we must have φ′
2(t0) = 0. Otherwise

φ′
2(t0) > 0; then for ε > 0 small enough, we have

φ′
1(t0 − ε) = φ′

1(t0) − φ′′
1(t0)ε + o(ε2)

= φ′
1(t0) − [f ′(φ2(t0)) + g′(φ2(t0))]φ′

2(t0)ε + 2g′(φ1(t0))φ′
1(t0)ε + o(ε2)

= −[f ′(φ2(t0)) + g′(φ2(t0))]φ′
2(t0)ε + o(ε2)

< 0.

This is a contradiction since t0 is the first place where (2.4) and (2.5) break down.
Furthermore, we can get φ′

i(t0) = 0, i = 2, . . . , m − 1 by using the techniques of
induction and contradiction. Taking t̂ = t0, we are done with the proof.

Secondly, assume that φ′
i(t0) > 0, i = 1, . . . , j − 1, and φ′

j(t0) = 0 for some
j ∈ {2, . . . , m − 1}. Then by applying the same technique above and noting that
g′ − f ′ > 0 in J , we will obtain φ′

j−1(t0) = 0, which is a contradiction. Hence we
eliminate Case 3.

Now by getting rid of Cases 1–3, we can conclude that either there exists a
t̂ > 0 such that (2.4) and (2.5) hold for 0 < t < t̂ and φ′

i(t̂) = 0, i = 1, . . . , m,
or the first place t0 where (2.4) and (2.5) break down does not exist. The proof is
completed.



ARRAYS OF COUPLED OSCILLATORS 213

Remark 1. In the proof of Lemma 2.1, the monotonicity of solution along the
trajectory plays an important role. In order to get monotonicity at the start of the
trajectory, we need the initial vector φi(0) = 0, i = 1, . . . , n. For other initial vectors,
monotonicity fails.

Remark 2. Throughout this paper, we always start from φi(0) = 0. As we can
see in the following sections, if the monotonicity fails on the trajectory, we cannot
continue the proof theoretically. But numerical experiments show that the solution
trajectory of (2.2) always converges to the same equilibrium for any initial vector. It
seems that the basin of attraction is infinitely large.

LEMMA 2.2. Let n = 2m. Assume that f and g satisfy the conditions (H1),
(H2), and f(0) > 0; then the IVP (2.3) with φi(0) = 0, i = 1, . . . , n, has the following
monotonicity along the trajectory:

φL > φ1(t) > φ2(t) > · · · > φm−1(t) > φm(t) > 0(2.8)

and

φ′
i(t) > 0, 0 < t < t̂, i = 1, . . . , m,(2.9)

where t̂ is such that φ′
i(t̂) = 0, i = 1, . . . , m, or t̂ = +∞.

Proof. The proof is similar to the proof of Lemma 2.1. The difference is that we
should restate the equations of (2.3) as

φ′
1 = f(φ2) + g(φ2) − 2g(φ1),

φ′
i = f(φi+1) − f(φi−1) + g(φi+1) − 2g(φi) + g(φi−1),

i = 2, . . . , m − 1,(2.10)
φ′

m = f(φm) − f(φm−1) − 3g(φm) + g(φm−1).

All the techniques from Lemma 2.1 can be applied here so we ignore the details.
THEOREM 2.3. Assume f and g satisfy the same conditions as in Lemmas 2.1

and 2.2; then the IVP (2.3) with φi(0) = 0, i = 1, . . . , n has the following properties:
(i) For each i ∈ {1, . . . , n}, there exists φ̄i such that limt→t̂ φi(t) = φ̄i;
(ii) (φ̄1, . . . , φ̄n) is the fixed point of the system (2.3);
(iii) φL > φ̄1 > φ̄2 > · · · > φ̄n−1 > φ̄n > φR;
(iv) φ̄i = −φ̄n+1−i, i = 1, . . . , n.
Proof. By the results of Lemmas 2.1 and 2.2, (i), (ii), and (iv) are easy to check.

Also we have φL ≥ φ̄1 ≥ φ̄2 ≥ · · · ≥ φ̄n−1 ≥ φ̄n ≥ φR. We need to show that all the
inequalities are strict. By contradiction, suppose φL = φ̄1. Then we have

0 = f(φ̄2) + g(φ̄2) − 2g(φ̄1)
= f(φ̄2) + g(φ̄2) − 2g(φL)
= f(φ̄2) + g(φ̄2) − [f(φL) + g(φL)]
= [f ′ + g′](ξ)(φ̄2 − φL),

which implies φ̄2 = φL.
Then we would have φ̄i = φL, i = 1, . . . , n by induction on i.
And 0 = −f(φL) − 2g(φL) + g(φL) = −f(φL) − g(φL) by the last equation of

(2.3) such that f(φL) = −g(φL) which leads to φL = φR. This contradicts φL = −φR

since φL > 0. Hence φL > φ̄1 must hold.
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FIG. 2.1. The isotropic case with H+(φ) = H−(φ) = H(φ) = .5 cos φ + sin φ, n = 11, and βi = 0.0.

Suppose φ̄1 = φ̄2; then 0 = f(φ̄2) + g(φ̄2) − 2g(φ̄1) by (2.3). This is 0 = f(φ̄1) −
g(φ̄1), which implies φ̄1 = φL. So we must have φL > φ̄1 > φ̄2. By the symmetry, we
have φR < φ̄n < φ̄n−1.

Suppose i is the first index such that φ̄i = φ̄i+1; then

0 = f(φ̄i+1) − f(φ̄i−1) + g(φ̄i+1) − 2g(φ̄i) + g(φ̄i−1)
= f(φ̄i) − f(φ̄i−1) − g(φ̄i) + g(φ̄i−1)
= f(φ̄i) − g(φ̄i−1) − g(φ̄i) + g(φ̄i−1)
= (g′ − f ′)(ξ)(φ̄i−1 − φ̄i),

which implies φ̄i−1 = φ̄i, a contradiction.
Hence φL > φ̄1 > φ̄2 > · · · > φ̄n−1 > φ̄n > φR.
In Figure 2.1 we illustrate the theory of Lemma 2.1 and Theorem 2.3 with a

numerical example. Here we take H+(φ) = H−(φ) = 0.5 cos φ + sinφ. Then φL =
−φR = arctan(0.5) ≈ 0.464 and J = (− arctan 2, arctan 2) ≈ (−1.107, 1.107) for the
conditions (H1) and (H2). We implemented the numerical computation by using
the interactive package XPPAUT which was developed by B. Ermentrout. From
the top to the bottom, the curves are φ1(t), . . . , φ11(t) (n = 11), respectively. Note
φ6(t) ≡ 0 is on the x-axis. The figure shows the monotonicity and symmetry of
solution (φ1(t), . . . , φn(t)) along the trajectory.

In Lemmas 2.1 and 2.2 and Theorem 2.3, we have the condition f(0) > 0. For
f(0) < 0, the results and the proofs are very similar. We just state Theorem 2.4
without proof.

THEOREM 2.4. Assume f and g satisfy (H1), (H2), and f(0) < 0; then the IVP
(2.3) with φi(0) = 0, i = 1, . . . , n has the following properties:

(i) For each i ∈ {1, . . . , n}, there exists φ̄i such that limt→t̂ φi(t) = φ̄i;
(ii) (φ̄1, . . . , φ̄n) is the fixed point of the system (2.3);
(iii) φL < φ̄1 < φ̄2 < · · · < φ̄n−1 < φ̄n < φR;
(iv) φ̄i = −φ̄n+1−i, i = 1, . . . , n.
We turn our attention back to the system (2.1). Notice that we have

ω + H+(φ̄1) = ω + H−(−φ̄i−1) + H+(φ̄i) = ω + H−(−φ̄n), i = 2, . . . , n − 1.
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We take Ω = ω + H−(−φ̄i−1) + H+(φ̄i); then θ1 = Ωt, θi = Ωt +
∑i−1

k=1 φ̄k, i =
2, . . . , n+1, is the phaselocked solution of (2.1). Before showing that this phaselocked
solution is stable, we state a general stability result due to Ermentrout [10].

THEOREM 2.5 (Ermentrout, 1992). Consider the equations

dθk/dt = Hk(θ1 − θk, . . . , θM − θk), k = 1, . . . , M.(2.11)

Let θk = Ωt + ψ̄k be a phaselocked solution and let

ajk = ∂Hk(z1, . . . , zM )/∂zj(2.12)

evaluated at zj = ψ̄j − ψ̄k. Suppose that ajk ≥ 0 and the graph of the matrix (ajk)
is complete. Then the phaselocked solution is orbitally asymptotically stable in the
sense that there is a simple zero eigenvalue corresponding to translation in time and
all other eigenvalues have negative real parts.

Due to (H1), we have g′ ± f ′ > 0 in J . Then the phaselocked solution θ1 = Ωt,
θi = Ωt+

∑i−1
k=1 φ̄k, i = 2, . . . , n+1, satisfies the nonnegativity assumption in Theorem

2.5. The graph of (ajk) is complete since ai,i+1 > 0 and ai+1,i > 0 for i = 1, . . . , n.
So we have shown that the phaselocked solution is asymptotically stable. This result
is summarized in the following theorem.

THEOREM 2.6. Under the conditions of Theorem 2.3 or 2.4, θ1 = Ωt, θi = Ωt +∑i−1
k=1 φ̄k, i = 2, . . . , n+1, is the phaselocked solution of (2.1), orbitally asymptotically

stable in the sense that there is a simple zero eigenvalue corresponding to translation
in time and other eigenvalues have negative real parts.

As a matter of fact, in Theorem 2.6, all the n nonzero eigenvalues with nega-
tive real parts are actually the eigenvalues of the system (2.3) linearized around the
equilibrium (φ̄1, . . . , φ̄n).

COROLLARY 2.7. Under the conditions of Theorems 2.3 or 2.4, (φ̄1, . . . , φ̄n) is an
asymptotically stable steady state of (2.3) and all the eigenvalues of the system (2.3)
linearized around it have negative real parts.

2.2. Isotropic case with βi = β 6= 0, i = 1, . . . , n. Throughout this section,
without loss of generality, we assume β < 0. If β > 0, you can subtract the consecutive
equations of (2.1) in another direction such that the frequency difference is less than
zero. In this case, we still have H+ = H−, which implies that f is even and g odd
such that φL = −φR. We restate (2.2) in the form

φ′
1 = β + f(φ2) + g(φ2) − 2g(φ1),

φ′
i = β + f(φi+1) − f(φi−1) + g(φi+1) − 2g(φi) + g(φi−1),

i = 2, . . . , n − 1,(2.13)
φ′

n = β − f(φn−1) − 2g(φn) + g(φn−1).

For β = 0, we have that (φ̄1, . . . , φ̄n) is the asymptotically stable steady state of (2.13)
following Corollary 2.7. Then if |β| is small enough, we should get an asymptotically
stable steady state φ̄i(β), i = 1, . . . , n near (φ̄1, . . . , φ̄n) by the implicit function
theorem. We denote the trajectory by φi(t, β), i = 1, . . . , n for the IVP (2.13) with
φi(0) = 0. By continuity, φi(t, β) should have the monotonicity and boundedness as
in Lemmas 2.1 and 2.2, and φi(t, β) → φ̄i(β) as t → +∞ if |β| is small enough. We
summarize this fact in Theorem 2.8

THEOREM 2.8. Assume that f and g satisfy (H1) and (H2). Let |β| be small
enough; then the IVP (2.13) with φi(0) = 0 satisfies that
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(i) if f(0) > 0, then

φL > φ1(t, β) > · · · > φn(t, β) > φR;(2.14)

(ii) if f(0) < 0, then

φL < φ1(t, β) < · · · < φn(t, β) < φR.(2.15)

Also φi(t, β) → φ̄i(β) as t → +∞ for i = 1, . . . , n, where (φ̄1(β), . . . , φ̄n(β)) is the
asymptotically stable steady state of (2.13) near (φ̄1, . . . , φ̄n).

Theorem 2.8 is not a particularly strong result. To keep the monotonicity and
boundedness, |β| has to be assumed very small. We would like to know when the
monotonicity breaks down. This leads to the following theorem.

THEOREM 2.9. Assume that f and g satisfy (H1), (H2), and f(0) > 0. Let |β| be
small enough that φn−1(t) ≥ φR, t > 0 for the IVP (2.13) with φi(0) = 0, i = 1, . . . , n.
Then we have the following properties along the trajectory:

(i) there is a sequence {tk}∞
k=1 (it could be a finite sequence) such that 0 = t1 <

t2 < · · · < tk < · · · < t̂, and for each k, there is lk ∈ {1, . . . , n} so that

φ′
i(t) > 0, i = 1, . . . , lk, tk < t < tk+1,

φ′
j(t) < 0, j = lk + 1, . . . , n, tk < t < tk+1,(2.16)

lk+1 ∈ {0, lk − 1, lk, lk + 1, n},(2.17)
either φ′

lk
(tk+1) = 0 or φ′

lk+1(tk+1) = 0 (not both),(2.18)
φL > φ1(t) > · · · > φn−1(t) > φn(t) > φβ , tk < t ≤ tk+1(2.19)

where t̂ is such that φ′
i(t̂) = 0, i = 1, . . . , n or t̂ = +∞, and φβ ∈ J is such that

f(φβ) + g(φβ) = β (note that φβ < φR).
(ii) for each i ∈ {1, . . . , n}, there exists φ̄i such that

lim
t→t̂

φi(t) = φ̄i,(2.20)

φL > φ̄1 > · · · > φ̄n > φβ ,(2.21)

and (φ̄1, . . . , φ̄n) is a fixed point of (2.13).
Remark . The condition φn−1(t) ≥ φR, t > 0 means that φn−1 cannot cross φR

along the trajectory. It is weaker than the condition in Theorem 2.8 since it allows φn

to cross φR. It holds when |β| is small enough (but not as small as in Theorem 2.8)
according to the results of section 2.1.

The proof of the theorem is very long. We put it in the Appendix for interested
readers.

Figure 2.2 is a numerical solution illustrating Theorem 2.9. Here H+(φ) =
H−(φ) = 0.5 cos φ + sinφ and β = −0.005. The figure shows monotonicity of so-
lution along the trajectory.

For the case f(0) < 0, we have results parallel to Theorem 2.9.
THEOREM 2.10. Assume that f and g satisfy (H1), (H2), and f(0) < 0. Let |β| be

small enough that φ2(t) ≥ φL, t > 0 for the IVP (2.13) with φi(0) = 0, i = 1, . . . , n.
Then we have the following properties along the trajectory:

(i) there is a sequence {tk}∞
k=1 (it could be a finite sequence) such that 0 = t1 <

t2 < · · · < tk < · · · < t̂ and for each k, there is lk ∈ {1, . . . , n} so that

φ′
i(t) < 0, i = 1, . . . , lk, tk < t < tk+1,
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FIG. 2.2. The isotropic case with H+(φ) = H−(φ) = H(φ) = .5 cos φ + sin φ, n = 11, and
βi = β = −0.005.

φ′
j(t) > 0, j = lk + 1, . . . , n, tk < t < tk+1,(2.22)

lk+1 ∈ {0, lk − 1, lk, lk + 1, n},(2.23)
either φ′

lk
(tk+1) = 0 or φ′

lk+1(tk+1) = 0 (not both),(2.24)
φβ < φ1(t) < · · · < φn−1(t) < φn(t) < φR, tk < t ≤ tk+1,(2.25)

where t̂ is such that φ′
i(t̂) = 0, i = 1, . . . , n or t̂ = +∞, and φβ ∈ J is such that

−f(φβ) + g(φβ) = β (note that φβ < φL).
(ii) for each i ∈ {1, . . . , n}, there exists φ̄i such that

lim
t→t̂

φi(t) = φ̄i,(2.26)

φβ < φ̄1 < · · · < φ̄n < φR,(2.27)

and (φ̄1, . . . , φ̄n) is a fixed point of (2.13).
As we did in section 2.1, if we let θ1(t) = Ωt, θi(t) = Ωt+

∑i−1
k=1 φ̄k, i = 1, . . . , n+

1, where (φ̄1, . . . , φ̄n) is the fixed point of (2.13) which we obtained in Theorems
2.9 and 2.10, then Theorem 2.5 assures us that (θ1(t), . . . , θn+1(t)) is an orbitally
asymptotically stable phaselocked solution of (2.1).

2.3. Nonisotropic case with βi = 0, i = 1, . . . , n. In this case, we have
H+ 6= H− which implies that f is not even and g is not odd anymore. So φL 6= −φR

in general. And we would like to restate (2.2) in the form

φ′
1 = f(φ2) + g(φ2) − 2g(φ1),

φ′
i = f(φi+1) − f(φi−1) + g(φi+1) − 2g(φi) + g(φi−1),

i = 2, . . . , n − 1,(2.28)
φ′

n = −f(φn−1) − 2g(φn) + g(φn−1).

THEOREM 2.11. Assume that f and g satisfy (H1), (H2), and f(0) > |g(0)|.
Then the IVP (2.28) with φi(0) = 0, i = 1, . . . , n has the following properties along
the trajectory:
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(i) There is a sequence {tk}∞
k=1 (it could be a finite sequence) such that 0 = t1 <

t2 < · · · < tk < · · · < t̂ and for each k, there is lk ∈ {1, . . . , n} so that

φ′
i(t) > 0, i = 1, . . . , lk, tk < t < tk+1,

φ′
j(t) < 0, j = lk + 1, . . . , n, tk < t < tk+1,(2.29)

lk+1 ∈ {0, lk − 1, lk, lk + 1, n},(2.30)
either φ′

lk
(tk+1) = 0 or φ′

lk+1(tk+1) = 0 (not both),(2.31)
φL > φ1(t) > · · · > φn−1(t) > φn(t) > φR, tk < t ≤ tk+1,(2.32)

where t̂ is such that φ′
i(t̂) = 0, i = 1, . . . , n, or t̂ = +∞.

(ii) For each i ∈ {1, . . . , n}, there exists φ̄i such that

lim
t→t̂

φi(t) = φ̄i,(2.33)

φL > φ̄1 > · · · > φ̄n > φR,(2.34)

and (φ̄1, . . . , φ̄n) is a fixed point of (2.28).
Proof. Note that f(0) > |g(0)|; then

φ′
1(0) = f(0) − g(0) > 0,

φ′
i(0) = 0, i = 2, . . . , n − 1,(2.35)
φ′

n(0) = −f(0) − g(0) < 0.

Then by (2.28) and (2.35), we have

φ′′
2(0) = [g′(0) − f ′(0)][f(0) − g(0)] > 0,

φ′′
n−1(0) = [g′(0) + f ′(0)][−f(0) − g(0)] < 0.(2.36)

By induction on i, we can get that for i = 3, . . . , m − 1

φ
(k)
i (0) = 0, k = 1, . . . , i − 1,(2.37)

φ
(i)
i (0) = [g′(0) − f ′(0)]i−1[f(0) − g(0)] > 0,

φ
(k)
n−i+1(0) = 0, k = 1, . . . , i − 1,

φ
(i)
n−i+1(0) = [g′(0) − f ′(0)]i−1[−f(0) + g(0)] < 0

whenever n = 2m − 1 or 2m − 2. And when n = 2m − 1, we have extra terms

φ(k)
m (0) = 0, k = 1, . . . , m.(2.38)

Assume φ
(m+1)
m (0) 6= 0 (otherwise we can figure out φ

(M)
m (0) 6= 0 and φ

(k)
m (0) =

0, k = 1, . . . , M − 1).
Without loss of generality, we assume φm+1

m (0) > 0 when n = 2m − 1.
Then we have t1 = 0, l1 = m − 1 when n = 2m − 2, and t1 = 0, l1 = m

when n = 2m − 1. And the rest of the proof just mimics all the steps of proving
Theorem 2.9

Again in Figure 2.3 we show the results of Theorem 2.11. Here H+(φ) = H(φ)
and H−(φ) = 0.2H(φ) where H(φ) = 0.5 cos φ + sinφ. And φL = −φR = arctan(0.5)
and J = (− arctan 2, arctan 2). The monotonicity of the solution along the trajectory
can be seen from the figure. Also we see that the solution converges to a fixed point.
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FIG. 2.3. The nonisotropic case with H+(φ) = H(φ), H−(φ) = 0.2H(φ), H(φ) = .5 cos φ+sin φ,
n = 11, and βi = β = 0.

THEOREM 2.12. Assume that f and g satisfy (H1), (H2), and f(0) < −|g(0)|.
Then the IVP (2.28) with φi(0) = 0, i = 1, . . . , n has the following properties along
the trajectory:

(i) there is a sequence {tk}∞
k=1 (it could be a finite sequence) such that 0 = t1 <

t2 < · · · < tk < · · · < t̂ and for each k, there is lk ∈ {1, . . . , n} so that

φ′
i(t) < 0, i = 1, . . . , lk, tk < t < tk+1,

φ′
j(t) > 0, j = lk + 1, . . . , n, tk < t < tk+1,(2.39)

lk+1 ∈ {0, lk − 1, lk, lk + 1, n},(2.40)
either φ′

lk
(tk+1) = 0 or φ′

lk+1(tk+1) = 0 (not both),(2.41)
φL < φ1(t) < · · · < φn−1(t) < φn(t) < φR, tk < t ≤ tk+1,(2.42)

where t̂ is such that φ′
i(t̂) = 0, i = 1, . . . , n or t̂ = +∞.

(ii) for each i ∈ {1, . . . , n}, there exists φ̄i such that

lim
t→t̂

φi(t) = φ̄i,(2.43)

φL < φ̄1 < · · · < φ̄n < φR,(2.44)

and (φ̄1, . . . , φ̄n) is a fixed point of (2.28).

2.4. Nonisotropic case with βi = β 6= 0, i = 1, . . . , n. Throughout this
section, without loss of generality, we assume β < 0. If β > 0, you can subtract the
consecutive equations of (2.1) in another direction such that the frequency difference
is less than zero. In this case, like in section 2.2, we have H+ 6= H− which implies f
is not even and g not odd such that φL 6= −φR. And we would like to restate (2.2) in
the form

φ′
1 = β + f(φ2) + g(φ2) − 2g(φ1),

φ′
i = β + f(φi+1) − f(φi−1) + g(φi+1) − 2g(φi) + g(φi−1),

i = 2, . . . , n − 1,(2.45)
φ′

n = β − f(φn−1) − 2g(φn) + g(φn−1).
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THEOREM 2.13. Assume that f and g satisfy (H1), (H2), and f(0) > |g(0)|. Let
|β| be small enough that φn−1(t) ≥ φR, t > 0 for the IVP (2.45) with φi(0) = 0,
i = 1, . . . , n. Then we have the following properties along the trajectory:

(i) there is a sequence {tk}∞
k=1 (it could be a finite sequence) such that 0 = t1 <

t2 < · · · < tk < · · · < t̂ and for each k, there is lk ∈ {1, . . . , n} so that

φ′
i(t) > 0, i = 1, . . . , lk, tk < t < tk+1,

φ′
j(t) < 0, j = lk + 1, . . . , n, tk < t < tk+1,(2.46)

lk+1 ∈ {0, lk − 1, lk, lk + 1, n},(2.47)
either φ′

lk
(tk+1) = 0 or φ′

lk+1(tk+1) = 0 (not both),(2.48)
φL > φ1(t) > · · · > φn−1(t) > φn(t) > φβ , tk < t ≤ tk+1,(2.49)

where t̂ is such that φ′
i(t̂) = 0, i = 1, . . . , n or t̂ = +∞, and φβ ∈ J is such that

f(φβ) + g(φβ) = β (note that φβ < φR).
(ii) for each i ∈ {1, . . . , n}, there exists φ̄i such that

lim
t→t̂

φi(t) = φ̄i,(2.50)

φL > φ̄1 > · · · > φ̄n > φβ ,(2.51)

and (φ̄1, . . . , φ̄n) is a fixed point of (2.13).
Figures 2.4(a) and 2.4(b) are numerical illustrations of Theorem 2.13. Here

H+(φ) = H(φ) and H−(φ) = 0.2H(φ), where H(φ) = 0.5 cos φ + sinφ. And
φL = −φR = arctan(0.5) and J = (− arctan 2, arctan 2). Note that in Fig. 2.4(b),
φn−1(t) crosses φR somewhere so that the monotonicity is destroyed. However, the
trajectory still converges to a fixed point. Hence the monotonicity is not necessary
for the convergence of the solution. In Fig. 2.4(a) the monotonicity is preserved since
the |β| is so small that φn−1(t) does not cross φR.

THEOREM 2.14. Assume that f and g satisfy (H1), (H2), and f(0) < −|g(0)|.
Let |β| be small enough that φ2(t) ≥ φL, t > 0 for the IVP (2.45) with φi(0) = 0,
i = 1, . . . , n. Then we have the following properties along the trajectory:

(i) there is a sequence {tk}∞
k=1 (it could be a finite sequence) such that 0 = t1 <

t2 < · · · < tk < · · · < t̂ and for each k, there is lk ∈ {1, . . . , n} so that

φ′
i(t) < 0, i = 1, . . . , lk, tk < t < tk+1,

φ′
j(t) > 0, j = lk + 1, . . . , n, tk < t < tk+1,(2.52)

lk+1 ∈ {0, lk − 1, lk, lk + 1, n},(2.53)
either φ′

lk
(tk+1) = 0 or φ′

lk+1(tk+1) = 0 (not both),(2.54)
φβ < φ1(t) < · · · < φn−1(t) < φn(t) < φR, tk < t ≤ tk+1,(2.55)

where t̂ is such that φ′
i(t̂) = 0, i = 1, . . . , n or t̂ = +∞, and φβ ∈ J is such that

−f(φβ) + g(φβ) = β (note that φβ < φL).
(ii) for each i ∈ {1, . . . , n}, there exists φ̄i such that

lim
t→t̂

φi(t) = φ̄i,(2.56)

φβ < φ̄1 < · · · < φ̄n < φR,(2.57)

and (φ̄1, . . . , φ̄n) is a fixed point of (2.45).
By Theorem 2.5, the fixed points (φ̄1, . . . , φ̄n) from the two theorems above are

asymptotically stable steady state of (2.45).
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FIG. 2.4. The nonisotropic case with H+(φ) = H(φ), H−(φ) = 0.2H(φ), H(φ) = .5 cos φ+sin φ,
n = 11, (a) βi = β = −0.0005, (b) βi = β = −0.005.

3. Arrays of oscillators. In this section, we consider a two-dimensional array
of coupled oscillators. The equations to be considered have the form

θ′
ij = ωij + H+X(θi+1,j − θij) + H−X(θi−1,j − θij)

+ H+Y (θi,j+1 − θij) + H−Y (θi,j−1 − θij),
i, j = 1, . . . , n + 1,(3.1)

where H+X , H+Y , H−X , and H−Y are smooth 2π-periodic functions of the arguments
and ωij is the frequency for each oscillator.

Note that in (3.1), each oscillator is coupled with its four nearest neighbors. The
term H−X (respectively, H+X or H−Y or H+Y ) is ignored for i = 1 (respectively,
i = n + 1 or j = 1 or j = n + 1). We take

φij = θi+1,j − θij , i = 1, . . . , n, j = 1, . . . , n + 1,

ψij = θi,j+1 − θij , i = 1, . . . , n + 1, j = 1, . . . , n,
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αij = ωi+1,j − ωij , i = 1, . . . , n, j = 1, . . . , n + 1,

βij = ωi,j+1 − ωij , i = 1, . . . , n + 1, j = 1, . . . , n

and define the functions f , g, p, and q as

f(φ) + g(φ) = H+X(φ),
f(φ) − g(φ) = H−X(−φ),

p(ψ) + q(ψ) = H+Y (ψ),
p(ψ) − q(ψ) = H−Y (−ψ).(3.2)

Then in (3.1), if we subtract the (i, j)th equation from the (i + 1, j)th one and the
(i, j + 1)th one, respectively, we have

φ′
ij = αij + f(φi+1,j) − f(φi−1,j) + g(φi+1,j) − 2g(φij) + g(φi−1,j)

+ p(ψi+1,j) + p(ψi+1,j−1) − p(ψij) − p(ψi,j−1)
+ q(ψi+1,j) − q(ψi+1,j−1) − q(ψij) + q(ψi,j−1),
i = 1, . . . , n, j = 1, . . . , n + 1,

(3.3)
ψ′

ij = βij + p(ψi,j+1) − p(ψi,j−1) + q(ψi,j+1) − 2q(ψij) + q(ψi,j−1)
+ f(φi,j+1) + f(φi−1,j+1) − f(φij) − f(φi−1,j)
+ g(φi,j+1) − g(φi−1,j+1) − g(φij) + g(φi−1,j)
i = 1, . . . , n + 1, j = 1, . . . , n.

Note that the index (i, j) for φij should satisfy 1 ≤ i ≤ n and 1 ≤ j ≤ n + 1 and
the index (i, j) for ψij should satisfy 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n. Hence if (i, j) is out
of range for φij or ψij , the corresponding terms on the right-hand sides of (3.3) are
ignored.

Again we define several constants related to f, g, p, and q. We define
• φL as f(φL) = g(φL), i.e., H−X(−φL) = 0;
• φR as f(φR) = −g(φR), i.e., H+X(φR) = 0;
• ψL as p(ψL) = q(ψL), i.e., H−Y (−ψL) = 0;
• ψR as p(ψR) = −q(ψR), i.e., H+Y (ψR) = 0.

We assume some hypotheses on f, g, p, and q in sufficiently large intervals JX and
JY around φ = 0 and ψ = 0, respectively:

(HX1) g′(φ) > |f ′(φ)| for φ ∈ JX ;
(HX2) there exists a unique φL (respectively, φR) to f = g (respectively, f = −g)

for φ ∈ JX ;
(HY1) q′(ψ) > |p′(ψ)| for ψ ∈ JY ;
(HY2) there exists a unique ψL (respectively, ψR) to p = q (respectively, p = −q)

for ψ ∈ JY .
Note that (HX1), (HX2), (HY1), and (HY2) are the assumptions extended from

the chain model.
Our goal is to apply the results obtained from the chain model to this array model.

In order to achieve this task, let us first consider a very special system of equations:

φ′
ij = Fij(Φ) + Gij(Ψ), i = 1, . . . , n, j = 1, . . . , n + 1,

(3.4)
ψ′

ij = Pij(Ψ) + Qij(Φ), i = 1, . . . , n + 1, j = 1, . . . , n,
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where

Φ = (φij)n×(n+1) = [Φ1, . . . ,Φn+1]

with

Φj =

 φ1j

...
φnj

 , j = 1, . . . , n + 1

and

Ψ = (ψij)(n+1)×n =

 Ψ1
...

Ψn+1


with

Ψi = [ψi1, . . . , ψin], i = 1, . . . , n + 1

and Fij , Pij , Gij , and Qij satisfy the following assumptions:
(i) if Φ1 = Φ2 = · · · = Φn+1 (i.e., φij is independent of the index j), then

Fi1(Φ) = Fi2(Φ) = · · · = Fi,n+1(Φ), i = 1, . . . , n,(3.5)
Qij(Φ) = 0, i = 1, . . . , n + 1, j = 1, . . . , n;(3.6)

(ii) if Ψ1 = Ψ2 = · · · = Ψn+1 (i.e., ψij is independent of the index i), then

P1j(Ψ) = P2j(Ψ) = · · · = Pn+1,j(Ψ), j = 1, . . . , n,(3.7)
Gij(Ψ) = 0, i = 1, . . . , n, j = 1, . . . , n + 1.(3.8)

Remark . The special form of (3.4) is a generalization of the system (3.3). We
will see this later. The conditions on Fij , Gij , Pij , and Qij reflect a homogeneity
requirement for the two-dimensional domain. That is, the phase lags between left
and right neighbors are the same for each row. Similarly, the lags between top and
bottom neighbors are the same for each column.

LEMMA 3.1. The set S = {(Φ,Ψ)|Φ1 = Φ2 = · · · = Φn+1 and Ψ1 = Ψ2 = · · · =
Ψn+1} is an invariant set for the system (3.4).

Proof. We only need to show that if (Φ(0),Ψ(0)) ∈ S, then Φ′
1(0) = · · · = Φ′

n+1(0)
and Ψ′

1(0) = · · · = Ψ′
n+1(0), i.e.,

φ′
i1(0) = φ′

i2(0) = · · · = φ′
i,n+1(0) for i = 1, . . . , n,(3.9)

ψ′
1j(0) = ψ′

2j(0) = · · · = ψ′
n+1,j(0) for j = 1, . . . , n.(3.10)

By (3.4), (3.5), and (3.8), we have that for each i ∈ {1, . . . , n},

φ′
ij(0) = Fij(Φ(0)) + Gij(Ψ(0))

= Fik(Φ(0)) + Gik(Ψ(0))
= φ′

ik(0).

Hence (3.9) is proven. Also, we can prove (3.10) in the same way.
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LEMMA 3.2. In the system (3.3), if we assume

αij = αi and βij = βj(3.11)

then (3.3) is a system of the type (3.4).
Proof. (3.3) is a special case of (3.4) where

Fij(Φ) = αij + f(φi+1,j) − f(φi−1,j) + g(φi+1,j) − 2g(φij) + g(φi−1,j),
Gij(Ψ) = p(ψi+1,j) + p(ψi+1,j−1) − p(ψij) − p(ψi,j−1)

+ q(ψi+1,j) − q(ψi+1,j−1) − q(ψij) + q(ψi,j−1),
Pij(Ψ) = βij + p(ψi,j+1) − p(ψi,j−1) + q(ψi,j+1) − 2q(ψij) + q(ψi,j−1),
Qij(Φ) = f(φi,j+1) + f(φi−1,j+1) − f(φij) − f(φi−1,j)

+ g(φi,j+1) − g(φi−1,j+1) − g(φij) + g(φi−1,j).

Since we have (3.11), αij is independent of j and βij is independent of i. Then if φij

is independent of j and ψij is independent of i, (3.5)–(3.8) are satisfied. The proof is
completed.

Remark . (3.11) means that the distribution of intrinsic frequencies is a sum of two
stripe distributions: one with constant frequencies along each row, and another with
constant frequencies along each column. Hence ωij is in the form of ωij = ωX

i + ωY
j .

LEMMA 3.3. If the system (3.3) satisfies (3.11), then the IVP (3.3) with

φij(0) = 0, i = 1, . . . , n, j = 1, . . . , n + 1,(3.12)
ψij(0) = 0, i = 1, . . . , n + 1, j = 1, . . . , n(3.13)

has the following identity property:

φi1(t) = φi2(t) = · · · = φi,n+1(t), i = 1, . . . , n,(3.14)
ψ1j(t) = ψ2j(t) = · · · = ψn+1,j(t), j = 1, . . . , n(3.15)

for t ≥ 0.
Proof. This is an immediate result of Lemmas 3.1 and 3.2.
Hence the IVP (3.3), (3.12), and (3.13) satisfying (3.11) is reduced to two inde-

pendent systems of chain model, i.e.,

φ′
1 = α1 + f(φ2) + g(φ2) − 2g(φ1),

φ′
i = αi + f(φi+1) − f(φi−1) + g(φi+1) − 2g(φi) + g(φi−1),

i = 2, . . . , n − 1,(3.16)
φ′

n = αn − f(φn−1) − 2g(φn) + g(φn−1)

and

ψ′
1 = β1 + p(ψ2) + q(ψ2) − 2q(ψ1),

ψ′
j = βj + p(ψj+1) − p(ψj−1) + q(ψj+1) − 2q(ψj) + q(ψj−1),

j = 2, . . . , n − 1,(3.17)
ψ′

n = βn − p(ψn−1) − 2q(ψn) + q(φn−1),

where φi = φi1 = · · · = φi,n+1 and ψj = ψ1j = · · · = ψn+1,j .
Note that both (3.16) and (3.17) are exactly in the form of (2.2).
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THEOREM 3.4. If the trajectories of the IVP (3.16) with φi(0) = 0 and the IVP
with (3.17) with ψj(0) = 0 converge to the fixed point (φ̄1, . . . , φ̄n) of (3.16) and the
fixed point (ψ̄1, . . . , ψ̄n) of (3.17) respectively, then the trajectory of the IVP (3.3) with
(3.12) and (3.13) goes to ((φ̄ij)n×(n+1), (ψ̄ij)(n+1)×n) which is the fixed point of (3.3),
where

φ̄ij = φ̄i, i = 1, . . . , n, j = 1, . . . , n + 1

and

ψ̄ij = ψ̄j , i = 1, . . . , n + 1, j = 1, . . . , n.

Also, Ω ≡ ωij + H+X(φ̄ij) + H−X(−φ̄i−1,j) + H+Y (ψ̄ij) + H−Y (−ψ̄i,j−1) (i, j =
1, . . . , n + 1) is the locked frequency of (3.1).

Proof. This is a straightforward result of Lemma 3.3.
Now if we let θ1,1(t) = Ωt, θij(t) = Ωt +

∑i−1
k=1 φ̄k +

∑j−1
k=1 ψ̄k, {θij(t)} is the

phaselocked solution of (3.1). And it is orbitally asymptotically stable by Theorem 2.5.
Therefore, all the results which we obtained in section 2 can be extended to this

system.
Remark 3. If the condition (3.11) is not satisfied, we will not achieve the reduction.

But if ωij = ωX
i + ωY

j + o(ε) for small ε, we still get a stable phaselocked solution by
the implicit function theorem.

Remark 4. The reduction technique could be applied to three-dimensional arrays
of oscillators as long as ωijk is in the form of ωijk = ωX

i + ωY
j + ωZ

k . And the array
models could be reduced to three independent chain models.

The following are some numerical results for the two-dimensional arrays of oscil-
lators (3.1) and the reduced chains (3.16) and (3.17). For all cases, ωij = ωX

i + ωY
j is

assumed. A basic function H(φ) = 0.5 cos φ + sinφ is assumed.
Example 1. Let H+X = H−X = H+Y = H−Y = H and ωij ≡ ω > 0. Then

(HX1), (HX2), (HY1), and (HY2) are satisfied with JX = JY = (− arctan 2, arctan 2)
and φL = −φR = ψL = −ψR = arctan(0.5). Also, f = p and g = q. Since ωij ≡ ω, the
condition (3.11) holds so that the array system (3.3) can be reduced to the two chain
systems (3.16) and (3.17) by Lemma 3.3. And (3.16) and (3.17) have asymptotically
stable equilibria following the results in section 2.1. Then (3.3) has an asymptotically
stable equilibrium. Noting that f = p, g = q, and αi = βj = 0, the solutions of (3.16)
and (3.17) are the identical. So we only study the solution φ̄i of (3.16). Figure 3.1(a)
is the plot for φ̄i where (i/(n + 1), φ̄i) are the coordinates. We can see that there is a
wave traveling outward in both directions from the midpoint of the chain [5, 11]. The
wave speed is almost constant except near the middle. By Theorem 3.4, φ̄ij = φ̄i and
ψ̄ij = ψ̄j . Then for the array, we have a wave traveling outward from the midpoint
of the array. Figure 3.1b shows this observation by plotting the relative phases. As
we mentioned in the introduction, with isotropic “synaptic coupling” target patterns
are the generic phaselocked behavior. (See the remarks at the end of this section for
a discussion about other stable patterns.)

Example 2. Let H+X = H+Y = 1.5H, H−X = H−Y = 0.5H, and ωij ≡ ω > 0.
Then (HX1), (HX2), (HY1), and (HY2) hold with JX = JY = (− arctan 2, arctan 2)
and φL = −φR = ψL = −ψR = arctan(0.5). Also, f = p and g = q. The reduction
from an array to two chains is then obtained. These two chains are identical according
to our choice of coupling functions. Figure 3.2 shows the results for the reduced chains
and the array. There is a wave traveling from the left of chain to the right. Thus there
is a wave traveling from the southwest corner to the northeast corner of the array.
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FIG. 3.1. n + 1 = 40. (a) Phase lags of the reduced chains. There is a wave traveling outward
in both directions from the midpoint of the chain. The wave speed is almost constant except near
the middle. (b) Relative phases of the array. There is a wave traveling outward from the midpoint
of the array.

Example 3. The coupling functions are the same as in Example 2. We choose
ωij = 2ω + 0.1[1 − i/(n + 1)] + 0.1[1 − j/(n + 1)] which is in the form ωij = ωX

i + ωY
j ,

where ωX
i = ω + 0.1[1 − i/(n + 1)] and ωX

j = ω + 0.1[1 − j/(n + 1)]. Then the
solutions of the two chain systems (3.16) and (3.17) are the same. Figure 3.3 shows
the numerical solutions for the reduced chains and the array.

Example 4. In this example, we show how the size of the chain can apparently
affect the qualitative features of the phases in one- and two-dimensional arrays. In
Fig. 3.4(a), we show the results of a simulation with a 50 × 50 array of oscillators
with no frequency gradient and all of the interactions functions identical and given
by H(φ) = sinφ + 0.05 cos φ + 0.8. The phases give the appearance of a circularly
symmetric target pattern, quite different from the rectangular-looking patterns of
Figure 3.1. This effect can be understood by looking at the behavior of the chain.
In Figure 3.4b, the phase-shifts between successive oscillators are shown for a chain
with n = 50 and n = 500 oscillators. In the case of n = 50 the phase-difference
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FIG. 3.2. n + 1 = 40. (a) Phase lags of the reduced chains. There is a wave traveling from
the left of chain to the right. (b) Relative phases of the array. There is a wave traveling from the
southwest corner to the northeast corner.

is nearly a straight line so that the relative phases (which are the “integral” of the
phase differences) are quadratic. Since the results of this section show that the array
behaves like two orthogonal chains, it is now clear why the relative phases in the
square array have apparently circular contours; the relative phase along any axes of
the array are nearly quadratic. This is actually an artifact of the chain size. For, as n
increases, Figure 3.4(b) shows that the phase differences become piecewise constant
and so the relative phases will be linear and, in the array, will look like Figure 3.1.
This is also what is predicted by the continuum theory in [5]. However, due to the
small size of the cosine coefficient, n must be very large before there is qualitative
similarity to the continuum approximation.

3.1. Some remarks on the stability of the patterns. In one-dimensional
chains with “synaptic coupling” the traveling wave solutions described in section 2
appear to be the only stable solutions. That is, no matter what the initial conditions,
solutions converge to the monotone solutions described in section 2. On the other
hand, if the one-dimensional chain has a ring geometry so that the two ends are
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FIG. 3.3. n + 1 = 40. (a) Phase lags of the reduced chains. (b) Relative phases of the array.

identified, then, there are several stable solutions that correspond to synchrony and
traveling waves. Thus, the domain of attraction of any given solution varies and does
not constitute the entire phase space. In particular, the larger the chain, the more
different types of stable solutions are possible.

In two-dimensional systems, everything gets worse; there are many stable phase-
locked patterns possible and a characterization of all of them remains a topic of current
research. Finding domains of stability is even harder. Consider an N ×N array where
the coupling functions H±X , H±Y are of the form

H(φ) = λ cos φ + sinφ.

When λ = 0 one stable phaselocked solution is synchrony. As λ increases away from
0, the resulting phaselocked solution perturbs to the target-like patterns that we have
discussed here. For λ = 0 Paullet and Ermentrout [9] have proven that there are also
stable solutions analogous to spiral waves. Since these are stable, they persist for small
λ and thus represent another phaselocked solution distinct from the target patterns
described in this paper. Random initial data (rather than initial data identically 0)
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FIG. 3.4. Relative phases in an array with almost circular symmetry and their analogue in a
chain. (a) Relative phase for a 50 × 50 array. (b) A chain of length 50 and 500 showing how the
almost quadratic behavior of the phase shifts for n = 50 becomes the piecewise linear phases for
n = 500 as is predicted by the continuum equations.

converge on phaselocked solutions, but sometimes they are not targets but rather are
related to the spiral patterns. For small arrays, random initial data converge mainly
to the target patterns but on larger arrays (e.g., 40 × 40) the tendency is to converge
to series of broken spiral-like patterns. Thus, target patterns are “homotopes” of
synchrony and have essentially the same global stability behavior. They are not
unique phaselocked patterns, unlike their analogue in one dimension.

Appendix. Proof of Theorem 2.9.
(i) We prove it by applying induction on k ∈ N . Let k = 1. Note that |β| is

small; we have f(0) + β > 0. Then

φ′
1(0) = f(0) + β > 0,

φ′
i(0) = β < 0, i = 2, . . . , n − 1,(A.1)

φ′
n(0) = −f(0) + β < 0.
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Then by (2.13) and (A.1), we have

φ′′
2(0) = g′(0)f(0),

φ′′
n−1(0) = −g′(0)f(0).(A.2)

By induction on i, we can get that for i = 3, . . . , m − 1

φ′
i(0) = β, φ

(k)
i (0) = 0, k = 2, . . . , i − 1,

φ
(i)
i (0) = [g′(0)]i−1f(0) > 0,

φ′
n−i+1(0) = β, φ

(k)
n−i+1(0) = 0, k = 2, . . . , i − 1,

φ
(i)
n−i+1(0) = −[g′(0)]i−1f(0) < 0,(A.3)

where n = 2m − 1 or n = 2m − 2 and

φ′
m(0) = β, φ′′

m(0) = · · · = φ(m)
m (0) = 0,(A.4)

where n = 2m − 1.
Hence by (A.1)–(A.4) and the fact that φi(0) = 0, i = 1, . . . , n, one can apply the

Taylor’s formula to φi(t) and φ′
i(t). Then we have

φ′
1(t) > 0, φ′

i(t) < 0, i = 2, . . . , n(A.5)

and

φL > φ1(t) > · · · > φn(t) > φβ(A.6)

in (0, δ) for δ > 0 small enough. Therefore t1 = 0 and l1 = 1.
CLAIM 1. From t = 0, as long as (A.5) holds, we always have (A.6).
Suppose that there is some first place t∗ such that φL = φ1(t∗) ≥ φ2(t∗) ≥ · · · ≥

φn(t∗) ≥ φβ . Then

φ′
1(t

∗) = β + f(φ2(t∗)) + g(φ2(t∗)) − 2g(φL),
= β + f(φ2(t∗)) + g(φ2(t∗)) − f(φL) − g(φL),
= β + [f ′(ξ) + g′(ξ)](φ2(t∗) − φL),
≤ β.

This is a contradiction since φ′
1(t

∗) > 0.
Now suppose that there is a first place t∗ such that for some i ∈ {1, . . . , n − 2}

φL > φ1 > φ2 > · · · > φi = φi+1 ≥ · · · ≥ φn−1 ≥ φn ≥ φβ

at t∗. Then at this point t∗,

φ′
i = β + f(φi) − f(φi−1) + g(φi) − 2g(φi) + g(φi−1)
= β + f(φi) − g(φi) − f(φi−1) + g(φi−1)
= β + [g′ − f ′](ξ1)(φi−1 − φi)
> β

and

φ′
i+1 = β + f(φi+2) − f(φi) + g(φi+2) − 2g(φi) + g(φi)

= β + f(φi+2) − f(φi) + g(φi+2) − g(φi)
= β + [g′ − f ′](ξ2)(φi+2 − φi)
≤ β,
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so φ′
i(t

∗) > φ′
i+1(t

∗). Therefore in a small neighborhood (t∗ − δ, t∗) of t∗ (t∗ > 0), we
have φi+1(t) > φi(t) since φi(t∗) = φi+1(t∗). This leads to a contradiction.

Hence we can conclude that φL > φ1(t) > φ2(t) > · · · > φn−1(t) ≥ φn(t) ≥ φβ .
Suppose φL > φ1(t) > φ2(t) > · · · > φn−1(t) ≥ φn(t) = φβ at a first place t∗;

then

φ′
n = β − f(φn−1) + g(φn−1) − 2g(φβ)

= f(φβ) − g(φβ) − f(φn−1) + g(φn−1)
= [g′ − f ′](ξ)(φn−1 − φβ)
≥ 0.

This is a contradiction since we have φ′
n(t) < 0 so far.

Hence φL > φ1(t) > φ2(t) > · · · > φn−1(t) ≥ φn(t) > φβ .
Now suppose φL > φ1(t) > φ2(t) > · · · > φn−1(t) = φn(t) > φβ at a first place

t∗; then at t∗

φ′
n = β − f(φn) + g(φn−1) − 2g(φn)

= β − [f(φn−1) + g(φn−1)]

and

φ′
n−1 = β + f(φn) − f(φn−2) + g(φn) − 2g(φn−1) + g(φn−2)

= β + f(φn) − f(φn−2) − g(φn) + g(φn−2)
= β + [g′ − f ′](ξ1)(φn−2 − φn).
> β.

Since φn−1(t) ≥ φR for t > 0 by the assumption of the theorem,

f(φn−1) + g(φn−1) = f(φn−1) + g(φn−1) − [f(φR) + g(φR)]
= [f ′ + g′](ξ2)(φn−1 − φR)
≥ 0

at t∗. So φ′
n(t∗) < φ′

n−1(t
∗). Hence in a small neighborhood (t∗ − δ, t∗) of t∗, we have

φn(t) > φn−1(t) which is a contradiction. Therefore Claim 1 is proven.
Suppose (A.5) breaks down at some first place t2 > 0 (otherwise the proof is

finished with t̂ = +∞) and φ′
i(t2) 6= 0 for some i ∈ {1, . . . , n} (otherwise the proof is

finished with t̂ = t2). Then we have six cases to consider.
CASE 1. There is some l > 2 such that φ′

1(t2) ≥ 0, φ′
l−1(t2) < 0, φ′

l(t2) = 0, and
φ′

i(t2) ≤ 0 for i ∈ {2, . . . , n} − {l − 1, l}.
CASE 2. There is some l ∈ {3, . . . , n − 1} such that φ′

1(t2) ≥ 0, φ′
i(t2) = 0 for

i = 2, . . . , l and φ′
l+1(t2) < 0, l ∈ {3, . . . , n − 1}.

CASE 3. φ′
1(t2) = φ′

2(t2) = 0 and φ′
3(t2) < 0, φ′

i(t2) ≤ 0, i = 4, . . . , n.
CASE 4. φ′

1(t2) = 0 and φ′
i(t2) < 0, i = 2, . . . , n.

CASE 5. φ′
1(t2) > 0, φ′

2(t2) = 0 and φ′
i(t2) < 0, i = 3, . . . , n.

CASE 6. φ′
1(t2) > 0 and φ′

i(t2) = 0, i = 2, . . . , n.
Assume Case 1 is true. Then we have

φ′
l(t2 − ε) = β + f(φl+1(t2 − ε)) − f(φl−1(t2 − ε))

+ g(φl+1(t2 − ε)) − 2g(φl(t2 − ε)) + g(φl−1(t2 − ε))



232 LIWEI REN AND G. BARD ERMENTROUT

= φ′
l(t2) − f ′(φl+1(t2))φ′

l+1(t2)ε + f ′(φl−1(t2))φ′
l−1(t2)ε

− g′(φl+1(t2))φ′
l+1(t2)ε + 2g′(φl(t2))φ′

l(t2)ε
− g′(φl−1(t2))φ′

l−1(t2)ε + o(ε2)
= −φ′

l+1(t2)[g
′ + f ′](φl+1(t2))ε

− φ′
l−1(t2)[g

′ − f ′](φl−1(t2))ε + o(ε2)
> 0

for ε > 0 small enough (since g′ ± f ′ > 0 in J). This is a contradiction! So Case 1 is
eliminated in our concern.

Assume Case 2 is true. Then

φ′
l(t2 − ε) = −φ′

l+1(t2)[g
′ + f ′](φl+1(t2))ε + o(ε2)

> 0

for ε > 0 small enough. This is a contradiction! So Case 2 is also eliminated.
Case 3 can be eliminated in the same way as Case 2.
Hence we have Cases 4–6 left.
If case 4 is true, then

φ′
1(t2 + ε) = φ′

2(t2)[g
′ + f ′](φ2(t2))ε + o(ε2)

< 0

for small ε > 0. Then l2 = 0 such that l2 = l1 − 1.
If Case 5 is true, then we have that for small ε > 0, either φ′

2(t) > 0 in (t2, t2 + ε)
or φ′

2(t) < 0 in (t2, t2 + ε) (note that φ′
2(t) ≡ 0 in (t2, t2 + ε) cannot be true). Hence

l2 = 2, i.e., l2 = l1 + 1 or l2 = 1, i.e., l2 = l1.
If Case 6 is true, then we can show that

φ′′
2(t2) > 0,

φ
(j)
i (t2) = 0, j = 2, . . . , i − 1,

φ
(i)
i (t2) > 0, i = 3, . . . , n

such that φ′
i(t) > 0 (i = 2, . . . , n) in (t2, t2 + ε) for ε small enough. Then l2 = n.

And for Cases 4–6, we can prove by using the same techniques as above that

φL > φ1(t2) > · · · > φn(t2) > φβ .

So we are done with k = 1.
Now suppose (2.16)–(2.19) hold for 1, 2, . . . , k − 1 with l1, . . . , lk, and t1 < t2 <

. . . < tk.
Then for t ∈ (tk, tk + δ) (δ > 0 is small)

φ′
i(t) > 0, i = 1, . . . , lk,

φ′
j(t) < 0, j = lk + 1, . . . , n.

CLAIM 2. From tk, as long as

φ′
i(t) > 0, i = 1, . . . , lk,

(A.7)
φ′

j(t) < 0, j = lk + 1, . . . , n,

we always have (A.6).
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The proof is similar to Claim 1; we just ignore it here.
Suppose (A.7) breaks down at a first place tk+1 > tk and φ′

i(tk+1) 6= 0 for some
i ∈ {1, . . . , n}; then several cases should be considered carefully.

CASE 1. There is l < lk such that φ′
l(tk+1) ≤ 0, φ′

l+1(tk+1) > 0, φ′
i(tk+1) ≥ 0 for

i ∈ {1, . . . , lk} − {l, l + 1}, and φ′
j(tk+1) = 0 for j = lk + 1, . . . , n.

CASE 2. There is l > lk +1 such that φ′
i(tk+1) ≥ 0, i = 1, . . . , lk, φ′

l−1(tk+1) < 0,
φ′

l(tk+1) = 0, and φ′
j(tk+1) ≤ 0 for j ∈ {lk + 1, . . . , n} − {l − 1, l}.

CASE 3. There is some l ∈ {2, . . . , lk−1} such that φ′
i(tk+1) ≥ 0 for i ∈ {1, . . . , l−

2}, φ′
l−1(tk+1) > 0, φ′

j(tk+1) = 0 for j ∈ {l, . . . , lk}, and φ′
j(tk+1) ≤ 0 for j ∈

{lk + 1, . . . , n}.
CASE 4. There is l ∈ {lk +2, . . . , n−1} such that φ′

j(tk+1) ≥ 0 for i ∈ {1, . . . , lk},
φ′

j(tk+1) = 0 for j ∈ {lk + 1, . . . , l}, φ′
l+1(tk+1) < 0, and φ′

j(tk+1) ≤ 0 for j ∈
{l + 2, . . . , n}.

CASE 5. φ′
i(tk+1) ≥ 0 for i ∈ {1, . . . , lk − 2}, φ′

lk−1(tk+1) > 0, φ′
lk

(tk+1) =
φ′

lk+1(tk+1) = 0, and φ′
i(tk+1) ≤ 0 for i ∈ {lk + 2, . . . , n}.

CASE 6. φ′
i(tk+1) ≥ 0, i ∈ {1, . . . , lk − 1}, φ′

lk
(tk+1) = φ′

lk+1(tk+1) = 0,
φ′

lk+2(tk+1) < 0, φ′
j(tk+1) ≤ 0 for j ∈ {lk + 3, . . . , n}.

CASE 7. φ′
i(tk+1) > 0 for i ∈ {1, . . . , lk − 1}, φ′

lk
(tk+1) = 0, φ′

j(tk+1) < 0 for
j ∈ {lk + 1, . . . , n}.

CASE 8. φ′
i(tk+1) > 0 for i ∈ {1, . . . , lk}, φ′

lk+1(tk+1) = 0, and φ′
j(tk+1) < 0 for

j ∈ {lk + 2, . . . , n}.
CASE 9. φ′

i(tk+1) = 0 for i ∈ {1, . . . , lk}, and φ′
j(tk+1) < 0 for j ∈ {lk +1, . . . , n}.

CASE 10. φ′
i(tk+1) > 0 for i ∈ {1, . . . , lk}, and φ′

j(tk+1) = 0 for j ∈ {lk +
1, . . . , n}.

By the techniques which we used in the case of k = 1, Cases 1–6 can be eliminated.
Hence only Cases 7–10 are possible.

If Case 7 is true, then we have that for ε > 0 small enough, either φ′
lk

(t) > 0 in
(tk+1, tk+1 + ε) or φ′

lk
< 0 in (tk+1, tk+1 + ε). Then lk+1 = lk or lk+1 = lk − 1.

If Case 8 is true, then for ε > 0 small enough, either φ′
lk+1(t) > 0 in (tk+1, tk+1+ε)

or φ′
lk+1 < 0 in (tk+1, tk+1 + ε). Then lk+1 = lk + 1 or lk+1 = lk.
If Case 9 is true, then for ε > 0 small enough, we can prove that φ′

i(t) < 0 in
(tk+1, tk+1 + ε) for i = 1, . . . , n. Then lk+1 = 0.

If Case 10 is true, then for ε > 0 small enough, we can prove that φ′
i(t) > 0, i =

1, . . . , n; then lk+1 = n.
And for Cases 7–10, we can show that φL > φ1(tk+1) > · · · > φn(tk+1) > φβ

always holds. Hence the proof is completed for this part.
(ii).
CLAIM 3. Both φ′

1(t) and φ′
n(t) can change sign at most once. And if φ′

1(t)
changes sign once, φ′

n(t) never changes sign. If φ′
n(t) changes sign once, φ′

1(t) never
changes sign. That is,

(a) if φ′
i(t) < 0, i = 1, . . . , n for t ∈ (tk, tk + ε), then φ′

i(t) < 0, i = 1, . . . , n for
t ∈ (tk, t̂);

(b) if φ′
i(t) > 0, i = 1, . . . , n for t ∈ (tk, tk + ε), then φ′

i(t) > 0, i = 1, . . . , n for
t ∈ (tk, t̂).

Claim 3 can be shown by contradiction. We ignore the proof here.
Hence by Claim 3, without loss of generality, we assume φ′

1(t) never changes sign;
then we always have that φ′

1(t) > 0 for 0 < t < t̂. So φ1(t) increases as t increases.
Since φL > φ1(t) > · · · > φn(t) > φβ , φ1(t) is bounded above by φL such that
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limt→t̂ φ1(t) = φ̄1 for some φ̄1 ∈ [φβ , φL]. Also we have limt→t̂ φ′
1(t) = 0 such that

0 = β + lim
t→t̂

[f + g](φ2(t)) − 2g(φ̄1).

Then limt→t̂ φ2(t) = limt→t̂[f + g]−1[f + g](φ2(t)) exists. Let φ̄2 = limt→t̂ φ2(t). By
the boundedness, φL ≥ φ̄2 ≥ φβ .

By induction we can show limt→t̂ φi(t) = φ̄i, where φ̄i ∈ [φβ , φL]. Since φL >
φ1(t) > · · · > φn(t) > φβ for t > 0, then φL ≥ φ̄1 ≥ · · · ≥ φ̄n ≥ φβ .

If we apply the argument in the proof of Theorem 2.3, we also can show φL >
φ̄1 > · · · > φ̄n > φβ .

Remark . If we recall the proof of Claims 1 and 2, we need to assume φn−1 ≥ φR

along the trajectory. If this condition breaks down somewhere, the monotonicity may
be destroyed.
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