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Abstract

Type I membrane oscillators such as the Connor model (Connor,
Walter, and McKown, 1977) and the Morris-Lecar model (Morris and
Lecar, 1981) admit very low frequency oscillations near the critical
applied current. Hansel et.al., (1995) have numerically shown that
synchrony is difficult to achieve with these models and that the phase
resetting curve is strictly positive. We use singular perturbation meth-
ods and averaging to show that this is a general property of Type I
membrane models. We show in a limited sense that so called type 2
resetting occurs with models that obtain rhythmicity via a Hopf bifur-
cation. We also show the differences between synapses that act rapidly
and those that act slowly and derive a canonical form for the phase
interactions.

1 Introduction

The behavior of coupled neural oscillators has been the subject of a great
deal of recent interest. In general, this behavior is quite difficult to analyze.
Most of the results to date are primarily based on simulations of specific
models. One of the main questions that is asked is whether two identical
oscillators will synchronize if they are coupled or whether they will undergo
other types of behavior. In a recent paper, van Vreeswijk, et al (1995) show
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that the timing of synapses is very important in determining whether, say,
excitatory synaptic interactions will lead to synchronous behavior. Hansel
et.al. (1995) contrast the behavior of weakly coupled neural oscillators for
different membrane models. They find substantial differences between stan-
dard Hodgkin-Huxley models and Connor models (Connor, et al 1977) which
have the additional A current.

One easily measurable property of a neural oscillator (either an experi-
mental system or a simulated one) is its phase resetting curve. The phase
resetting curve or PRC is found by perturbing the oscillation with a brief de-
polarizing stimulus at different times in its cycle and measuring the resulting
phase-shift from the unperturbed system. By making the perturbation in-
finitesimally small (in duration and amplitude), it is possible (at least for the
simulated system) to derive what is called in Kuramoto (1981) and Hansel,
et.al, (1993,1995) the response function of the neural oscillator. Thus, Hansel
and collaborators show that the response function or infinitesimal PRC for
the Connor model is very different from that of the Hodgkin-Huxley model.
In particular, they show that perturbations of the Connor model can never
delay the onset of a spike; only advance it. That is, the phase resetting
curve for the Connor model is non-negative. In contrast, the PRC of the
Hodgkin-Huxley model has both negative and positive regions. They refer
to models with strictly positive phase resetting curves as “Type I” and those
for which the phase resetting curve has a negative regime as “Type I1.”

The differences in the response of the oscillators to brief stimuli have
profound consequences for coupled cells. In particular, Hansel et al (1995)
show that excitatory synapses cannot lead to synchronization for the Connor
model. Their result is quite general, in that they explore the consequences of
type I phase resetting on coupling without reference to a particular model.
In particular, they show that unless the synapses are very fast, synchrony
for excitatory coupling is not possible. Their results are similar to those ob-
tained by van Vreeswijk, et. al. for integrate and fire cells and the Hodgkin-
Huxley model.

The goal of this paper is to demonstrate that the differences between
Hodgkin-Huxley type oscillators and the Connor model can be accounted
for by looking at the mechanism by which the membranes go from resting
to repetitive firing as current is injected. We use a singular perturbation
method to derive the response of the membrane to weak inputs such as brief
pulses of current and synaptic drive. From these calculations, we derive a
“canonical” form for both the phase resetting curve and the phase interaction
function for coupled membrane oscillators that are similar to the Connor



model. We use this to compute the stability of synchrony and anti-phase
activity as a function of the temporal properties of the synapses.

In Rinzel and Ermentrout (1989) we review the classification of excitable
membranes by Hodgkin (1948) in terms of their dynamics as a current is
injected. There are two main types of excitable axons: Type I and Type II.
(Henceforth, in order to avoid confusion between the classification of mem-
brane excitability and phase resetting curves, we will always say “Type 1
PRC” when referring to phase resetting curves and “Type I membrane” or
“Type I excitability” when referring to dynamics of the membrane.) Type I
membranes are characterized mainly by the appearance of oscillations with
arbitrarily low frequency as current is injected whereas for Type II mem-
branes, the onset of repetitive firing is at a nonzero frequency. The Connor
model is an example of Type I excitability. In Figure la, we show the
frequency as a function of injected current for the Connor model and for
contrast, the current-frequency response for the Hodgkin-Huxley model (a
Type IT membrane) is shown in Figure 1b. The repetitive activity first
occurs at a nonzero frequency for the Hodgkin-Huxley model (that is the
minimum firing rate is greater than zero.) The minimal firing rate of the
Connor model is zero.

The difference between these two models arises in the mechanism by
which repetitive firing ensues. In “Type II” membranes, like the Hodgkin-
Huxley, the following occurs: For low currents, there is a single equilibrium
state and it is asymptotically stable. As the current increases, this state loses
stability via a (subcritical) Hopf bifurcation and repetitive firing ensues. By
contrast in “Type I” membranes such as the Connor model, there are three
equilibria for currents below the critical current: a low voltage one that is
stable (E), a high voltage one which is unstable and an intermediate voltage
equilibrium which is an unstable saddle point (S). The saddle point plays a
pivotal role in the onset of repetitive firing. It has one positive eigenvalue
and the remaining eigenvalues have negative real parts. There is a pair of
trajectories that leave the saddle point (the “unstable manifold”) and enter
the stable fixed point. Together these two trajectories form a loop in the
phase-space. This is illustrated schematically in Figure 2. In the phase-space
for the equations (six dimensional for the Connor model) there is a closed
loop which contains two fixed points: the stable rest point and the unstable
saddle-point. As the current increases, these two fixed points merge and
disappear leaving a stable periodic solution — the repetitive firing. In order
to shed light on the phase resetting function and the behavior of coupled
neurons, we will concentrate on parameter values near the critical current
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Figure 1: Frequency as a function of injected current for two different
membrane models (a) Connor ; (b) Hodgkin-Huxley. (Note that a formula
for the frequency as derived from asymptotics in section 2 is also shown for

the Connor model.)

for which the two rest states coalesce. The reason for this restriction is that
we can explicitly work out the complete nonlinear behavior near criticality.

Numerical calculations near criticality are quite difficult for the Connor
model due to its high dimension. Furthermore, near the critical current, the
Connor model has 5 rather than 3 fixed points (only one of which is stable)
and this appears to complicate the application of the present analysis to that
model. A simpler model that behaves in much the same way as either the
Hodgkin-Huxley equations or the Connor model (depending on the chosen
parameters) is the Morris-Lecar model (Morris and Lecar, 1981, Rinzel and
Ermentrout, 1989). The dimensionless equations are

o = 1V~ Vi)~ gxw(V — Vi) — goumas(V)(Vea ~ V)
dw
= AV)(wu(V) —w)
where
Mmeo(V) = .5(1+tanh((V —V1)/V2))
Woo(V) = .5(1 + tanh((V —V3)/V4))
AV) = 5 cosh((V ~ Va)/(2VA).

(The values of the parameters are found in the Appendix.) We will use
this simpler model to illustrate the asymptotics. In the “Type I” excitabil-
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Figure 2: Saddle-node bifurcation on an invariant circle as the applied
current, I varies. (a) For I < I* there is a unique asymptotically stable
fixed point and a saddle-point with a 1-dimensional unstable manifold whose
branches form a closed loop. (b) At criticality, I = I* the node and the
saddle coalesce at the point X forming a simple loop, Xo(t). (Here, X is the
vector of coordinates for the single membrane oscillator.) (c) For I > I* all
that remains is a stable limit cycle.



ity regime as I varies from a low to a high value, there is a saddle-node
bifurcation on the circle leading to sustained slow oscillations.

As we mentioned at the outset of this paper, one of our goals is to charac-
terize the response of neural oscillators to stimuli. In particular, like Hansel,
et al (1995), we will examine the phase resetting curve for different types
of membrane oscillators. In figure 3a,b, we show the infinitesimal PRC or
response function for the Connor model and for the Hodgkin-Huxley model.
As noted by Hansel et. al. (1995), they are quite different. The Connor
model is strictly positive and as a consequence brief stimuli can only advance
the oscillator. There is a large negative region for the Hodgkin-Huxley model
which implies that it is possible to delay the firing of an action potential by
an appropriately timed stimulus. Figure 3c shows the same functions for the
Morris-Lecar equations in the “type I” and “type II” excitability regimes.
This suggests that the differences lie not in time constants of various cur-
rents, but rather in the mechanisms leading to repetitive firing.

The PRC of Type I membranes and their behavior with weak coupling
is in a sense universal. That is, near the critical current all of these models
have a similar nature if the coupling is small. Ultimately, we have the rather
pleasant result that “Type I membranes have Type I phase resetting curves.”
Thus, the remainder of this paper is devoted to showing why this is true and
what the consequences are for synaptic coupling of such oscillators.

2 The solution and response function near the bi-
furcation.

The membrane potential for a typical synaptically coupled membrane model

satisfies: v
C% = —Lionic +1 + gsyns(t)(Vsyn -V) (2.1)

where I;onic are the ionic conductances, I is the applied current, and gy, is
the maximal synaptic conductance. The function s(t) is the fraction of open
channels due to the firing of a presynaptic neuron. There are numerous ways
to model the synaptic conductance. It can satisfy a system of differential
equations based on the presynaptic potential (as in Destexhe, et al , 1994)
or more simply be an “alpha function,” s(t) = a?te~. In the former case,
if Vpre(t) is the potential of the presynaptic cell, then s(t) satisfies:

ds
o = k(o) (1 =) — s (22
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Figure 3: Response functions for membrane oscillators: (a) Connor model.
(b) Hodgkin-Huxley model. (c) Morris-Lecar model in two different regimes.
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where «, 8 are constants and k is a saturating threshold function, such as
k(v) = 1/(1 + exp(—(v — vnr)/vs)). For vs small, this is like a Heaviside
step-function.

Recall that for Type I excitable membranes, the onset of repetitive firing
occurs when a saddle point and a stable node coalesce (¢f Figure 2.) At
this critical current, there is a trajectory leaving the saddle-node point from
one side and entering it from the other. Let X = (V,m,h,...) denote the
vector of variables for the single membrane oscillator. Let I* be the critical
value for the current. Let X be the saddle-node point and let X (¢) denote
the closed “infinite period” trajectory containing X. That is

lim Xy(t) = X.

t—=£o0

2.1 The periodic solution

Before we add synaptic currents, it is easier to first examine a constant cur-
rent scaled by a small positive parameter, €2. The equations for the voltage
are:

av .
C% = —Lionic + I" + €%i.
If i > 0 then the phase space will be as in Figure 2c (since I = I* + €%i.) If
1 < 0 then there will be a saddle-node pair as in Figure 2a.

More generally, consider the equations:

% = Fy(X) + €N(X). (2.3)

We assume that when € = 0 there is a saddle-node bifurcation at the point
X = X. We write the Taylor expansion for Fy(X) around this point:

Fo(X)=AX -X)+Q(X - X, X —X) +... (2.4)

where A is the Jacobian matrix of Fy evaluated at X and @ is the quadratic
term of the Taylor series. By assumption (X = X is a saddle-node point)
A is a singular matrix. That is, it has a zero eigenvalue. We will assume
(generically) that this zero is simple. Let € be the unit eigenvector of A
having zero eigenvalue and let f_'be the eigenvector of AT satisfying f -e=1.
Let X (t) = X 4 €2€+ ... where z is a scalar quantity that depends on time.
In Ermentrout and Kopell (1986) we show that the dynamics of (2.3) are
governed by those of z which are:

9z _ 2
7 e(n+qz°)+... (2.5)



where

and .
q= f : Q(a éj

Both of these quantities are easily computed for membrane models. In
particular, 7 is directly proportional to ¢ while ¢ depends on the details of
the membrane model used. If 7 and ¢ have opposite signs then (2.5) has
a pair of fixed points, one stable and one unstable corresponding to fixed
points of (2.3) or (2.1). On the other hand, if n and ¢ have the same sign,
say, positive, then the lowest order solution to (2.5) is

o(t) = \/g tan(ey/mq(t — o))

where c¢ is an arbitrary constant. Notice that z is “periodic” but that it
“blows up” since the tangent function has singularities at odd multiples of
7/2. In Ermentrout and Kopell (1986), we show that “blowing up” of this
reduced system corresponds to producing a spike for the full system, (2.3).
Thus, the period of the full equations is:

7r

e/nq

For the membrane model, since, I = I* + €% , the period of the membrane

oscillator is: )

VI —1I*
where C' is a constant that depends on the details of the model. This short
calculation shows a general property of Type I membranes. The frequency is
proportional to the square root of the difference between the applied current
and the critical current. (Note. In the paper by Connor, et.al. (1977), the
authors attempt to fit the frequency with a straight line. It is much better
fitted with a square-root function, e.g. 17.553/1 — 8.114. See Figure la.)
The “blow-up” of a solution is an indication that equation (2.3) is sin-
gularly perturbed as € tends to zero. Thus, in general, one attempts to
“match” the solution of (2.3) to (2.5) when ¢ — 0. This matching is fairly
straightforward so we do not perform the details here. For later use, the
solution in terms of normal time is:

X(t) = Xo(t) + € (z(t) —

Tmem =C

1 1
- - g (2:6)
5 —/Maet  —5 —\/Nget



For the membrane model, n = ci where ¢ is a model-dependent constant.
Note that as \/fget — £m/2 the solution, (2.6) is well defined as we have
subtracted the singularity of the tangent function away. (Recall from calcu-
lus that

lim tan(z) —1/(7/2 —z)=0

ToT/[27

so X(t) is defined and periodic for |/nget € [—m/2,7/2].)

2.2 A convenient change of variables and the response func-
tion

The formula (2.6) gives the full behavior of a single membrane oscillator
when perturbed into the regime of repetitive firing. Similarly, the “firing
time” of the membrane oscillator is found from the solution to (2.5). In
order to study the effects of coupling and the phase resetting curve for the
system, it is convenient to change to a phase equation. In the same manner
as Ermentrout and Kopell (1986) we rescale time as 7 = et and let

z = tan(0/2).

Then (2.5) becomes

% =q(1 —cos ) + (1 + cos ). (2.7
This is a form of “phase equation” which describes the single oscillator in
terms of an angle variable that lies between —7 and 7. Each time 8 = 7
the full model fires a spike. The constant 7 is proportional to the applied
current as well as any synaptic current. In particular, suppose a constant
positive current is applied,

n=ci

where ¢, g are both positive. (These constants depend on the details of the
model.) Then (2.7) is easy to solve by quadrature:

6(t) = 2tan~" <\/§tan(\/z'c_q7' + £)>

where £ is an arbitrary phase shift. The phase monotonically increases and
covers one period in 7/4/icq slow time units. (Recall, the slow time 7 = €t.)
To compute the phase resetting curve, one just briefly increments the bias

10



current, i. Hansel, et al (1995) compute the infinitesimal phase resetting
curve which arises when the amplitude of the perturbation tends to zero.
For the present model, since it is a scalar differential equation, it is easy to
compute the infinitesimal PRC (see Appendix B for the calculation):

A(f) = K(1 + cos0) (2.8)

where K is a constant related to the amplitude of the stimulus. The actual
PRC is any phase-shift of (2.8); here we have shifted it so that the spike
occurs at # = 7. Summarizing, we have shown that Every type I membrane
oscillator mear the critical current has a nonegative PRC that is close to
(2.8) in shape. In particular, the infinitesimal phase resetting curve
is non-negative.

In Figures 4a and 4b we depict the infinitesimal PRC for the Morris-Lecar
model in the “Type I” excitability regime near criticality as well as that for
the Connor model. Plotted along with these two curves is the formula (2.8)
with the appropriate choice of K and the appropriate phase-shift. The PRC
computed from (2.8) is nearly indistinguishable from that of the Morris-
Lecar model. The Connor model is qualitatively similar but not as close
as the Morris-Lecar model. Similar calculations with other models such
as a variant of Hodgkin-Huxley described by Wang (X.J. Wang, personal
communication) show a very close fit near criticality. We suspect that the
reason that the asymptotics do not agree as well with the Connor model as
they do with the Morris-Lecar lies in the numerical difficuties of computing
the response function near criticality. One can decrement the time step for
integration of the equations and in some cases that decreases the error in
the numerical computation but in others increases it. Finally it is probable
that the higher order corrections for the expansion of the response function
for the Connor model are much larger than those of the Morris-Lecar.

The point of this calculation is that we now have a precise expression for
the response function Z(t) for any membrane model near the saddle-node
bifurcation, namely, (2.8). We also have an expression for the membrane
potential. We now proceed to the behavior of these oscillators when they
are synaptically coupled.

3 Coupled Type I Membranes.

The main purpose for computing the response function for an oscillator is
so that we can study the behavior of such models when they are coupled

11
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together. Thus, we wish to explore the behavior of two “Type I” membrane
oscillators coupled via synaptic conductances.

The synaptic current is just another current in our reduction of the full
system to the phase model. Thus, the behavior of each oscillator can be
expressed in terms of its “phase” (c¢f equation (2.7)) and will obey:

do

7 = (1 —cos0) + (1 +cos ) (1 — Lsyn(7))) (3-1)

where the synaptic current is:

Isy”(T) = gsynS(T)(V(T/E) - Vvsyn) (32)

V'(t) is the postsynaptic potential and from (2.6) satisfies:

V(t)=Vo(t) +e (z(t) — \1/%“ - —1\/@15) Vi.  (3.3)

where V; is the V' component of the eigenvector €. Near criticality, V (¢)
spends most of its time near the rest state, V. Therefore V(7/€) — Vyy, &
V- Vsyn = —Vesy which will be positive for excitatory coupling and negative
for inhibitory coupling. Thus, a pair of weakly synaptically coupled neurons

12
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near criticality satisfies:

5,

o = g;(1 —cos ;) + (1 + cosby) (nj + gkjsk(T)Vg}f) (3.4)

for j,k = 1,2. Note that this represents a new type of phase reduction model
for weakly coupled nonlinear neural oscillators. The phases do not occur as
differences and so the analysis is far more difficult. Furthermore, unlike
phase difference models, these phase models can have equilibria correspond-
ing to stable equilibria for the full equations (e.g., by choosing n; < 0.). In
a sense, this is a generalization of the product coupling models proposed by
Winfree (1967) and analyzed by Ermentrout and Kopell (1991) which have
the form:
do;

T =w+ R(Oj)P(ek).

Here R(0) plays the role of the response function and P(0) is the pulsatile
synapse. That is, if the synapses are instantaneous functions of the presy-
naptic voltage (or phase) then this simple product model obtains.

All that remains is to describe the dynamics of the synaptic conduc-
tances, sx(7). There are several ways in which we can do this. If we assume
that the conductances obey some type of ordinary differential equation such
as (2.2) that is determined by the presynaptic potential, then we must con-
vert these to equations that depend on the phase variables, 6;. An easier
approach is to assume that the synaptic conductances are “alpha functions”
of the form:

s(r) = a?re~e=7) (3.5)

or the more general form:

s(7) = ﬁa_ﬁa(ea““) —e ATy, (3.6)
Here 7* is the time of the presynaptic spike. Thus, we must now relate
the time of a spike to the phase, 6;. Recall from section 2 that “firing” is
equivalent to the phase variable € crossing 7. Thus, an obvious strategy is
to let 7* denote the time at which the presynaptic phase crosses 7. However,
we will generalize this to take into account certain facts about the timing of
synapses. In particular, if the spike of an action potential is wide (as is the
case in some relaxation-like models) then the time at which the threshold
for a synaptic event is crossed and the time at which the presynaptic cell
reaches its maximum can be quite different. Since the “maximum” potential

13



corresponds to 8 = 7 we will define 7* to be the time at which # = 7—4. Here
¢ is a parameter to account for the possibility that the synaptic conductance
begins before the presynaptic voltage reaches its maximal value.

We have now reduced a pair of synaptically coupled type I membranes
to a pair of phase models coupled through a synaptic conductance, (3.4).
This type of coupling is difficult to analyze but has a number of modeling
advantages over phase models that are derived by strict averaging. In par-
ticular, a phase difference model presumes spontaneous oscillation of all the
coupled cells in absence of coupling. In (3.4) if /¢ < 0 then each uncoupled
cell is incapable of spontaneously oscillating and instead has a rest state,
cosf = ifn/ 4 If coupled excitatorily and if the synapses persist for suffi-
ciently long, the coupled system can produce rhythmic output in addition
to remaining at rest. This is an example of coupling induced bistability. If
both cells are started near rest, then they will return to rest. If one of them
is excited past threshold, then that can cause the other cell to fire. If the
synapse of cell 2 persists long enough for cell 1 to return from its refractory
period (approximately the time it takes for cell 1 to go from 7 back to close
to its rest state) then this will cause cell 1 to fires again and start the process
over again. Figure 5 shows a picture on the 8; — 05 torus of solutions to
(3.4) in which (i) both cells are started at the same value above threshold
and (ii) cell 2 starts at rest and cell 1 is above threshold. In the latter case,
a spontaneous out-of-phase oscillation develops whereas in the former case,
both cells return to rest.

Now suppose that both cells spontaneously oscillate so that /¢ > 0 and
that both are identical. In this case, we can make a change of coordinates
which reduces (3.4) to the equations:

% — 14 (14 cos0) (g (7)Visy) (3.7)
We can now compute a firing map function in the manner of van Vreeswijk,
et al (1995) for this coupling. That is, we want to find periodic phase-
locked solutions to (3.7). We will derive a function which indicates the
possible phase-locked solutions and their stability. This is possible because
the synaptic conductances are determined solely by the times of the spikes
of the presynaptic cell and not by the value of the presynaptic phase at any
other time. Let P denote the period of the phase-locked solution. Let 5(7)
denote the synaptic time course during one cycle of the periodic solution.
Suppose that cell 1 fires at 7 = 0 and cell 2 fires at 7 = ¢P where ¢ € [0,1)

14
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Figure 5. Two solutions to (3.4) showing return to rest (large cross)
and spontaneous out-of-phase oscillation. Parameters are n = —0.125,¢q9 =
l,gjk = 3,5 = 0.15,ﬂ = l,a = 10.

is the relative phase. Then, cell 1 satisfies:

% — 14 g8(r — $P)(L + cos 0,)Viss (3.8)
with 6;(0) = w. Note that 3(7) is a known function due to the fact that once
a presynaptic cell fires the time course of the synaptic response is completely
determined. Call the solution to (3.8), ©(7;¢). Since the period is defined
as the value of 7 at which 0 traverses 2m we must have ©(P;¢) = 3.
(Recall that 6, starts at w.) This gives us an equation for P as a function
of ¢, P = Q(¢). A similar argument used for cell 2 shows that its period
must satisfy P = Q(—¢). Since the periods for a phase-locked solution must
be the same, we must have G(¢) = Q(¢) — Q(—¢) = 0 which determines
the possible phase-locked solutions. Two immediate solutions to G(¢) = 0
are ¢ = 0, synchrony, and ¢ = 1/2 which is the antiphase solution. A
necessary and sufficient condition for stability of a phaselocked solution, ¢
is that Q'(¢) > 0 and equivalently since G is twice the odd part of @ that
G'(¢) > 0. To see this, suppose that cell 2 fires a bit later than ¢. Then
the period of the first cell must lengthen in to allow the second cell to catch
up. That is, Q'(¢) > 0. For the integrate and fire model analyzed by van
Vreeswijk, et al the function Q(¢) can be explicitly determined. For the

present model, we must resort to numerical solutions.

15



Figure 6 shows the firing map G(¢) for g =Vesp =1,0 =0,a=08=a
as a function of a the rate of the synapse. It appears that no matter what
the rate of the synapse, the synchronous solution is unstable and the an-
tiphase oscillation is stable. The opposite occurs for inhibition (Vesf < 0).
Hansel, et al (1995) as well as van Vreeswijk, et al (1995) found that for suf-
ficiently fast excitation, synchrony became stable. We can obtain a similar
result in this model if we take into account the finite width of the action
potential and thus set d to some small positive value. Figure 7 shows the
firing map for both excitatory and inhibitory coupling as a function of the
synaptic rate. Consider excitatory coupling. As the synaptic rate increases,
the synchronous state stabilizes and there is bistability between the syn-
chronous and the anti-phase solution. For very fast synapses, the anti-phase
solution becomes unstable and synchrony is the only stable state. A similar
scenario occurs with inhibitory coupling however in this case fast synaptic
interactions result in the stability of the anti-phase state. One should not
place too much emphasis on the details of the bifurcation structure as this
is quite dependent on the choice of the synaptic gating function s(¢). Thus,
the picture for inhibitory coupling in figure 7 is the same as that in van
Vreeswijk, et al but for excitatory coupling our diagram is different. For the
excitatory integrate and fire model analyzed by van Vreeswijk, et al and
for the weakly excitatory coupled Connor model considered by Hansel, et
al (1995) the transition from stable anti-phase to stable synchrony occurs
via an intermediate regime where neither is stable. Instead there is a stable
nonzero phase-lag between the the oscillators.

3.1 Some comments on averaging.

The averaging method can be applied to a pair of oscillators as long as the
coupling is very weak compared to the period of the oscillation. Since the
oscillators we are desribing here have very long periods, the coupling must
be eztremely weak in order to rigorously apply averaging. Nevertheless, we
can get some useful insights into the the global picture for type I membranes
by looking at the averaged equations. Let g be small in (3.4) and let Z(0) =
(1 + cosf) denote the response function to lowest order. Then one can
average the phase equations and we obtain the following equation for the
phases, 0;

db
o = l+gH(6:-61) (3.9)
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Figure 6. The firing map G(¢) for excitatory coupling, g = V.55 = 1,6 =
0,a = B = a for various values of a the rate of the synapse. Only the
out-of-phase solution is stable.
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Figure 7. The firing map for excitatory and inhibitorr coupling when
the synapse starts slightly before the peak of the spike (§ = 0.05). Left-
hand panel is excitatory coupling (Vess = 1) and right panel is inhibitory
(Vess = —1.) All other parameters as in Figure 6.
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dbo

—— = 14gH(0: —6y) (3.10)

dr
where | gen

H(9) = Veff%/ Z(t)s(t + 0)dt. (3.11)
0
Letting ¢ = 05 — 01, we can subtract (3.9) from (3.10) and obtain:
d¢
90— g (~¢) — H(#) = o(9).

The zeros of I'(¢) are the phase-locked solutions and they are stable as long
as T'(¢) < 0 or equivalently, H'(¢) > 0. Note that ' is proportional to the
odd part of the function H. Now, for our lowest order model, Z(t) = 1+cost
so that H must be of the form H(A) = ay + a1 cosf + by sinf and thus
I'(¢) = —2by sin ¢. The first thing to note is that there are only two possible
phase-shifts (zeros of ') and they are ¢ = 0 and ¢ = 7. Thus, no matter what
s(t) is , the solutions to the averaged equations have no other possible phase-
lags. The reason that Hansel, and others have found these intermediate
phase-lags in their averaged equations is that the response function Z(0)
has higher Fourier components. Indeed, our response function, 1 + cos @ is
only the lowest order term in asymptotic expansion; higher order terms will
generally contain modes such as cos 20. The coefficients of these higher order
determine the nature of the transition from synchrony to anti-phase as the
synaptic rate varies. A detailed analysis of this transition is given in van
Vreeswijk ,et al (1995).

4 Discussion and Conclusions

The calculations in the previous section suggest the general picture for a
pair of weakly coupled type I membrane oscillators as a function of the
persistence of excitatory synapses and inhibitory synapses. For slow enough
synapses and excitatory interactions, the synchronous solution is unstable
and the anti-phase solution is stable. Under some circumstances, as the
snapses speed up, the synchronous solution stabilizes and the anti-phase
solution loses stability. The reverse is true for inhibitory interactions. The
mechanism for change of stability (if it occurs) depends on higher order
details of the model.

We have shown that neural oscillators that arise from Type I excitability,
(that is via a saddle-node bifurcation on a circle rather than via a Hopf bi-
furcation) have type I or non-negative phase resetting curves. Thus, we have
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connected the local oscillator mechanisms to the behavior of such oscillators
when connected to others.

A natural question is whether oscillations that arise through Hopf bifur-
cations have type II phase-resetting properties, that is, is the phase resetting
curve positive for some phases and negative for others (cf Figure 3b,c). For
a supercritical Hopf bifurcation (that is, a stable small amplitude oscilla-
tion emanating from a fixed point) this question is easy to answer. Near
the bifurcation point, the oscillation is sinusoidal and the adjoint is easily
computed (see Ermentrout and Kopell, 1984) to be of the form:

Z(t) = Zy coswt + Zysinwt

where Z;, Z, are constant vectors that depend on the properties of the mem-
brane and w is the natural frequency. Thus, we can say that for membranes
that undergo a supercritical Hopf bifurcation, the phase response function
is sinusoidal and is therefore a type II phase resetting curve. (Many mem-
branes can be put into this regime at high enough temperatures, but it is
normally unusual.)
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Appendix A: Numerical simulation parameters

The models used in this paper are the Hodgkin-Huxley model, the Con-
nor model, and the dimensionless Morris-Lecar equations. All equations
were integrated using a 4th order Runge-Kutta method on the software
XPP. Frequency plots were computed using a modified version of AUTO
incorporated into XPP. The response functions and phase interaction func-
tions were also computed using XPP. All simulation code is available from
the author at bard@poincare.math.pitt.edu.
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The Hodgkin-Huxley equations used here are:

av

C—

where

dt
dm

dt
dh
dt
dn
dt

= T —120mh*(V — 50) — 36n*(V + 77) — 0.3(V + 54.4)
= am(V)(1 =m) = Bm(V)m
= ap(V)(1=h) = Bu(V)h
= an(V)(1—n) = Bu(V)n
an (V) = 1% (V+40)/(1 —exp(—(V + 40)/10))
Bm(V) = 4xexp(—(V +65)/18)
an(V) = .07 *exp(—(V + 65)/20)
Br(V) = 1/(1+exp(—(V +35)/10))
an(V) = .01 (V +55)/(1 —exp(—(V +55)/10))
Bu(V) = .125xexp(—(V + 65)/80).

For the simulations in this paper, I = 12.
The version of the Connor model we use here is the same as that used by
Hansel, et.al. (except for as (V') which is incorrectly defined in their paper.)

dv
Cu

dm
dt
dh
dt
dn
dt
da
dt
db
dt

where

am (V)

I —120mh3(V — 55) — 20n*(V + 72) — 0.3(V + 17) + 47.7a®b(V + 75)
am(V)(1 —m) — Bm(V)m
ap(V)(L —h) = Bu(V)h

an(V)(1 —n) = Bu(V)n
a0 (V) —a

7a(V)
boo (V) — b

(V)

1% (V +29.7) /(1 — exp(—(V + 29.7)/10))
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B (V) = 4dxexp(—(V +54.7)/18)

ap(V) = .07xexp(—(V +48)/20)

Br(V) 1/(1 + exp(—(V + 18)/10))

an(V) = .01 (V +46.7)/(1 — exp(—(V +46.7)/10))

Bn(V) = .125xexp(—(V + 56.7)/80)

aso(V) = (0761 x exp((V + 94.22)/31.84) /(1 + exp((V + 1.17)/28.93)))(.3333)
7.(V) = .3632+ 1.158/(1 + exp((V + 55.96)/20.12))

boo(V) = 1/(1 +exp((V + 53.3)/14.54))*
(V) = 1.24+42.678/(1 +exp((V + 50)/16.027)).

For the simulations in this paper, I = 8.5.

The dimensionless Morris-Lecar equations are given in section 1. The
parameters used for “Type I” excitability dynamics are: g = .5,gx =
2,9cq = 1.33, V1 = —.01,Vo = 0.15,V3 = 0.1,Vy = 0.145, Vg, = 1, Vg =
—.7,Vp = —.5 with I = 0.0695. The parameters for “Type II” dynamics are
as above with the exception of g, = 1.1,V53 = 0.0,V4 = 0,3,¢ = 0.2 and
I =0.25.

Appendix B: Computation of the response function

Scalar phase model. We compute the response function for a scalar
phase model of the form:

@ _
dt
where S(t) is the stimulus inducing the phase-shift. Let 6y(t) satisfy

0 — 100,

f(0) +g(0) - 5(t)

Since this models a phase oscillator, 8y monotonically increases (or de-
creases) in time since f is strictly positive (negative). Thus, we can introduce
a new phase-variable, 9 defined by, 0(t) = 0y(1)). ¢ satisfies:
dip 9(60(¥))
Lo D8 gy
a " o) O
The expression multiplying S(t) is the response function. For our dynamics,
f(0) = q(1 — cos®) + ci(l + cos8) and ¢g(#) = (1 + cos@) where ci > 0.

=Z()S(t).

22



It is then an elementary application of trigonometric identities to see that
Z(0) = K(1 + cos @) as required.

Numerical computation of the response function. It can be shown
(Ermentrout and Kopell, 1991) that the response function, Z(¢) is the ad-
joint eigenfunction for the linearization of the differential equations about
the stable limit cycle. That is, let X (¢) satisfy:

dX
— =F(X
= F&X)

and suppose that X (¢) is orbitally stable. The adjoint to the linearization
satisfies:

dZ(t)

Cdt
where DF (X (t)) is the Jacobi matrix of F evaluated at X (¢) and AT denotes
the transpose of A. Since X (%) is orbitally stable, then integration in forward
time of the linearized equations will always relax to a periodic orbit. Thus,
to find the periodic solution to (4.1), we start with random initial conditions
and integrate backward in time over several periods. This will relax to the
adjoint, Z(t) which is then normalized so that

= -DF(X ()" Z(¢t) (4.1)

%/T 2() - X'(t) dt = 1.

This method of computing the adjoint was suggested to the author by Gra-
ham Bowtell. The author’s software package includes this algorithm so that
all these calculations are readily automated. Error is introduced in the nu-
merical calculations in two ways. The computaion of the Jacobi matrix is
done numerically so for sharp spikes error can be introduced. Integration of
the linear equations also produces the usual numerical errors.
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