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Abstract--We consider a layer of  excitatory neurons with small asymmetric excitatory connections and strong 
coupling to a single inhibitory interneuron. I f  the inhibition is fast, the network behaves as a winner-take-all network 
in which one cell fires at the expense of  all others. As the inhibition slows down, oscillatory behavior begins. This 
is followed by a symmetric rotating solution in which neurons share the activity in a round-robin fashion. Finally, 
i f  the inhibition is sufficiently slower than excitation the neurons completely synchronize to a global periodic solution. 
Conditions guaranteeing stable synchrony are given. 
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1. INTRODUCTION 

Oscillatory networks of neurons have garnered a great 
deal of recent attention as it is believed that they may 
play a central role in cortical processing (Grey & Singer, 
1989; Lytton & Sejnowski, 1990) as well as in the tran- 
sition to certain pathological states such as epilepsy 
(Traub, 1982). In this paper, we will consider a very 
simple network of excitatory cells coupled via a single 
inhibitory neuron for which the time constant is allowed 
to vary. The basic model is assumed to mimic a small 
piece of cortex where the ratio of excitatory pyramidal 
cells to inhibitory interneurons is large. This is the case 
in the hippocampus (Traub, 1982 ) and likely to be the 
case in other regions of the cortex (Lytton & Sejnowski, 
1990). The model is a generalization of some of our 
earlier work (Ermentrout  & Cowan, 1979) in which 
there is a single excitatory cell coupled to a single in- 
hibitory neuron. The intrinsic oscillations of a single 
excitatory-inhibitory pair depend on the network con- 
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nections so that unlike some other recent models of 
coupled neural oscillators (Ermentrout  & Kopell, in 
press), a single cell will not oscillate autonomously. 

Fast inhibition is necessary for some types of cortical 
processing; particularly those involving "short term 
memory." In many connectionist and similar models 
of cognitive processing, a common element is the so 
called "winner take all" (WTA) network (Grossberg, 
1973; Rumelhart  & Zipser, 1987). This network con- 
sists of  a group of "excitatory" cells with global inhi- 
bition. It is believed to be a good model for short term 
memory and attention in that if a group of cells gets 
inputs, the network will select the maximum of these 
and maintain that pattern. Thus, the network has the 
dual role of selecting the "most  important"  stimulus 
to attend to as well as reinforcing that pattern after the 
stimulus disappears. Such systems implicitly lead to 
highly asymmetric states in which one small patch of 
tissue is excited and all other regions are suppressed. 
There has been a great deal of mathematical work on 
these systems (see e.g., Amari, 1972; Cohen & Gross- 
berg, 1983; Grossberg, 1973) with applications ranging 
from visual processing (Grossberg, 1977) to higher 
cognition (Rumelhart  & Zipser, 1987 ). For most of the 
models constructed, there is global recurrent inhibition 
that generally works instantaneously. Thus, the typical 
form of these models is: 

dxj _ F(xj, u, Ij, xk), (1) 
dt 

where/~ is a (possibly transient) input to the j - th  cell, 
xk represents inputs from other excitatory cells, and u 
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is a global inhibition that depends on the total excita- 
tion. The models in Yuille and Grzywacz (1989) and 
Grossberg ( 1973 ) are both of this form (see Section 2 
for details of these particular models). In many models, 
there are no inputs from neighboring excitatory cells, 
but, for completeness, we include them. We also note 
that these excitatory connections are important in the 
creation of some of the complex dynamics. 

If the inhibition is allowed to behave dynamically, 
rather than as an instantaneous function of the excit- 
atory input, the WTA behavior remains as long as the 
inhibition is sufficiently rapid. If this inhibitory re- 
sponse is delayed there can be a complex series of bi- 
furcations that lead eventually to synchronous oscil- 
lations of the entire network. The bifurcations resulting 
from the slowed inhibition have been referred to by 
Golubitsky as "symmetry increasing" bifurcations 
(Golubitsky & Field, 1990) in another context unre- 
lated to neural nets. We will show that one possible 
behavior is the onset of complicated oscillatory patterns 
in which one cell is active for some time and sponta- 
neously turns offallowing another cell to take over. That 
is, no "decision" is made, rather the network slowly 
oscillates between various states. Analogous oscillations 
have recently been called "ponies on a merry-go-round" 
(POM) by Aronson, Golubitsky, and Mallet-Paret 
(1990a) and are seen in coupled Josephson junctions 
(Aronson, Golubitsky, & Krupa, 1990b). The mech- 
anism of onset in the present paper seems to differ con- 
siderably from that in Aronson et al., 1990a. The loss 
of "fast" inhibition has been implicated as a possible 
mechanism for the onset of synchronous oscillatory 
activity in the hippocampus (Traub, personal com- 
munication). Traub (1982) presents a biophysically 
detailed model of this effect which, in addition, shows 
that individual cells fire erratically, but the bulk be- 
havior of the system is quite regular. The simple model 
considered here exhibits similar behavior in the regime 
of parameters that lead to POMs (i.e., at any given 
point in the cycle, few excitatory cells are firing, but 
their summed output is very regular and nearly oscil- 
latory). 

The possibility of delayed inhibition having an effect 
on a neural network has been explored in other con- 
texts. Recently, Marcus and Westervelt (1989) studied 
the destabilizing effect of delays on systems of the form: 

dui 
- ~  : -u ,  + Z T~f (u j ( t -  r)). (2) 

j=l  

They analyzed the stability of the homogeneous state 
uj = ff as a function of the delay parameter. Oscillations 
and other types of behavior are found. Their results 
concern the homogeneous state rather than that of an 
inhomogeneous state. They also delay all variables; we 
are interested in the case where only the inhibition is 
delayed or slowed down. Finally, most of their analysis 
is confined to the "all-to-all" coupled case. Ellias and 

Grossberg (1975) show that for a homogeneous network 
(i.e., one for which the total synaptic effects are the 
same for each neuron) if the inhibition is allowed to 
behave in a dynamic fashion, then periodic solutions 
are possible. However, the stability of these homoge- 
neous oscillatory solutions as solutions to the full net- 
work is unexplored. In the same paper, they are also 
interested in what they call order preserving limit cycles. 
These are periodic solutions that maintain local max- 
ima among the neurons. As a by-product of the stability 
calculations for the homogeneous oscillation, we pro- 
vide a recipe for order preserving periodic solutions. 

In Section 2, a general class of globally inhibited 
neural nets is considered. We show the possible bifur- 
cations to WTA behavior and conjectured conditions 
that can lead to it. The bifurcation to WTA behavior 
for N = 2 cell is different from that ofN > 2. We analyze 
a particular instance of this general network and com- 
pute explicit bifurcation diagrams. While the global 
stability of equilibria to these networks is well-known 
(Cohen & Grossberg, 1983), our contribution is to 
show how inhomogeneous solutions can arise as the 
"gain" increases in the network. We begin Section 3 
with a brief analysis of simple two-component neural 
network. We show the onset of oscillations for a single 
excitatory-inhibitory pair as the inhibition slows down. 
Following this short analysis, we prove a number of 
results on the stability of the synchronized oscillatory 
solution in the multineuron network when inhibition 
is sufficiently retarded. We find a condition which 
guarantees stability of this symmetric solution that de- 
pends only on the topology of the connectivity. The 
transition from the two extremes of WTA behavior to 
synchronous oscillations takes place through a complex 
series of bifurcations. In Section 4, we present a detailed 
discussion of the bifurcation structure for the three 
neuron case. We numerically study the series of bifur- 
cations that take the system from a WTA network to 
one that oscillates synchronously as the inhibition is 
slowed down. This picture of the mechanisms under- 
lying the complex oscillations allows one to see why at 
least three excitatory cells are necessary (that is the two 
excitatory cell model will not exhibit the complex be- 
havior). We also show that the POM solutions occur 
in larger networks with symmetry as well as in com- 
pletely random networks. 

2. A SIMPLE NEURAL NET 

Inhibition is common in the cortex and is mediated by 
at least two important cell types, basket cells which 
make inhibitory synapses in the apical dendrites, and 
chandelier cells that operate at the axon-hiUock. The 
former act subtractively, while the latter act as shunts. 
In spite of their widely differing biophysical effects, both 
types of inhibition can be used to create dynamic short- 
term memory and contrast enhancement (Grossberg, 
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1973). Rather than consider a detailed biophysical 
model of the cortex (as was done recently by Lytton & 
Sejnowski, 1990), we will analyze a simplified model 
for excitation and inhibition. 

Consider a network of excitatory cells that interact 
only through a global inhibitory feedback. Let F ( x ,  y;  

a) be a function of two variables parametrized by a 
and such that F~ =- O F / O x  > 0 and -F2  ~ OF/Oy  < O. 

Consider N excitatory xj cells satisfying: 

dx, 
= -tocj  + F(x j ,  u(t); a), j = 1 . . . . .  N. (3) 

The variable u(t) is the global inhibitory feedback and 
satisfies: 

N 

u(t )  = ~, ~7(Xk), (4) 
k=l 

where ~ is a monotone increasing function (for ex- 
ample, ~7 (x) = x). More general forms could be used, 
for example, the nonlinearity could appear on the out- 
side of the sum, e.g., 

N 

u(t)  = 5~( Z Xk). (5) 
k=l 

A combination of the two forms is also possible. For 
simplicity, most of the analysis below considers the case 
(3 and 4), but later, we will study a network with in- 
hibition of the form (5). (For the analysis presented 
below, the nonlinearity in (5) can be absorbed into the 
behavior of the function F.) Equation (3-5) represents 
a homogeneous network of N excitatory neurons con- 
nected via a global inhibitory feedback. In absence of 
any interactions, each cell decays to zero. The param- 
eter a describes the general level of excitation or "gain" 
of the network. One can additionally allow some in- 
teractions between the excitatory cells as well as in- 
homogeneities such as a sustained input. Examples of 
this type of network abound in the literature. The Wil- 
son-Cowan (Wilson & Cowan, 1972) equations with 
instantaneous inhibition and no refractoriness have the 
following form: 

d~ 
- ~  = - # x j  + f ( a ~ x j  - aieU - Oe + Ij), j -- 1 . . . . .  N 

N 

u(t) = f (Ote i  ~ Xk  - -  Oi ) ,  ( 6 )  
k=l 

where f i s  a monotone increasing function, the 0's are 
thresholds, /j are inputs, and the a's are synaptic 
weights. The parameter See plays the role of the bifur- 
cation parameter. (Hereafter, we will refer to the clas- 
sical nonlinear summation neural net model as the 
Wilson-Cowan equations, where we have set the re- 
fractoriness to be identically zero.) Grossberg (1973) 
considers models of the form: 

dxi 
- -  = - a x ~  + f ( x i ) ( B  - x i )  - xi ~ , f (x . i )  + l j .  (7) 
dt j4"i 

If we modify this network by eliminating the shunting 
term (the - x i  multiplying f(xj))  then the Grossberg 
net becomes: 

d E i  _ N 

AE~ + f ( B E i  - Z Ej + I~), (8) 
dt j=l 

where Ei  = f (  xi  ). Yuille and Gryczwyz (1989) show 
that the network: 

dxi 
- -  = - x ,  + I , g ( ~ ,  x j ) ,  (9) 
dt ~,j 

where g is monotone decreasing acts as a WTA network 
in a variety of circumstances. We can rewrite this model 
as :  

dxi N 
- -  = - X i  + I i f ( x i  - ~ Xj), (10) 
dt j=l 

wheref(x) = g ( - x ) ,  so that (10) is of the form (6). 
In the case of homogeneous inputs, I~ = / j ,  all three 
equations are of the form of (3-5). 

In models such as (6-10), the assumption is that 
each of the N populations of neurons is receiving a 
different stimulus. For some ranges of parameters, these 
networks can be shown to suppress all inputs except 
the maximal one and thus behave as a winner-take-all 
network. We wish to define WTA in a somewhat dif- 
ferent manner. In our scenario, inputs are brief initial 
stimuli that do not persist (in the words of differential 
equations, they are the initial conditions). The asym- 
metry in initial data results in one or more of the ex- 
citatory cells amplifying its (their) activity and sup- 
pressing all of the other cells in the network. Thus, we 
are concerned with a network that exhibits short  t e r m  

m e m o r y  (STM) rather than a strict m a x i m u m  input  

selector. As such, we assume that all neurons in the 
network receive the same sustained input but will attain 
different transient stimuli. The differing inputs that are 
assumed in the Grossberg and Yuille models have little 
effect on the mechanism that leads to suppression of 
all other inputs. Rather, their principal contribution is 
to bias the dynamical system toward the "neuron" with 
maximal input. As we will see below, the Yuille model, 
the modified Grossberg model, and the Wilson-Cowan 
model, have the STM property coincident with the 
WTA property. In order to have STM it is then nee- 
essary for the network (3-5) to have multiple stable 
steady states. 

In the ensuing discussion we will assume that ~7 (x) 
= x in order to simplify the mathematics. This is not 
necessary and any monotone increasing function will 
suffice. We suppose that for sufficiently small values of 
the parameter a there is a unique stable steady state, 
:? which satisfies: 

-go~+ F(~, N~; a) = 0. (11) 

This is the case in (6) with See as the parameter, in (7- 
8) with B as the parameter, and in (9-10) with I as a 



418 B. Ermentrout 

parameter. As the parameter increases, we require the 
homogeneous state to lose stability. This stability is 
governed by the following eigenvalue problem: 

N 

Xwj = -t~wj + F i ( a ) w j -  F2(a) ~ w~. (12) 
k=l 

Suppose that FI and F2 are increasing functions of o~ 
and that Fl (a*)  = #. Then for a slightly larger than 
a* it is clear that any vector ~b such that ~ wj = 0 

J 
solves (12) with X = - # + F~ (a ) .  Since there are N 
- 1 linearly independent solutions to ~ wj = 0, at 

J 
= a* there is an (N - 1 )-fold zero eigenvalue. We con- 

jecture that this leads to WTA behavior. There are many 
possible branches of solutions to this problem and the 
rigorous analysis of them is formidable. In the Appen- 
dix, we modify the present problem to incorporate in- 
puts from neighboring excitatory cells. This additional 
connectivity removes the degeneracy and shows that 
the first bifurcating branch of solutions to the modified 
system is one for which there is a single maximal xj. 
In the limit as these interactions tend to zero, we con- 
'ecture that the resulting stable solutions will be such 
hat one xj will be large and all others will be equal and 
mall. 

Based on the heuristic discussion above and the re- 
sult in the Appendix, we will study the bifurcation of 
solutions to ( 3-5 ) in a restricted subspace. We restrict 
the space of solutions those of the following form: 

xl = x,  x2 . . . . .  XN = y. (13) 

Note that the choice of the indices is arbitrary as the 
eqn (3-6)  is symmetric to all permutations of the x/s.  
Solutions of the form (13) which satisfy (3-5)  must 
also satisfy the 2-dimensional system: 

dx 
- - = - u x  + F ( x , x  + ( N -  1)y)  
dt 

a y _  
dt ~ty + F(y ,  x + (N - 1 )y). (14) 

The following theorem gives necessary conditions for 
a stable solution to (14) to be a stable solution to the 
full problem (3-6) .  

THEOREM 1. Le t  (2, ~)  be  a solut ion to (14 ) .  L e t  

f~, = -ta + O,F(2,  Y + ( N  - l)fi) 

f21 = - 0 2 F ( 2 ,  -f + ( N -  l )fi) 

A2 = - u  + O,F(fi, ff + ( N -  1)iT) 

fEZ = -OEF(fi ,  x + (N  - 1 )fi). 

I f ( i ) f ~ l  -J~ ,  < 0, (ii)f~2 < 0, a n d ( i i i )  (f~l -J~,)f~2 
- f l l f 2 2 N l  > 0 then (Y, ~, . . . .  ~)  is an asympto t ica l ly  
s table solut ion to ( 3 - 5 ) .  

P r o o f  Let xt = 2 + z, and Xj+l = j7 + wj for j  = 1 . . . .  , 
N - 1 -= N~. Then the linearization of (3 -5)  leads to 
the eigenvalue problem: 

NI 

x= = ( f , , - A , ) z - A ,  Z wk 
k=l 

Nl 

Xwj : - f~2z + A2wj - f22 Z wk. (15) 
k - I  

Due to the rotational symmetry in the w/s, we can find 
a complete set of eigenvectors of the form: 

z = {m, wj = ~mcos(27rmj/Nl), m = 0 . . . . .  N , /2 .  

Note that the case m = 0 corresponds to perturbations 
within the symmetric subspace defined by eqn (14). 
The linearization ( 15 ) becomes the linearization of(14) 
in this symmetric subspace. The matrix obtained is: 

Ms = \ -.122 f12 -J22Ni ] " 

The trace o f  M s  isfll --J21 +fl2 - - J 2 2 N l  • The first two 
conditions and the fact that J22 > 0 imply the trace is 
negative. The determinant of M s  is (f~ - f2 t ) f12  - 
f~ lf22N1 which is positive from condition (iii). 

The remaining set of eigenvalues are those of the 
matrix: 

0) 
M,,= \ -J22 fl2 " 

The zero appears because ~ wj = 0 outside of the sym- 
J 

metric subspace. The eigenvalues of M are negative if 
and only iff~, -f2~ < 0 and f~2 < 0 as implied by (i) 
and (ii). • 

One would like to have a result that states that sta- 
bility within the symmetric subspace implies stability 
in the whole space, but this is not true; there are stable 
solutions to (14) that are not stable solutions to (3 -  
5 ). These turn out to violate condition (ii). We note 
that condition (i) is not a very strong condition since 
J~l will be large with strong lateral feedback. We also 
note that conditions (i) and (ii) along with the condition 
f~l < 0 imply condition (iii). 

The explicit computation of the bifurcation equa- 
tions for (14) is straightforward and rather than go 
through the details, we summarize the results. 

THEOREM 2. 
1. N = 2. The  bi furcat ing solut ions are o f  the f o rm:  

(2,  ~) = (x, ,  x,)  + ~(1, - 1), 

where ~ satisfies: 

f( a - a* ) - b~ 3 = O. 

2. N > 2. The  bi furcat ing solut ions are o f  the  f o rm:  

(2,j7) = (x~,x,) + ~ ( N -  1, -1) ,  

and  ~ satisfies: 

~ ( ~ -  a* )  + c~ 2 = O. 

Here, ( Xs, x , )  is the  homogeneous  solut ion to (14 ) ,  and  

b, c are constants that  depend  on the details of the func- 
tion F 
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This theorem shows that for the N = 2 case, the 
bifurcation is a pitchfork and the resultant solutions 
are stable ifb > 0. The reason the case N = 2 is different 
is because of the reflection symmetry of the eigenvectors 
causes the quadratic terms in the bifurcation to dis- 
appear. For N > 2 there is an exchange of stability. The 
two cases are illustrated in Figure 1 for the Wilson- 
Cowan equations with instantaneous inhibition. The 
abscissa is the bifurcation parameter (ace) and the or- 
dinate is xl. In Figure la, the bifurcation is supercritical 
and there are two stable branches. These correspond 
to x~ "winning" and x2 "winning," respectively. Since 
N = 2, these equilibria are also stable solutions to (3- 
5 ). Figure 1 b shows the case N > 2 (here, N = 8 ). The 
theorem is valid in the neighborhood of the exchange 
of stability, but the numerical solutions show a turning 
point in which the large amplitude upper branch ap- 
pears. Only the upper branch and the left hand part of 
the symmetric branch are stable solutions to the full 
problem to the full system (3-5).  For the lower super- 
critical branch to the right of the bifurcation point, the 
expressionf~2 from Theorem 2 is positive. 

A generalization of (3-5) incorporates excitatory 
interactions; we replace (3) by: 

N 

dxj = -I~xj + F( ~ CjkXk, U; a). (16) 
dt k=~ 

If we make the ansatz  that for each j ,  Z Cjk = C, then 
k 

there is still a homogeneous solution to (16) and we 
can examine its stability. This assumption means that 
all excitatory cells receive the same total excitatory 
stimulation. If, in addition, Cjk = C ( j  - k )  >-- O, the 
analysis is straightforward and is considered in the Ap- 
pendix. The case analyzed above concerned only Cjk 
= ~ j k .  

We remark that Cohen and Grossberg (1983) prove 
that networks of the type described in this section have 
an explicit Liapunov function and so, with arguments 
that imply boundedness of trajectories, they show that 
all solutions tend to equilibria. For certain classes of 
problem, they are able to shed some light on the nature 
of these solutions. Our tack in this section is somewhat 
different in that we have attempted to analyze how this 
behavior can arise from a model which does not admit 
nontrivial patterns of activity. Furthermore, the results 
depend intimately on the existence of distributed ex- 
citation which is explicitly forbidden in their paper. 

3. SYNCHRONOUS SOLUTIONS 
AND STABILITY 

3.1. A Two Variable Example 

Suppose that we have a single excitatory cell with re- 
current inhibition. Unlike the previous section, we will 
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FIGURE 1. Bi furcat ion diagram for the Wilson-Cowen equations 
when N = 2 ( a )  and N = 8 ( b ) .  x l  is shown along the y-axis 
and or. along the x-axis. Parameters are , ~  = 8, aj,  = 20, 0e = 
1, and  0~ = 8. Turning point (1) and exchange of stabi l i ty  ( 2 )  
are shown in ( b ) .  

assume that the inhibition is dynamic. The Wilson- 
Cowan equations provide a simple example of this type 
of model. The equations for this model are: 
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dx 
- -  = - x  + f ( e l~x  - O l i e U  - -  O e )  
dt 

du 1 
-- ( - -U + f(OteiX -- Oi) ). (17) 

dt r 

The time-constant of the inhibition is given by r. We 
let f ( x )  = ( 1 + tanh x ) / 2  and choose parameters, O/ee , 

aei, aie, Oe, and 0i, so that there is a unique equilibrium 
point. For r small enough (i.e., fast inhibition), this 
rest state is stable. As the inhibition slows down, there 
is a Hopf bifurcation to periodic orbits. Further in- 
creases in r produce an oscillation that is more and 
more of the relaxation type. It is clear from (17) that 
all solutions must be bounded (indeed with f chosen 
above, if x(0)  and u(0) are chosen from the interval 
(0, 1 ) they will remain there for all time.) The Poincar6- 
Bendixson theorem (Hirsch & Smale, 1974) then im- 
plies the existence of at least one stable periodic solution 
if the unique equilibrium is unstable. Figure 2a illus- 
trates the phase-plane for (17) and a typical oscillation. 
More details for ( 17 ) can be found in Ermentrout and 
Cowan (1979). 

3.2. Stability Loss Due to Inhibitory Slowing 

We now consider the stability of the homogeneous so- 
lution to (3-5) and (16) as the inhibitory timescale 
lengthens. We parametrize this timescale by a variable 
r and write: 

dxj_ N 
dt gxj + F( ~ CjkXk, U(t); a), (18) 

k=l  

where u(t) satisfies the following functional equation: 

U ( t )  = r rl ~ ~ ( X k ( t  -- s ) ) d s ,  (19) 
k= l  

and 71(z) is a nonnegative temporal kernel with integral 
1. Thus, 

N 

lim u(t)  --* ~ Y(Xk) ,  
r ~ O  k -  I 

and we recover (3-5, 16). Note that we could "move" 
the nonlinearity outside the summation in (19) to ob- 
tain the analogue of(4). We wish to explore the stability 
of the symmetric steady state as a function of the time- 
constant r of the inhibition. Before continuing with the 
analysis, we consider a few simple examples. 
Example 1. n(z) = exp( -z ) .  Then (19) becomes the 

familiar first order equation: 

du N 
r --~ + u = Z ff:(Xk). (20) 

k = l  

Example 2. o(z) = 6(z - 1 ). Then (19) is the delayed 
excitation: 

N 

u(t)  = ~, ~ 7 ( x k ( t -  r ) ) .  (21) 
k = l  

U ' ~ 0  

× ' = 0  

Y 

(a) 

1 

× 

(b) 

FIGURE 2a. Phase-plane of the two-cell Wilson-Cowan model 
showing nuIl-clines and limit cycle. Parameters are: a, .  = 14, 
a,j = 15, aj, = 15, #. = 1, #l = 8, r = 1, (b)  complex plane 
showing the intersection of the critical curves for eqn (26) .  

Example 3. O(z) = z exp( -z ) .  This kernel is the fa- 
miliar "alpha" function used to model the 
impulse response in many neural models 
(see e.g., pages 177 and 327 in Koch & 
Segev, 1989 ). u (t) satisfies the second-or- 
der differential equation: 

r 2 d 2 u  r d u  N 
- ~  + --~ + u = ~, ~(Xk) .  (22) 

k = !  

Example 4. , (z )  = ( exp( -z )  - e x p ( - z / q ) ) / (  1 - q) .  

This kernel also appears frequently in 
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neural modelling and also leads to a sec- 
ond-order differential equation: 

dEll du N 
qr 2 - ~  + qr -d~ + u = ~, Y(Xk). (23) 

k=l 

We now consider the effects of changing the time con- 
stant of inhibition on the stability of the homogeneous 
state. Let xs be the symmetric equilibrium of ( 18 and 
19). The linearized equation is: 

- -  = -ILx + F t x  - F2 - ~ x ( t  - s)ds, (24) 
dt r 

where F~ and F2 are composite derivatives for F and fit 
evaluated at the equilibrium. As above, we assume that 
F~ > 0 and F2 > 0. We also assume that - ~  + F~ ---f~ 
> 0 and that F2 > f~. The former condition means that 
the excitation is strong while the latter means that the 
inhibition is even stronger. Let ~(X) be the Laplace 
transform of ~(z). Then the stability problem is: 

X =f~ - F2~I(rX). (25) 

It is clear from (25) that if r = 0 then ~, < 0 and all 
eigenvalues are negative. The solution to the transcen- 
dental eqn (25) is generally difficult, but we can look 
for loss of stability via a simple graphical method. Since 
f~ - F~ < 0, stability cannot be lost at a zero eigenvalue 
as r increases. Thus, the only way to lose it is through 
an imaginary eigenvalue, say, i~o. Then, (25)becomes: 

~( icor ) - ( 26 ) & &" 

Consider the image of the right-hand side in the com- 
plex plane for ¢o >_ 0. This traces a vertical line through 
the point ( f l /F2 ,  0). Our assumption that F2 >f~ im- 
plies that this line intersects the real axis at a value 
between 0 and 1. Consider now, the image of ~(i~or) 
for o~ >_ 0. If this curve intersects the vertical line, then 
there will be a r* such that stability is lost (see e.g., 
MacDonald, 1989) for r > r* (see Figure 2b). We 
generically expect there to be a small-amplitude peri- 
odic orbit, although its stability is not assured. The 
examples above are easily seen to always cross this ver- 
tical line. The following are the functions ~ for the ex- 
amples: 

1 - i ~  
~(i~)- 1 + ~2 (27) 

~(i~) = exp(-i~) (28) 

I + p ~ 2 - i ~ ( p +  1) 
~(i~) = ( 1 + ~2)( 1 + p2~Z) • (29) 

Clearly, each of these crosses the critical line and can 
lead to instability of the homogeneous rest state. The 
following proposition gives a sufficient condition for 
loss of stability as r increases forf~/F2 =- 0 sufficiently 
close to 1. 

PROPOSITION 1. Suppose that ~( ~ ) is analytic, decreas- 
ing, and concave up. Then for  o < l, I o - 11 sufficiently 
small, (26)  has a solution. 

Proo f  For O close to 1, we must only show that ~(i~) 
traces a curve downward and to the left since ~(0) = 
1. Since ~ is decreasing and concave up, the first three 
Taylor series terms are: 

~(~k) = 1 - -  a l Jk  + a2k 2, (30) 

where a~ and a2 are positive. Thus, ~(i~) ~ 1 - a2~ 2 
- ia~ .  This has the required property. • 

The present result is a "generalization" of the anal- 
ysis by Marcus and Westervelt (1989) although they 
allow the delay to occur in all neural interactions rather 
than in the inhibitory interactions alone. An analysis 
similar to this is given for the Grossberg network with 
dynamic inhibition in Ellias and Grossberg (1975). For 
the remainder of this paper, we will consider the sim- 
plest dynamic case where u (t) obeys first order dynam- 
ics. Thus, we will consider ( 18 ) and (20). 

First, we note that since the steady states of (17) 
with r = 0 are hyperbolic (that is all eigenvalues of 
their linearization have nonzero real parts) it follows 
from invariant manifold theory (Fenichel, 1971 ) that 
for sufficiently small r the stable solutions to (16) or 
(3-5) are also stable solutions to ( 18 and 20). So, for 
sufficiently fast inhibition, the network maintains the 
WTA properties. Consider now, the homogeneous 
equation in which xj are all equal. Then, it is easy to 
prove a generalization of the result in part 3.1. 

THEOREM 3. A s s u m e  the following: 
i. 17 and 20 has a unique homogeneous  equilibrium. 

ii. F 2 >  - ~  + F~ > 0. 
iii. fit is continuous and increasing. 
iv. F m i  n < F < Fma~. Then fo r  r sufficiently large, there 

is at least one asymptotical ly  stable homogeneous  
l imit  cycle. 

Proof  Let (x (t), u (t) ) satisfy the homogeneous equa- 
tion: 

dr 
- -  = - # . x  + F ( C x ,  u) 
dt 

du 
r--~ = - u  + N ~ ( x ) ,  (31) 

and let (~, ~7) be the homogeneous equilibrium. Recall 
that F~ = CO~F and F 2 = -Nf i t 'O2F.  From (iii) and 
(iv), all trajectories must eventually be contained in 
the box [F=i., Fmax] X [Umi., U=~] where u~i, = 
Nfit(F=in) and Um~x is similarly defined. The lineariza- 
tion about the equilibrium leads to the matrix: 

( - .  + rl 02F I 
M = \  N T ' / r  - l / r ] "  
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The determinant of M is ( Fz - ( -  # + Fl ) ) / r which 
is positive by (ii). The trace of M is - g + F I  - 1 / r. 
Since -/~ + F~ > 0, for r sufficiently large, the trace is 
positive and the equilibrium is an unstable focus or 
vortex. Thus, there is a region around the equilibrium 
which all trajectories must exit. Since there are no other 
equilibria, it follows from the Poincar~-Bendixson 
theorem that there is an asymptotically stable limit 
cycle. • 

3.3 .  Stabi l i ty  of  the  H o m o g e n e o u s  R h y t h m  

Our goal now is to show that the homogeneous solution 
is a stable solution to the full WTA network for suffi- 
ciently large r. We will prove this for the case in which 
the coupling Cjk is rotationally symmetric, that is Cjk 
= c ( j  - k)  where c(~) > 0 and c(~ + N) = c(~). This 
may not be physically realistic but the mathematics is 
tractable and numerical results shown later in the paper 
confirm the validity of our results for randomly coupled 
networks. This assumption also implies that each ex- 
citatory neuron receives the same total excitatory input 
from the other cells. From Theorem 3, we know that 
for r large enough, there is an asymptotically stable 
oscillatory solution to (31) say, (~(t) ,  fi(t)). That is, 
xy(t) = ~(t) for al l j .  We now wish to find conditions 
that guarantee that the symmetric solution is a stable 
solution to the full model ( 1 8 - 2 3 ) .  

THEOREM 4. Suppose that ( ~( t ), ~( t ) ) is a T-periodic 
solution to the symmetric eqns (31 ). Define the quan- 
tities: 

and 

lf0~ f =  -~ OiF(.~(t), a(t))dt, (32) 

N 

Xk =-- fk + iwk = ~ c(j)exp(27rijk/N), 
j = l  

k = 0  . . . . .  N -  1. (33) 

(Note that C = ~o. ) Then, 
( i ) The solution ( ~, fi) is an asymptotically stable pe- 

riodic solution to (31 ) i f  and only i f  

1 
- i t  +f~o < - .  (34) 

-g 

(ii) The solution is an asymptotically stable solution 
to the full  system (17-19)  i f  and only i f  we have 
in addition to (34): 

-U +f~'k < 0, k > 0 .  (35) 

COROLLARY 1. Suppose that the coupling function c( k ) 
is monotone decreasing with k and suppose that ( Y( t ), 
ft ( t)  ) is an asymptotically stable solution to ( 31 ). Then 
a sufficient condition for the homogeneous (synchro- 

From this, we obtain 
l / T + #  

- #  +f~'k < --U + - -  ~'k- 
~'0 

nous) solution to be a stable solution to the full  model 
is: 

1 
1 - ~k/~0 > - -  k > 0. (36)  

7"~t ' 

Proof of  Corollary. Monotonicity of the coupling func- 
tion means that ~'o > ~'k for all k > 0. The stability of 
(2( t ) ,  ri(t)) as a solution to (31 ) implies that (34) holds. 
Thus, 

l i t + #  

~o 

If the right-hand side is negative, so is the left-hand 
side. The right-hand side is negative if (36) holds. • 

Since u is roughly proportional to 1/rex where rex 
is the excitatory time constant, (36) shows that the im- 
portant quantity is the ratio of the time constants 
rex/r. Either fast excitation or slow inhibition will sta- 
bilize the synchronous oscillation. One consequence of 
the Corollary is that the stability of the synchronous 
state can be determined independently of the details of 
the oscillation. The only information required concerns 
the nature of the connectivity (incorporated in the ei- 
genvalues Xk), and the rate of the inhibition. 

Proof of  Theorem. The linearization of (18, 20-23) 
about the symmetric solution is: 

- -  - -#yj  + O,F(~o2(t), O(t)) ~ c(j  - k)yk 
dt k 

+ OEF(~oY(t), ft(t))v 

dv 1 
- ( - v  + ~t ' (2( t ) )  ~ Yk). (37)  

dt r k 

The translation invariance of the matrix Cjk =-- 
c ( j  -- k)  implies that we need only consider solutions 
to (37) of the form: 

yj = zk( t)exp(2rikj /N),  v = wk(t), (38) 

where zk(t) and wk(t) are scalars that satisfy a coupled 
linear differential equation. The advantage of this is 
that rather than solving a system of N + 1 differential 
equations we split the equations into Ntwo-dimensional 
subsystems. We note that since (37) is real many of 
these are redundant under the exchange o f ( N  - k) *--, 
k and complex conjugation of ~k. We consider the cases 
k = 0 and k > 0 separately. 
(i) k = 0. The k = 0 case corresponds to determing 

the stability of (2(t) ,  ti(t)) as a solution to the 
symmetric system (31 ). Since the equations are 
autonomous and two-dimensional, one of the Flo- 
quet multipliers is zero. The stability of the peri- 
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odic orbit is obtained by looking at the trace of 
the linearized system which is: 

1 
- #  - - + O ~ F ( ~ o g ( t ) ,  a(t))~'o. 

7" 

Stability is guaranteed as long as the mean over 
one cycle of this is negative thus implying (34). 

(ii) k + 0. Then (Z k ,  Wk) satisfy: 

dz~ _ 

dt  
- -  - --#Zk + d ~ F ( ~ o $ ( t ) ,  a ( t ) )XkZk  

+ 02F(~o-~( t ) ,  ~ ( t ) ) W k  

(39) 
dwk_ 1 

wk. 
dt 

There is no dependence of Wk on Zk since 
N 

e x p ( 2 7 r i k j / N )  = O, k ~ O. 
j=l 

Thus, (39) is a scalar equation and stability is as- 
sured if the real part of the mean value of 

- #  + O~F(~o.~(t) ,  a ( t ) ) X k  

is negative. This is equivalent to (35). • 

R e m a r k .  The inequality (36) is fine for connected net- 
works, but in the case in which c ( j  - k) = 0 unless j 
= k (the situation analyzed in Section 2) this estimate 
is too crude since ~'k = ~0 for all k. The required con- 
dition is that - #  + f~'o < 0. This is stronger than the 
condition required for stability with respect to homo- 
geneous perturbations (eqn (34)). This means it is 
possible for a WTA network to maintain its properties 
even for very slow inhibition. 

R e m a r k .  The mode by which the loss of stability of the 
homogeneous oscillation is clear from the proof of 
Theorem 4. If  the network is symmetric, then it is pos- 
sible to lose stability at a Floquet multiplier of 1 and 
at a nonzero wavenumber, k. The fact that this wave 
number is nonzero means that it is possible to have 
spatially modulated solutions bifurcating from the ho- 
mogeneous oscillation. If certain technical conditions 
on the nonlinearities hold (these conditions are generic) 
then, solutions that have the form: 

x j ( t )  = .~(t)  + p ( t ) c o s ( 2 7 r k j x )  + • • • 

where p(t)  is periodic. This solution which is period- 
ically modulated in space has the "order preserving" 
properties originally sought by Ellias and Grossberg 
(1975). Because of the symmetry, any single cell in this 
network can have the maximum magnitude and will 
maintain it for the duration of the periodic solution. 
The cell that has the maximal output is chosen de- 
pending on the initial conditions. Thus, this oscillating 
network has many of the same properties as the sta- 
tionary system described in Section 2. 

R e m a r k .  The onset of oscillations in the present net- 
work is quite different from that described by Cohen 
( 1988, 1990). There, he shows that the oscillations arise 
through the spatial spread of cooperative activity in the 
network. 

We have shown that for r sufficiently small there is 
a very asymmetric behavior in which one neuron is 
tonically firing and remaining cells are off. For r suf- 
ficiently large, all cells synchronously oscillate. In the 
next section, we address the question of how the tran- 
sition between these two totally different behaviors 
could occur through a numerical example of the Wil- 
son-Cowan neural net. 

4. THREE CELL SYSTEM 

In this section, we attempt to understand the mecha- 
nism that underlies the transition from a WTA network 
to the synchronized oscillatory state. To do this, we 
assume a ring of three excitatory cells with a connection 
to one other cell. We will fix all parameters except for 
r in such a way as to guarantee that for r = 0, the 3- 
ring has the WTA property. Our approach is to use 
numerical methods and bifurcation theory to under- 
stand the onset of the "burst-like" solutions. The model 
we study is: 

dxl 
= - x t  + F(oteeXt + cx2 - otieu - 0~) 

dt 

dx2 
= - x 2  + F(aeeX2 + CX3 - c~i~U - 0~) 

dt  

dx3 
= - - X  3 q- F ( o l e e X  3 -]- CX! --  OtieU -- Oe) 

dt 

du  1 
- -  = - ( - u  + F(c te i (x l  + x2 + x3) - Oi)), (40) 
dt  

where Otee = 14, aei  = 15,  ale  = 15,  c = 2,  Oe = 1, Oi = 

8. We will let r vary from a small value to a value that 
is O( 1 ). Equation (40) is a multiexcitatory generaliza- 
tion ofeqn. (3-5).  Numerical simulations of the Yuille 
model show identical behavior so that we suspect that 
the following is a general property of slowed inhibitory 
WTA networks. 

4.1. Emergence of the WTA System 

Let us first set r = 0 and study the steady states of this 
symmetrically coupled system. Suppose that c is fixed 
and small (say two as above). When ace is sufficiently 
small, there is a unique steady state and this is stable 
and symmetric with respect to the three variables X l ,  

x 2 ,  and x3. As Otee increases, a saddle node bifurcation 
occurs in which six new equilibria are born in analogy 
with the results in Section 2. Of these, three are stable 
and three are unstable. The six occur in stable-unstable 
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pairs and are related to each other by rotation of the 
indices due to the symmetric coupling of the system. 
These appear to remain for all larger values of Otee. There 
are thus, seven distinct equilibria, three asymmetric 
stable fixed points, one unstable symmetric fixed point, 
and three unstable asymmetric fixed points. It is pos- 
sible, as we saw in Section 2, that there may be many 
other equilibria, but these are not relevant for the pres- 
ent analysis. For general N, similar behavior occurs 
and there will be 2N + 1 fixed points, N of which are 
stable. 

4.2. Behavior as r Increases 

For r small, the network behaves as a WTA system and 
there are three steady states corresponding to one of 
the xi large and the other two close to zero (for reference, 
x~ = 0.5277, x2 ~ x3 ~ 0, and u = 0.4178). In addition 
are the three unstable saddle points (Xl = 0.2688, x2 
= 0.000484, Xa = 0.02213, and u = 0.02176), the two 
others are obtained by permuting the first three vari- 
ables). As r increases the stable steady states lose sta- 
bility at a Hopf bifurcation at approximately r = 0.17. 
This supercritical bifurcation leads to small amplitude 
periodic oscillations about the stable states. Since there 
are three rest states and the system is symmetric, there 
are then three stable periodic solutions corresponding 
to rhythms in which one cell oscillates about a "high" 
state and the other two remain nearly zero. We note 
that at this point, the network behaves as an oscillatory 
WTA system and has "order preserving limit cycles" 
in the sense of Ellias and Grossberg ( 1975 ). This is yet 
another route to order preserving cycles and is different 
from that described in Section 3.2. At a slightly larger 
value of r, r ~ 0.22, the saddle points simultaneously 
lose stability via Hopf bifurcations that give rise to three 
unstable periodic oscillations. Finally, to set the stage, 
we examine the symmetric state as r increases. For r 
small the symmetric state is unstable with a two-di- 
mensional unstable manifold and a two-dimensional 
stable manifold. As r increases, there is a Hopf bifur- 
cation to a stable (with respect to symmetric pertur- 
bations) periodic orbit. This is unstable as a solution 
to the full problem. As in Section 4.1 there may be 
other periodic orbits, but these appear to be the only 
relevant ones. In general, there will be 2 N  + 1 periodic 
orbits of which N are stable, N are unstable, and the 
symmetric orbit is unstable. 

4.3. Ponies on a Merry-Go-Round 

To understand what happens as r increases, we turn to 
a Poincar6 map of the three-dimensional system. We 
look at the values ofxj  as the inhibitory variable, u( t )  
crosses the hyperplane u = 0.4. There are seven fixed 
points corresponding to (a) Symmetric periodic solu- 
tion (2, l ) ,  (b) three stable asymmetric periodic so- 

/ 

(a) 

(b) 

(c) 

FIGURE 3. Conjectured phase-space diagram of the Poincerb 
map with respect to the inhibitory variable. (a) Seven periodic 
orbits, circles-stable asymmetric, triangles-unstable asym- 
metric, square-unstable synchronous orbit, (b) merging of the 
asymmetric pedodice to form a triple asymmetric saddle-node 
loop, (c) invariant circle loft after seddle-node bifurcation leav- 
ing POM solutions. 
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FIGURE 4. Behavior of (40 )  for r = .94, c21 = c . .  = c,s = 2, all other parameters as in Figure 211: ( a )  x,(t) and x=(t)  showing "burst" 
activity, (b )  x~(t) + xs(t)  + x3(t) plotted against u(t) in a phase-plane. 

lutions (0, 3 ), and (c) three unstable asymmetric pe- 
riodic solutions ( 1, 2). The numbers inside the paren- 
theses denote the stability; the first is the number of 
Floquet multipliers outside the unit circle and the sec- 
ond is the number inside the unit circle. We sketch the 
conjectured picture in Figure 3a. As r increases, the 
unstable asymmetric fixed points merge with the stable 
asymmetric fixed points to lead to a heteroclinic cycle 
( Figure 3b). Parts of this conjectured picture have been 

numerically confirmed with the program AUTO. Fi- 
nally, as ~- continues to increase, the three saddle-node 
points disappear and leave in their wake an invariant 
circle (Figure 3c). The solutions are analogous to the 
POM solutions described by Aronson et al. (1990a). 
For r close to the critical value ( ~ 0 . 9 ) ,  there are long 
periods for which oscillator 1 is active and the others 
are nearly silent• Suddenly, Xl (t) falls off and oscillator 
2 takes over. This continues, each oscillator taking over 
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as its neighbor falls off. This is illustrated in Figure 4a. 
The lumped activities, ( x j ( t )  + x2 ( t)  + x3 ( t ) )  almost 
lie on a dosed trajectory that is the same as a single 
excitatory-inhibitory pair as seen in Figure 4b. 

This behavior appears to be easily obtained for gen- 
eral N. In Figure 5 we illustrate the behavior for a 20 
neuron model each cell of which receives inputs from 
four other excitatory cells. The coupling is translation 
invariant so that once one cell's coupling matrix is 
known, all others are obtained by translation. In this 
case, it is clear from the figure, that each oscillator fires 
at some time in the cycle. One surprising result of this 
simulation as well as all others that we have observed 
is that the total excitatory activity of the network re- 
mains nearly constant. This is illustrated by Figure 6a 
in which we show the summed excitation plotted in a 
phase-plane with the inhibition. This should be com- 
pared to Figure 2a, which is the phase-plane of a single 
excitatory-inhibitory pair. Figure 6b depicts the activity 
of a single excitatory cell. For long periods of time this 
cell is inactive and then becomes active for a short in- 
terval. 

The manner in which the bifurcation to POM so- 
lutions occurs suggests that symmetry is necessary for 
this complex behavior. Figure 7 shows that symmetry 
is not required to get the locally erratic, globally regular 
behavior. For this figure, there are 20 oscillators each 
of which receives four inputs from randomly chosen 
cells with random strengths. The behavior is highly ir- 
regular, but as in the translationally coupled case, the 
global activity is quite regular. This is shown in Figs. 
7b and c. 

FIGURE 5. Network of 20 excitatory cells and one inhibitory 
ceil. Each excitatory ceil receives input from four other excit- 
story cells. Plot shows activity of the 20 excitatory ceils as a 
function of time. Oscillator I receives input from #s  3, 12, 14, 
and 16. All other connections are obtained via translation mod- 
ulo 20. Parameters are a, .  = 14, o~ = 5, a,, = 20, 0. = 1, 0a = 
8 , ~ =  1. 

4.4. Ultimate Stability of "In Phase" Oscillation 

As r continues to increase (i.e., the inhibition becomes 
slower), the POM solution gradually shrinks and the 
symmetric solution stabilizes. As we saw in the previous 
section, the synchronized solution should remain stable 
for all further increases in r. 

The proof of Theorem 4 enables us to get a detailed 
characterization of the collapse of the POM solutions 
onto the stable synchronous periodic orbit. Consider 
the reverse case in which r is very large and we decrease 
it until the synchronous solution loses stability. We will 
first consider the general case and then apply the results 
to the present N -- 3 problem. The symmetric solution 
loses stability if (35) is violated for some k ~ 0. Let ko 
denote the value of k v t 0 which maximizes fk. Then 
as r decreases the symmetric solution will lose stability 
to perturbations that are proportional to exp (2~rikoj). 
If o~k0 is nonzero, then we expect to see new solutions 
bifurcate from the symmetric state that are proportional 
to: 

xj(t) = £(t)  + flRe[p(t)exp(2~rikoj/N + iO~koft)], (41) 

where p(t) is T-periodic and fl is a measure of the dis- 
tance from the bifurcation point. These solutions have 
a rotation imparted on them from the imaginary part 
of kk0 and thus are a primitive form of the POM so- 
lutions. The rotational component depends on the 
nonvanishing of o~k0. In particular, if the coupling be- 
tween the excitatory cells is symmetric C;k = Ckj, then 
~k0 -= 0 and no rotating solutions exist. In Figure 8 we 
depict the solutions right after the bifurcation occurs 
in the case of symmetric coupling. For N = 3, k0 must 
necessarily be 1, so from (41 ), we see that two oscil- 
lators will have the same magnitude and the third will 
be larger as is depicted in the figure. For asymmetric 
coupling, a rotation will be imparted and there will be 
a slow travelling wave that modulates the magnitude 
of the oscillations. Figure 9 shows the Poincar6 map 
with respect to the inhibitory variable. Clearly, there is 
a travelling wave going from x~ --~ x3 --~ x2 --~ Xl. This 
is reflected by the fact that x3 receives coupling only 
from x~, x~ from x2, and x2 from x3. As the parameter 
r decreases, this "wave" becomes more pronounced 
and complicated dynamics can occur. 

4.5. Intermediate Solutions, Periodicity, 
and a Delay Equation 

For a certain range of values of • the invariant circle 
that bifurcates from the degenerate heteroclinic cycle 
(or bifurcates in the other direction from the synchro- 
nous state) becomes a periodic solution with long pe- 
riod. In Figure 10 we illustrate such a solution for r = 
0.94. The period of this particular solution is roughly 
24 times the period of the inhibition cycle. This suggests 
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FIGURE 6. Same network of 20 ceils as in Figure 5: (a) Summed activity of all the excitatory ceils plotted against activity of inhibitory 
ceil in the phase-plane for simulation shown in Figure 5, (b) time course of cell #20. 

that perhaps a periodic solution exists for some range 
parameters. From the symmetry of the coupling, it is 
clear that if there is a periodic orbit, we must have that 
x2(t) = x l ( t  - T / 3 ) ,  and x3(t) = x ~ ( t  - 2T)/3) .  Thus, 
we seek a solution to the differential delay equation: 

dx(  t) 
dt = - x ( t )  + F ( a , , x ( t )  

+ cx ( t  - T / 3 )  - a ieu( t )  - Oe) 

du( t) 1 
( - u ( t )  + F(aei (X( t )  

dt r 

+ x ( t  - T / 3 )  + x ( t  - 2T/3)) - 0i)). 

The question is whether there is a T-periodic solution 
to this equation such that T is not 3S, where S is the 
period of the homogeneous solution. Other than the 
numerical results above, we have no further results on 
the existence of a solution to this delay equation. 
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FIGURE 7. Network of 20 cells with random inputs from four ceils each with • random strength between 2 and 5. a . .  = 14, a., = 8, 
a,. = 20, e. = 1, 0a = 8, r = 0.8; (a )  activity of ell 20 excitatory cells, (b)  summed activity of excitatory cells end activity of inhibition 
in phaea-piene, (c)  time course of cell #10.  

R e m a r k .  We have repeated this sequence of  bifurcations 
for the Yuille model  and have found that  the same re- 
sults apply. We numerical ly  integrate the following 
equations: 

d x  1 
- -  = - -X l  + I l f ( X t  + CX3 -- U) 

dt 

d x  2 
- -  = --X2 + I 2 f ( x 2  + CXl -- U) 
dt 

d x 3  
- -  = - x 3  + I 3 f ( x 3  + cx2 - u )  
(it 

du  
r - ~  = - u  + xl + x2 + Xa, (42) 

where, f ( x )  = ½(1 + t a n h ( 4 x ) ) ,  c = .2, r = l, I~ = 12 
= 13 = 4. The  P O M  behavior  holds for this system and 
persists even w h e n / j  are not  equal. In particular,  i f  11 
= 4, 12 = 4.2, and 13 = 3.8 P O M  behavior  occurs, bu t  
it is not symmetr ic .  Rather, cell #2 oscillates for a larger 
propor t ion  o f  the t ime followed by cell #3 (which re- 
ceives input  f rom #2)  and lastly by cell # 1. For r suf- 
ficiently small, the WTA proper ty  holds. 

5. D I S C U S S I O N  

We have studied the dynamics  of  a single inhibi tory 
cell connected to a small  cluster o f  loosely coupled ex- 
ci tatory cells. This  behavior  is different f rom wave-like 
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FIGURE 8. Solution to (40)  for ~- s l ight ly smaller than the value for which the synchronous solution is stable. Asymmetric periodic 
solutions adse due to the symmetry of the coupling. Each ceil receives inputs from its neighbor of strength 2, • = 0.85, all other 
parameters as in Figure 2a. 

and phase-locked oscillations observed in other systems 
of coupled neural oscillators (Ermentrout, 1982; Er- 
mentrout & Cowan, 1980). The numerical results pre- 
sented show that one must be cautious in using neural 
inhibition as a means of enhancing contrast (i.e., as a 
means of selecting the maximal stimulus), for if the 
inhibition is allowed to behave dynamically, there can 
be difficulties when the inhibitory response is too slow. 

Additionally, we have shown that synchronous os- 
cillatory responses such as observed by Traub in his 
much more complete model for the hippocampus are 
also observed here. He has suggested that the loss of 
fast inhibition is the cause of the synchrony. We have 

additional numerical support for this hypothesis. Sup- 
pose that we consider a population of excitatory neu- 
rons coupled to two different inhibitory cells, one fast 
and one slow. Our simulations indicate that the behavior 
of the fastest inhibitory cells determine the behavior of 
the coupled system. That is, if one inhibitor has a fast 
enough response to give the WTA property and the 
other has a slow response, it is the WTA property that 
emerges. This persists until the ratio of the influence 
of the "fast" cell to the "slow" cell is very small. Sim- 
ilarly, a cell that is slow enough to produce synchronous 
oscillations has little effect if the other inhibitory cell 
is capable of producing (e.g., POM solutions). Our 
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FIGURE 9. Poincar0 map for (40 )  a tu  - 0.4 with ~ = 1.2. Synchronous solution has lost stability to rotating "wave-l ike" perturbations. 
Coupling is asymmetric as in Figure 4. All other parameters as in Figure 3a. 
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FIGURE 10. PoinearO map with respect to u -- 0.4 showing period 24 solution in the xl - x2-phase-plane. Parameters as in Figure 4. 

simple model thus provides a robust means to go from 
the WTA behavior to a more complex dynamic behav- 
ior by destroying the "fast" inhibition and leaving the 
slow. 

Lytton and Sejnowski (1990) examine a biophysi- 
cally detailed neural (i.e., one which takes specified 
ionic channels and conductances into account) model 
in order to show how synchrony could arise from in- 
hibitory inputs. The present work is peripherally related 
in that we demonstrate that fast inhibition is very de- 
synchronizing while slower inhibition has the effect of 
causing synchronized activity in the population of  ex- 
citatory cells. Corollary 1 indicates that the details of 
the neural oscillations are not important, rather, the 
topology of the connections is the main determining 
factor for stability of the synchronous solutions. Som- 
polinsky, Crisant, and Sommers (1988) and others 
(Hopfield, 1982; Wang, 1990) have examined networks 
of the form: 

v~ = - v , / g  + ~ Cijf(vj) ,  (43) 
J 

where C o are random and generally asymmetric and f 
is a monotone increasing nonlinearity. In the symmetric 
or Hopfield case all solutions tend toward equilibria 
while in the case in which the coupling is completely 
random, chaotic behavior arises. The model we have 
proposed can be converted to a system similar to (43) 
under a nonlinear change of  variables although it does 
not have the symmetries of (43).  Furthermore, our 
work is concerned with finitely many cells and not with 
statistical properties as N--~ ~ .  As was mentioned in 
the introduction, Marcus and Westervelt (1989) have 
studied homogeneous solutions to (43) when the re- 
sponse is delayed. They show the existence of asym- 
metric oscillations for some choices of Cij. 

The work here bears some similarities to the desta- 
bilization of stationary peak solutions to reaction-dif- 
fusion equations. In Nishiura and Mimura (1989), a 
reaction-diffusion system with lateral inhibition is 
shown to have stationary peak solutions in which a 
small region has a high chemical concentration and the 
remainder of the medium is suppressed. These authors 
show that as the time constant of the inhibitory chem- 
ical is increased (slowing down the inhibition) the sta- 
tionary peak loses stability at a Hopf bifurcation and 
a new solution called a "breather" emerges. This bi- 
furcation is analogous to the first loss of stability of the 
WTA solutions as the time constant increases (see Sec- 
tions 3 and 4.2.) 

There are many mathematical points that are still 
unresolved. One interesting question is how the in- 
variant circle of the Poincar6 map that first appears 
when the six periodic orbits coalesce eventually itself 
becomes a periodic orbit (such as the period 24 orbit 
described in Section 4.) Another question is whether 
the periodic orbit exist as a solutions to the delay equa- 
tion in Section 4. Aronson et al. (1990a) prove the 
existence of solutions to their delay equation, but exploit 
certain properties of the Josephson junction model that 
we do not have in this model. 
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A P P E N D I X  

Here, we consider bifurcation for the following model: 
" 

= - # x j + F ( ~  c( j - -k)Xk,  ~, Xk;a), (AI) 
k=l k=l 

where, as in the text, O~F > 0 and 02F < 0. We assume that c(n + 
N) = c(n) and that c(n) = c( -n)  for n ~ Z. This simplifies the 
analysis considerably. Finally, we require that c(n) > O. The last as- 
sumption guarantees that the interactions are excitatory. Let .~ be the 
homogeneous equilibrium and let F~ = 01 F, F2 = -02F > 0 evaluated 
at the equilibrium. Each of these is itself a function of the parameter 
a. The stability is determined from the linear equations: 

dyj _ -#YJ N - -  - + Fl Z C(J - k)y k -/72 Z Yk. (A2) 
dt k=l k=l  

The solutions to (A2) are of the form: 

y~=exp(2*rijm/N+~mt), m = O  . . . . .  N - l .  (A3) 

Substitution yields the following equation for ~'m: 

)~r,, = - #  + Ft(a)c,,, - F2(a)dm, (A4) 

where, 

N 

Cm = ~, c( k )e 2"~kmm, 
k=l 

and, 

if 

if m > O "  

Now, suppose that c(O) > c( 1 ) > • • • > c(N/2).  Then it is easy to 
verify that Co is the maximum value attained by the c,. and that c~ is 
the second largest. From (A4), 

•o = --# + Fl(a)Co - NF2(ot) 

)~1 = --[,L + Fl(ot)ct. (A5) 

If F2 is large enough as is assumed throughout this paper, it is clear 
that the maximal eigenvalue will be Xl so that as a exceeds some 
critical value, a* (a* satisfies Fl (a*) = #/c~ ) the homogeneous so- 
lution will lose stability to perturbations proportional to the real part 
of exp27rij/N. The result is that bifurcating solutions will be of the 
form: 

= ~ + ~ cos 27rj/N, 

or any translation of this solution by 2rl/N,  l = 0 . . . . .  N -  1. Thus, 
one xj will be maximal and all others will have a smaller magnitude. 
We note that in absence of connectivity, c,. is the same for all m. 
Perturbing this connectivity in a physically reasonable fashion is similar 
to adding dissipation to shock problems in order to regularize them 
and then letting the dissipation tend to zero. 


