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Stripes or spots?
Nonlinear effects in bifurcation of
reaction—diffusion equations on the square

By BARD ERMENTROUT

Department of Mathematics, University of Pittsburgh, Pittsburgh,
Pennsylvania 15260, U.S.A.

Bifurcation to spatial patterns in a two-dimensional reaction—diffusion medium is
considered. The selection of stripes versus spots is shown to depend on the nonlinear
terms and cannot be discerned from the linearized model. The absence of quadratic
terms leads to stripes but in most common models quadratic terms will lead to spot
patterns. Examples that include neural nets and more general pattern formation
equations are considered.

1. Introduction

Reaction—diffusion models are commonly used as mechanisms for pattern formation
in development and other biological phenomena (Murray 1989). Analogous models
are used in modelling neural pattern formation (Ermentrout & Cowan 1979). These
depend on lateral inhibition and the so-called Turing instability. The Turing
instability can be loosely defined as a mechanism by which spatially inhomogeneous
perturbations of a steady state grow exponentially, while constant perturbations
decay. Bifurcation theory can be used to prove the existence of small-amplitude
spatial patterns for these systems (Fife 1979). In his recent book, Murray (1989)
comments that in two-dimensional spatial domains, stripes are difficult to obtain for
reaction—diffusion models whereas they arise quite naturally in many ‘neural’
models. In this note, we demonstrate a selection mechanism for ‘stripes’ versus
‘spots’ in systems of reaction—diffusion and other Turing instability-driven systems.
We restrict ourselves to a square with periodic boundary conditions, thus eliminating
any intrinsic anisotropy. By keeping on a finite domain, we also remove the problems
of infinitely many wave modes intrinsic to problems on the whole plane. The
‘dispersion’ relation for the linearized problem will be typical (‘vanilla’ in Murray’s
parlance, which means that there is a single maximum at the critical wavenumber)
and will have a maximum at some non-zero wave mode. As the bifurcation
parameter varies, the maximum will be pushed across the zero and result in
instability. This mode will grow until the nonlinear terms become important. It is
these oft ignored nonlinear terms that determine the selection of stripes versus spots.
Indeed, we show that both stripes and spots cannot simultaneously be stable and one
and only one will be selected. This selection mechanism was first described by
Sattinger using symmetry arguments for general equations in a Banach space
(Sattinger 1978). Busse (1978) noted the importance of quadratic terms in his
analysis of symmetry breaking in the Benard convection models and how they can
lead to selection of ‘spots’ or stripes. We applied Sattinger’s techniques in
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Ermentrout & Cowan (1979) to show the selection in a model for hallucinations.
Here, we are more concrete in that we provide a general algorithm for determining
the selected pattern for arbitrary reaction—diffusion equations of two variables. The
source code for the algorithm is available by request.

In §2, we derive the nonlinear equations and analyse them to determine the keys
to selection. We apply the general results of this section to a one-variable planar
lateral-inhibitory neural network. In §3, we numerically solve a simple planar
activator-inhibitor model and show how as the quadratic parameter varies, a
transition from spots to stripes is made. No change in the linearized equations
occurs; this is a purely nonlinear effect.

2. Derivation of nonlinear equations
We start abstractly with the following equation:
Pu = Du, u)+C(u,u,u)+ABu+h.o.t., (2.1)

where & represents the linear terms, A is the bifurcation parameter, 2 is quadratic
terms, 4 is cubic terms, and ‘h.o.t.’ denotes higher-order nonlinear terms and terms
depending on the bifurcation parameter in a nonlinear fashion. The domain is the
unit torus (the square with periodic boundary conditions). For example in a typical
reaction diffusion system,

¥ =—A—DV?, Q(u,u) = qu,u),B=B and E(u,u,u)=clu,u,u), (2.2)

where 4,B, and D are matrices, ¢ is a quadratic form, and ¢ is a cubic form. We
assume without loss of generality that we are on the square with side 2n and that the
first unstable mode occurs at the wavenumber k=1 (If the first unstable
wavenumber is some other value, then we shrink the domain size by the appropriate
factor.) Thus we assume that ¥ (ecosx) = (L, e) cosx, where L, is a matrix with a
simple zero eigenvalue and e is the eigenvector. We also assume that there is an
adjoint eigenvector fsatisfying £* (fcosz) = (LT f) cosz and such that f*e = 1. For
the reaction—diffusion system, L, = —4 +D and the determinant of L, is zero. We
assume that for all other wavenumbers £ the corresponding matrix L has all
eigenvalues in the left half-plane. Due to isotropy of the medium, e cosy is also an
eigenfunction for . Thus the solution to the linearized equation of (2.1) is
e(rcos x+ s cosy), where r and s are arbitrary scalars. Note that if r = 0 and s # 0, we
have a ‘stripe’ while if both r and s are non-zero and in particular, equal, we have
a ‘spot’. Thus our goal is to see if » and s are determined from the nonlinear terms.
We let A = ¢?A and seek a perturbation expansion in u(zx,y):

u(x,y) = ee(r cos x+ s cosy) + e*u, + u,+ ... (2.3)
Substitution into (2.1) reveals that u, satisfies:
Lu, = r*+s%) Qyle, e) +1Q,(e, e) (s? cos 2y + r? cos 2x)
+2rscosxcosy Qe e). (2.4)
Q;(e, e) are the vectors defined by :
Qole,e) = 2(e,e), Q,le, e)cos2x = 9(e,ecos2x),

@,(e, e) cosxcosy = 2(ecosx, ecosy).
Proc. R. Soc. Lond. A (1991)
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Let L,, L,, and L, be defined by:
Lv = Lyv, (2.5)
P(veosxcosy) = (L,v)coszcosy,
Z(vcos2x) = (L, v) cos 2z,
where v is an arbitrary vector. For the reaction diffusion model, these are
respectively, —4, —A+2D, and —A+4D. Each of these matrices is invertible since

we assumed all wave modes other than k=1 were stable (and so had no zero
eigenvalues). Thus we can solve for u,:

uy(x,y) = 1L'Q, (e, e) (r*+ s*) +3L;'Q,(e, e) (r* cos 2x 4+ 5% cos 2y)
+2L;'Q,(e,e) rscosxcosy). (2.8)
uy(x, y) satisfies:
Lu, = 29(u,, e(r cosx+ s cosy))
+%b(e(rcosx+scosy), *, )+ABe(rcosx+scosy). (2.9)

Here B is the analogue of L, above. Equation (2.9) has a solution if and only if the
right-hand side is orthogonal to the nullspace of £* which is spanned by the two
functions fcosx and fcosy. We define the following quantities:

ay =fQ\(e. Lg'Qo(e. ), o, =[fQ:(e, L;'Qy(e, €)), (2.10)
Xy = 4ml(e’L;1Q2(e: e))v 13 =ﬂ71(9a e, e)'

This leads to the following equations for » and s:

0 = r(uA+ar+bs?), 0= s(uA+as®+br?), (2.11)

where n = fBe, (2.12)
a = ay+3a,+35, (2.13)

and b= ay+3a,+30. (2.14)

We have the following stability theorem.

Theorem. (i) The solution s =0, r = \/(— puA/a) (or vice versa) is stable if and only
if

b<a<0.
(ii) The solution r = s = /[ —pud/(a+Db)] is stable if and only if
a< —|bl <O.

This result shows that stripes (r =0 or s = 0) and spots (r = s # 0) are mutually
exclusive as stable patterns. In a symmetric system with no quadratic terms, stripes
are always selected over spots as long as # < 0. If # > 0, no patterns are selected. The
key to the appearance of spots is the existence of quadratic terms in the nonlinear
functions; without these terms spots can never stably exist.

The algorithm for selection is clear; we need only evaluate the above algebraic
quantities and apply the selection mechanism. Any model that has symmetry or is
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nearly symmetric will yield stripes rather than spots. The calculation is particularly
easy for the scalar case. For example, Murray (1989), considers several equations of
the form:

u, = —Lu+Qu+Cul+ABu+ ..., (2.15)

where £ is a scalar lateral-inhibition type of operator (e.g. negative diffusion with
a biharmonic component). We let L, denote the Fourier transform of ¥ to
wavenumbers whose squares add to k. Then, L, > 0,k # 1, L, = 0, and the determining
coefficients a and b are:

a = Q1/Ly+1L)+3C, b= Q1/L,+2/Ly)+3C. (2.16)

For the ‘vanilla’ dispersion relation, the @* coefficient for b is always greater than
that of a thus for C < 0, as || increases, we expect to see a transition from stripes
to spots. If ' > 0, neither pattern bifurcates stably. A similar calculation for the one-
dimensional neural net (Maxwell & Renninger 1980):

u,(x,t) = —u(x,t)+f dyK(l|lx—yIl) Mu(y,t)+ Qu(y, )2+ Cu(y, t)*)+ ..., (2.17)
Q

where K(r) is a lateral-inhibition kernel and M > 0, ) and C' are scalars, shows that,
Ma = Q*K,/(1-MK,))+K,/2(1-MK,)]+3C, (2.18a)
Mb = Q*K,/(1-MK,) +2K,/(1-MK,)]+3C. (2.180))

Here, K| is the Fourier transform of K evaluated at wavenumbers whose squares sum
to j (1-MK, = 0). Since K, > K,, the quadratic term of b is again larger than that
of a 80 as |@)| increases, spots will arise instead of stripes. We finally note that for the
scalar problem, cubic terms are required for any stable pattern to bifurcate.

3. A numerical example

We consider the following activator—inhibitor type of reaction—diffusion equation.
We have no particular mechanism in mind, rather, our goal is to illustrate how by
altering the quadratic terms, we can obtain stripes or spots. The system is:

du /ot = (ay, +A) w—ay v+ O + Qu +d, Au, |

(3.1)
/Ot = Ay U—Qgp 0+ dy Av.

On the periodic domain of size 2 x 21 we choose the parameters as shown in the
figure legend. Figure 1 a shows a stripe that forms after letting the system settle down
from an initially random configuration. Here, @ = 0 and as we expect, stripes form
spontaneously. The magnitude of the stripe is 0.38. The nonlinear theory shows that
the magnitude should be 0.39877 which is close since the theory is only an asymptotic
approximation. In figure 15, we set @ = 0.08 which according to the calculations
above should lead to spots. As in figure 1@, the initial data are random and the
resulting pattern is a spot. The numerical magnitude is 0.38 and the predicted
magnitude is 0.44. The calculation of the parameter a and b is done by applying the
theory in §2 and doing the required algebra numerically. The numerical solutions
shown in figure 1 were done on a 25 x 25 grid with an Euler integration scheme with
At = 0.01 for the 20000 time steps.

Proc. R. Soc. Lond. A (1991)



Reaction—diffusion equations on the square 417

(@) ®)

X X

Figure 1. Numerical integration of (3.1) with a;;, +A = 0.6, ay, = 1, a,, = 2, a,, = 4, d; = 0.08,
dy=1,C=—1. (a) @ = 0.0. Height above axis depicts deviation from equilibrium. (b) @ = 0.08.
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